Please use this identifier to cite or link to this item:
Title: Design and optimization of selfnanoemulsifying drug delivery systems for enhanced dissolution of gemfibrozil
Author: Sierra Villar, Ana María
Clares Naveros, Beatriz
Calpena Campmany, Ana Cristina
Aróztegui Trenchs, Montserrat
Barbé Rocabert, Coloma
Halbaut, Lyda
Keywords: Sistemes d'administració de medicaments
Medicaments cardiovasculars
Agents tensioactius
Olis vegetals
Drug delivery systems
Cardiovascular agents
Surface active agents
Vegetable oils
Issue Date: 15-Jul-2012
Publisher: Elsevier B.V.
Abstract: Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. Box-Behnken experimental design was employed as statistical tool to optimize the formulation variables, X1 (Cremophor® EL), X2 (Capmul® MCM-C8), and X3 (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X1, X2, and X3) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in td parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption.
Note: Versió postprint del document publicat a:
It is part of: International Journal of Pharmaceutics, 2012, vol. 431, num. 1-2, p. 161-175
Related resource:
ISSN: 0378-5173
Appears in Collections:Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)

Files in This Item:
File Description SizeFormat 
618626.pdf1.11 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.