Please use this identifier to cite or link to this item:
Title: Real-time monitoring of the silicidation process of tungsten filaments at high temperature used as catalysers for silane decomposition
Author: Nos Aguilà, Oriol
Frigeri, Paolo Antonio
Bertomeu i Balagueró, Joan
Keywords: Tungstè
Processos químics
Deposició química en fase vapor
Metal·lúrgia física
Chemical processes
Chemical vapor deposition
Physical metallurgy
Issue Date: 2014
Publisher: Elsevier B.V.
Abstract: The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900ºC) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, Rfil(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi2 fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: a initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W5Si3 (which is later replaced by WSi2) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their Rfil(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored Rfil(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed.
Note: Versió postprint del document publicat a:
It is part of: Materials Chemistry and Physics, 2014, vol. 143, num. 2, p. 881-888
Related resource:
ISSN: 0254-0584
Appears in Collections:Articles publicats en revistes (Física Aplicada)

Files in This Item:
File Description SizeFormat 
629426.pdf1.31 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.