Please use this identifier to cite or link to this item:
Title: Theta-duality on Prym varieties and a Torelli Theorem
Author: Lahoz Vilalta, Martí
Naranjo del Val, Juan Carlos
Keywords: Varietats abelianes
Geometria algebraica
Abelian varieties
Algebraic geometry
Issue Date: 9-Jan-2013
Publisher: American Mathematical Society (AMS)
Abstract: Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve.
Note: Reproducció del document publicat a:
It is part of: Transactions of the American Mathematical Society, 2013
Related resource:
ISSN: 0002-9947
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
598730.pdf301.28 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.