Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasacuberta, Carles-
dc.contributor.authorColldeforns Papiol, Gemma-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2013, Director: Carles Casacubertaca
dc.description.abstractThis essay encompasses, first, some basic concepts related to knot theory. Secondly, we will deal with knot polynomials, presenting how the definition of the Jones polynomial can be reached by means of the Kauffman bracket. In the third chapter we will define co)homology of (co)chain complexes for its use in the fourth chapter. The main objective of this work is to learn how to compute Khovanov homology, which we deal with in the fourth chapter, where some Khovanov homology computations will also be carried out, with the purpose of extracting valuable conclusions therefrom. Finally, in the concluding section, we will present a global view of knot theory
dc.format.extent75 p.-
dc.rightscc-by-nc-nd (c) Gemma Colldeforns Papiol, 2013-
dc.subject.classificationTeoria de nusos-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationTopologia algebraicaca
dc.subject.otherBachelor's thesis-
dc.subject.otherKnot theoryeng
dc.subject.otherAlgebraic topologyeng
dc.titleInvariants homològics de nusosca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
Memoria.pdfMemòria5.23 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons