Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/53298
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReverter Comes, Ferran-
dc.contributor.authorVegas Lozano, Esteban-
dc.contributor.authorOller i Sala, Josep Maria-
dc.date.accessioned2014-04-07T13:42:11Z-
dc.date.available2014-04-07T13:42:11Z-
dc.date.issued2014-03-
dc.identifier.issn1752-0509-
dc.identifier.urihttp://hdl.handle.net/2445/53298-
dc.description.abstractBackground Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherBioMed Central-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1186/1752-0509-8-S2-S6-
dc.relation.ispartofBMC Systems Biology, 2014, vol. 8(S2), num. s6, p. 1-9-
dc.relation.urihttp://dx.doi.org/10.1186/1752-0509-8-S2-S6-
dc.rightscc-by (c) Reverter Comes, Ferran et al., 2014-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.subject.classificationEstadística-
dc.subject.classificationBioinformàtica-
dc.subject.classificationMètodes estadístics-
dc.subject.classificationProgrames d'ordinador-
dc.subject.classificationProcessament de dades-
dc.subject.otherStatistics-
dc.subject.otherBioinformatics-
dc.subject.otherStatistical methods-
dc.subject.otherComputer programs-
dc.subject.otherData processing-
dc.titleKernel-PCA data integration with enhanced interpretability-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec637088-
dc.date.updated2014-04-07T13:42:12Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
637088.pdf2.3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons