Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/53927
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGarcía López, Ricardo, 1962--
dc.contributor.authorPericacho Allende, Verónica-
dc.date.accessioned2014-05-08T08:38:15Z-
dc.date.available2014-05-08T08:38:15Z-
dc.date.issued2013-07-20-
dc.identifier.urihttp://hdl.handle.net/2445/53927-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2013, Director: Ricardo García Lópezca
dc.description.abstractThe first section of this work discusses algebras. Particularly, the algebras which interest us are division algebras, which are algebras over a field where division is always possible. Then we introduce quaternions. We show that quaternions are a non-commutative division algebra. Also we will see how can we express a quaternion through real and complex matrices of dimensions 2 and 4 respectively, and why the equation $z^2 + 1 = 0$ with $z \in \mathbb{H}$ has infinite solutions. In the last part of this section, we prove the Frobenius Theorem which affirms that the only division algebras of finite dimension over $R$ are the real numbers, the complex numbers and the quaternions. Hamilton discovered quaternions with the idea of using them to study rotations in 3-dimensional space. In the third section of this work we will see how to represent 3-dimensional rotations with unit quaternions. We will introduce the octonions in the fourth part of this work. We will see that octonions form a non-associative division algebra. In the next section we introduce the Cayley-Dickson construction for normed algebras. By this construction, we can obtain the complex numbers from the real numbers, the quaternions from the complex numbers and y the octonions from the quaternions. Finally, we will see that we can define a cross product in $\mathbb{R}^n$ only if $n$ = 1, 3 or 7. We will use this fact to prove a theorem, asserting that the possible dimensions for a normed algebra over $\mathbb{R}$ are only 1, 2, 4, 8. We will deduce from this statement a Theorem of Hurwitz which states that if $n\in\mathbb{N}$, the product of two sums of $n$ squares can be expressed as a sum of $n$ squares only if $n = 1,2, 4, 8$.eng
dc.format.extent41 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Verónica Pericacho Allende, 2013-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationQuaternions-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationÀlgebres no associativesca
dc.subject.classificationÀlgebres no commutativesca
dc.subject.otherQuaternions-
dc.subject.otherBachelor's theses-
dc.subject.otherNonassociative algebraseng
dc.subject.otherNoncommutative algebraseng
dc.titleCuaterniones y octonionesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria442.46 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons