Please use this identifier to cite or link to this item:
Title: Importance of mitochondrial PO2in maximal O2 transport and utilization: A theoretical analysis
Author: Cano Franco, Isaac
Mickael, M.
Gomez Cabrero, David
Tegnér, Jesper
Roca Torrent, Josep
Wagner, P. D. (Peter D.)
Keywords: Mitocondris
Issue Date: 5-Sep-2013
Publisher: Elsevier B.V.
Abstract: In previous calculations of how the O2 transport system limits .VO2(max), it was reasonably assumed that mitochondrial P(O2) (Pm(O2)) could be neglected (set to zero). However, in reality, Pm(O2) must exceed zero and the red cell to mitochondrion diffusion gradient may therefore be reduced, impairing diffusive transport of O2 and .VO2(max). Accordingly, we investigated the influence of Pm(O2) on these calculations by coupling previously used equations for O2 transport to one for mitochondrial respiration relating mitochondrial .VO2 to P(O2). This hyperbolic function, characterized by its P50 and V˙MAX, allowed Pm(O2) to become a model output (rather than set to zero as previously). Simulations using data from exercising normal subjects showed that at .VO2(max), Pm(O2) was usually <1mmHg, and that the effects on .VO2(max) were minimal. However, when O2 transport capacity exceeded mitochondrial V˙MAX, or if P50 were elevated,Pm(O2) often reached double digit values, thereby reducing the diffusion gradient and significantly decreasing .VO2(max).
Note: Versió postprint del document publicat a:
It is part of: Respiratory Physiology & Neurobiology, 2013, vol. 189, num. 3, p. 477-483
Related resource:
ISSN: 1569-9048
Appears in Collections:Articles publicats en revistes (Medicina)

Files in This Item:
File Description SizeFormat 
633252.pdf1.44 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.