Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/62004
Title: Computational Modeling of Molecular Magnetic Materials
Author: Vela Llausí, Sergi
Director: Deumal i Solé, Mercè
Novoa Vide, Juan J.
Sousa Romero, Carmen
Keywords: Materials moleculars
Molecular materials
Química quàntica
Magnetisme
Cristal·lografia
Quantum chemistry
Magnetism
Crystallography
Issue Date: 10-Sep-2014
Publisher: Universitat de Barcelona
Abstract: [cat] Els materials moleculars han despertat molt d'interès en les últimes dècades degut a la seva possible aplicació en nous dispositius multifuncionals. Entre les diferents propietats que aquests materials poden presentar, una de les més típiques és el magnetisme, el qual sorgeix de la presència d’electrons desaparellats en les molècules que constitueixen el cristall tridimensional. El magnetisme té un observable macroscòpic, la susceptibilitat magnètica (Ji), que sol ser racionalitzada en termes microscòpics mitjançant el conjunt d'interaccions magnètiques JAB entre determinats parells de molècules. No obstant això, cap tècnica experimental permet aquesta correspondència directa i, per tant, la interpretació experimental de les propietats magnètiques sol requerir d’un posterior anàlisi des del punt de vista de la química computacional. La present tesi doctoral pretén doncs contribuir en el camp del magnetisme molecular i, més concretament, en com es poden utilitzar les eines de la química computacional per a modelitzar materials magnètics moleculars des de diferents perspectives. Amb aquest objectiu en ment, s’han racionalitzat les propietats magnètiques de diversos sistemes d'interès, que van des de compostos metal•lorgànics basats en ions de Cu(II) o de Co(II), radicals orgànics purs, compostos basats en l’estratègia sintètica de “metall-radical”, i finalment també materials de spin crossover basats en Fe(II). Al llarg de la tesi s'ha demostrat que la química computacional és una disciplina útil, capaç d'ajudar a la interpretació dels resultats experimentals i en la predicció de propietats interessants, especialment quan es treballa en estreta col•laboració amb els experimentadors. En particular, el procediment de primers principis Bottom-Up (FPBU, per les seves sigles en anglès), desenvolupat àmpliament en el nostre grup, és una eina útil per racionalitzar les propietats magnètiques de qualsevol material magnètic molecular. Per a aquest propòsit, la topologia magnètica (és a dir, la xarxa de JAB dins del cristall) és l'element clau. A més, hem analitzat diversos factors que afecten aquesta topologia magnètica, com els contraions, els radicals diamagnètics o l’efecte de la temperatura, mitjançant la seva manifestació en les vibracions del cristall i en la contracció (expansió) que pateix al refredar-se (escalfar-se).
[eng] Molecular materials have raised much interest in the last decades in the quest for new multifunctional devices. Among the multiple properties that those materials may present, one of the most typical is magnetism, which arises from the presence of unpaired electrons in the molecules that constitute the three-dimensional crystal. Magnetism has a macroscopic observable, the magnetic susceptibility (Ji), which is usually rationalized in terms of a set of JAB magnetic interactions between pairs of molecules. However, any experimental technique allows for such direct correspondence and, thus, the experimental interpretation of the magnetic properties usually requires further analysis from the point of view of computational chemistry. Consequently, the present PhD thesis is a contribution to the computational modeling of molecule-based magnetic materials. Specifically, we describe how the tools of computational chemistry may be used in order to study those materials from different perspectives. With this aim in mind, we have applied computational chemistry techniques to rationalize the magnetic properties of several systems of interest, ranging from metal-organic compounds, based on Cu(II), to pure organic radicals based on the DTA and Benzotriazinyl building blocks, and including compounds based on the metal-radical synthetic approach, and also spin crossover materials based on Fe(II). Along the thesis we have demonstrated that computational chemistry is a helpful discipline, capable to aid in the interpretation of experimental results and in the prediction of interesting properties, especially when working in close collaboration with experimentalists. In particular, the First Principles Bottom-Up (FPBU) procedure, extensively developed in our group, is a useful tool to rationalize the magnetic properties of any molecular magnetic material. To this purpose, the magnetic topology (i.e. the network of JAB within the crystal) is the key element. Regarding the magnetic topology, we have also demonstrated that it can be more intricate and complex than expected, and that it cannot be directly inferred from the coordination pattern of the molecule-based material. Therefore, the experimental assignation of the magnetic topology, by means of a fitting procedure, must be taken with caution. About the JAB values, we have proved that they depend on temperature, and that this dependence may be especially important when working with organic radicals. On this class of materials, we have analyzed how the JAB values evolve with time, and seen that this evolution may involve huge fluctuations of their magnitude as a consequence of the thermal motion at finite temperatures. Interestingly, we demonstrate herein that, when the JAB values depend non-linearly with the thermal vibrations of a material, the standard static perspective of magnetism is not valid to fully understand their magnetic properties, and that it is then required to adopt a dynamic perspective. Regarding the computational modeling of JAB values, we have seen that the combination of UB3LYP and the Broken-Symmetry approach yields JAB values, when transformed into the macroscopic observables, are in good agreement with experiment. In fact, we have demonstrated that, in order to predict the strength of a given JAB value, small distortions in the crystal structure can induce large variations, which may be much more important than the intrinsic error associated with the theoretical method employed. We have also observed that the counterions and diamagnetic ligands may have an important effect in defining the magnetic properties of a system. Overall, we have demonstrated that the magnetic topology and, thus, the macroscopic magnetic properties of a given material, cannot be understood without the proper knowledge of their crystal structure.
URI: http://hdl.handle.net/2445/62004
Appears in Collections:Tesis Doctorals - Departament - Química Física

Files in This Item:
File Description SizeFormat 
SVLL_PhD_THESIS.pdf97.52 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons