Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/62484
Title: Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4.
Author: Torres-Atencio, Ivonne
Ainsua-Enrich, Erola
Mora, Fernando de
Picado Vallés, César
Martín Andorrà, Margarita
Keywords: Mastòcits
Al·lèrgia
Malalties del pulmó
Mast cells
Allergy
Pulmonary diseases
Issue Date: 20-Oct-2014
Publisher: Public Library of Science (PLoS)
Abstract: Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle tocause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1<br>4 were assayed on the activated mast cells. Betahexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogenactivated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by betahexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase,and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions: Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition.
Note: Reproducció del document publicat a: http: //dx.doi.org/10.1371/journal.pone.0110870
It is part of: PLoS One, 2014, vol. 9, num. 10, p. e110870
URI: http://hdl.handle.net/2445/62484
Related resource: http://dx.doi.org/10.1371/journal.pone.0110870
ISSN: 1932-6203
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
645415.pdf1.4 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons