Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/62868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCano Franco, Isaac-
dc.contributor.authorSelivanov, Vitaly-
dc.contributor.authorGomez Cabrero, David-
dc.contributor.authorTegnér, Jesper-
dc.contributor.authorRoca Torrent, Josep-
dc.contributor.authorWagner, P. D. (Peter D.)-
dc.contributor.authorCascante i Serratosa, Marta-
dc.date.accessioned2015-02-12T13:59:43Z-
dc.date.available2015-02-12T13:59:43Z-
dc.date.issued2014-11-06-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/2445/62868-
dc.description.abstractThe production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (). Because depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pone.0111068-
dc.relation.ispartofPLoS One, 2014, vol. 9, num. 11, p. e111068-
dc.relation.urihttp://dx.doi.org/10.1371/journal.pone.0111068-
dc.rightscc-by (c) Cano Franco, Isaac et al., 2014-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)-
dc.subject.classificationOxigen en l'organisme-
dc.subject.classificationOxigen-
dc.subject.classificationMitocondris-
dc.subject.classificationRespiració-
dc.subject.otherOxygen in the body-
dc.subject.otherOxygen-
dc.subject.otherMitochondria-
dc.subject.otherRespiration-
dc.titleOxygen pathway modeling estimates high Reactive oxygen species production above the highest permanent human habitation.-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec646732-
dc.date.updated2015-02-12T13:59:43Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/270086/EU//SYNERGY-COPD-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid25375931-
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
646732.pdf813.89 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons