Please use this identifier to cite or link to this item:
Title: Newton's method on bring-Jerrard polynomials
Author: Campos, Beatriz
Garijo, Antonio
Jarque i Ribera, Xavier
Vindel, Pura
Keywords: Sistemes dinàmics diferenciables
Dinàmica topològica
Differentiable dynamical systems
Topological dynamics
Issue Date: 15-Sep-2014
Publisher: Universitat Autònoma de Barcelona
Abstract: In this paper we study the topology of the hyperbolic component of the parameter plane for the Newton's method applied to n-degree Bring<br>Jerrard polynomials given by $P_{n}(z)=z^{n}-cz +1, c \in \mathbb{C}$. For $n=5$ using the Tschirnhaus<br>Bring<br>Jerrard nonlinear transformations, this family controls, at least theoretically, the roots of all quintic polynomials. We also study a bifurcation cascade of the bifurcation locus by considering $c\in\mathbb{R}$
Note: Reproducció del document publicat a:
It is part of: Publicacions Matemàtiques, 2014, vol. Extra, p. 81-109
Related resource:
ISSN: 0214-1493
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
636579.pdf3.06 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.