Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/66640
Title: Synthesis and Characterization of Engineered Carbon-based Nanoparticles by Arc-discharge Plasma
Author: Sanaee, Mohammad Reza
Director: Bertrán Serra, Enric
Keywords: Nanopartícules
Plasma (Gasos ionitzats)
Propietats magnètiques
Nanoparticles
Plasma (Ionized gases)
Magnetic properties
Issue Date: 2-Jul-2015
Publisher: Universitat de Barcelona
Abstract: [spa] El concepto de la nanotecnología se atribuye al ganador del premio Nobel Richard Feynman, científico visionario, quien dio una muy famosa conferencia en 1959 (publicada en 1960), en la que dijo: "los principios de la física, por lo que yo puedo ver, no están en contra de la posibilidad de maniobrar los objetos átomo por átomo "(Feynman, 1960). En ese momento, se recibieron las palabras de Feynman como pura ciencia ficción, sin embargo, a día de hoy, tenemos instrumentos que permiten precisamente lo que Feynman ya había predicho: La creación de estructuras de átomos en movimiento de forma individual. En principio, los resultados finales del presente trabajo de investigación conduce a la síntesis de nanoestructuras del tipo core@shell, consistentes en nanopartículas de hierro encapsulado en carbono, en nanopartículas de carbono decoradas con fullerenos y micropartículas de carbono porosas esféricas como material y herramienta para aplicaciones biomédicas. Actualmente, nos encontramos en un frente contra enfermedades peligrosas y destructivas como el cáncer, y la nanotecnología se presenta como una herramienta que nos puede ayudar a establecer un control de este tipo de dolencias. Este trabajo se enmarca en la Nanotecnología y tiene por objetivo el estudio y preparación de nanopartículas a base de carbono que puedan ser útiles para ciertas aplicaciones aplicaciones médicas o biomédicas y otras del ámbito de la nanotecnología más general.
[eng] The concept of nanotechnology is attributed to Nobel prize winner Richard Feynman who gave a very famous, visionary in 1959 (published in 1960) during one of his lectures, saying: "the principles of physic, as far as I can see, do not speak against the possibility of maneuvering things atom by atom". At the time, Feynman’s words were received as pure science fiction". Today, we have instruments that allow precisely what Feynman had predicted: creating structures by moving atoms individually. In principle, the ultimate results of this research study leads to the synthesis of magnetic and porous carbon based nanoparticles as the material and tool for biomedical applications. Currently, we are in a battle with a dangerous and destructive diseases such as cancers, and nanotechnology is then presented as a tool that can help us win control. This work is to support medical and other applications of nanotechnology specifically aimed to prepare carbon based nanoparticles. Magnetic nanoparticles are being of great interest because of their unique properties especially in drug delivery, hyperthermia, magnetic resonance imaging and cell separation. In many clinical situations, medication doses are oversized as a result of impaired drug absorption or tissue unspecific delivery. The ultimate goal of magnetically controlled drug delivery and drug therapy is to selectively delivering drug molecules to the diseased site without a concurrent increase in its level in healthy tissues. Consequently, in this research study the objective is to develop an approach to control the synthesis of carbon encapsulated iron nanoparticles in the form of core@shell nanostructure. Accordingly, understanding and revealing the growth mechanism of carbon encapsulated iron nanoparticles is necessary by doing characterization. Furthermore, engineering of suitable carbon based nanoparticles for biomedical applications has been also considered. Common challenges for synthesis of carbon encapsulated iron nanoparticles are improving uniformity, enhancing coating protection and controlling particles compositions, shape and core/shell sizes. In addition, due to the lack of comprehensive understanding of the optimal parameters and formation mechanism most of the current fabrication process are empirical, which means a large number of experimental trials are required to optimize any given process. Since the last two decades, arc discharge technique leads to the discovery of two important carbon based materials, nanotubes and fullerenes. However, the formation of nanomaterials by thermal plasma still remains poorly understood and need further investigation. The focus in this study is on synthesis of carbon based nanoparticles by arc discharge method, particularly carbon encapsulated iron nanoparticles in the form of Core@Shell nanostructure. An arc discharge reactor that was patented by FEMAN group was used with slight modification. The growth processes were elucidated through many experiments and characterizations. Precise control over carbon encapsulated iron nanoparticles were addressed. In addition, a new carbon encapsulated multi iron nanoparticles is introduced. The results have been lead to new elements for understanding the growth mechanism of iron core and carbon shell nanostructure. In order to improve the synthesis process, a new modified arc discharge reactor was developed and implemented. Two new materials are prepared through a new facile synthetic method; carbon nanoparticles decorated by fullerenes and spherical porous carbon microparticles. Last but not least, in this research medical application requirements have been taken into account to prepare suitable nanoparticle.
URI: http://hdl.handle.net/2445/66640
Appears in Collections:Tesis Doctorals - Departament - Física Aplicada i Òptica

Files in This Item:
File Description SizeFormat 
SANAEE_PhD_THESIS.pdf7.67 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons