Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/68665
Title: Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices
Author: López Vidrier, Julià
Director: Hernández Márquez, Sergi
Garrido Fernández, Blas
Keywords: Electrònica de l'estat sòlid
Semiconductors
Transport d'electrons
Luminescència
Solid state electronics
Electron transport
Luminescence
Issue Date: 16-Jul-2015
Publisher: Universitat de Barcelona
Abstract: [eng] During the last decades, silicon nanocrystals have focused great attention due to the size-dependent physical properties they present, attributed to the quantum confinement effect. This, added to the bulk silicon compatibility with the well-established microelectronics technology and the low mining and manipulation costs this material presents, makes silicon a potential candidate for the growing photonics and optoelectronics fields. In particular, the tunnability of the electronic properties of silicon nanocrystals can be reached by controlling the nanocrystal size. This has been recently achieved by means of the superlattice approach, consisting of the alternated deposition of ultra-thin (2-4 nm) stoichiometric and silicon-rich layers of a given silicon-rich material. After a high-temperature annealing treatment, the silicon excess precipitates and crystallizes in the final form of nanocrystals, whose properties strongly depend on the fabrication process. Consequently, an ordered arrange of size-controlled nanocrystals (the superlattice) is obtained. In this Thesis Project, the structural, optical, electrical and electro-optical properties of silicon nanocrystal superlattices have been studied, using two different silicon-based materials as host matrices: silicon oxide and silicon carbide. The fabrication of these material systems has been carried out at different European institutions, specialists in the controlled deposition of nm¬thick films. Aiming at the nanocrystal superlattices characterization, different experimental techniques have been employed, which yield structural (transmission and scanning electron microscopies, X-ray diffraction), optical (optical absorption, photoluminescence and Raman scattering spectroscopies) and electrical / electro-optical (current versus voltage analysis in dark and under illumination, and electroluminescence, electro-optical response and light-beam induced photocurrent spectroscopies) information. From the material's point of view, the optimum structural properties that allow an almost perfect nanocrystal arrangement, size control and crystalline degree have been determined, always aiming at an optimum light emission and/or light absorption. Within this frame, fundamental studies have been performed to assess the crystalline degree of the nanostructures (confirming an atomic-thin transition layer between the crystalline nanocrystal core and the surrounding matrix), and to carefully inspect the controversial origin of luminescence within the nanocrystals when embedded in a silicon oxide matrix; as well, the structural conditions under which size-confinement of nanocrystals is reached when embedded in silicon carbide are reported. Once the best structural and optical properties from silicon nanocrystal superlattices were found, these material systems have been employed as active layers for light emitting and light converter (i.e. photovoltaic) devices. In oxide-based systems, the mechanisms that govern charge transport through the superlattices have been studied, and impact ionization has been hypothesized as the main electroluminescence excitation mechanism according to the experimental observations. In addition, the structural conditions (sublayer thicknesses, silicon-rich layer stoichiometry) that yield a maximum electroluminescence efficiency have been determined. Regarding silicon nanocrystals embedded in silicon carbide, a correlation has been established between the charge photogeneration and extraction when acting as an absorber material, which allowed assessing the structural conditions that maximize charge transport while minimizing the non-desirable recombination. Finally, via spectral response measurements, quantum confinement of excitons within silicon nanocrystals has been reported in silicon carbide matrix for the first time. In conclusion, the study on silicon nanocrystal superlattices developed within the present Thesis Project reveals the potential of silicon oxide as host matrix for silicon nanostructures to be used as light-emitting devices; instead, silicon carbide has proved a more suitable host material for photovoltaic applications, which sheds light to the future application of silicon nanocrystals as the top cell of an all-Si tandem cell.
[cat] Els nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema.
URI: http://hdl.handle.net/2445/68665
Appears in Collections:Tesis Doctorals - Departament - Electrònica

Files in This Item:
File Description SizeFormat 
JLV_PhD_THESIS.pdf51.44 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons