Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/69345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJafarpour, Anna-
dc.contributor.authorBarnes, Gareth-
dc.contributor.authorFuentemilla Garriga, Lluís-
dc.contributor.authorDüzel, Emrah-
dc.contributor.authorPenny, Will-
dc.date.accessioned2016-02-09T15:42:05Z-
dc.date.available2016-02-09T15:42:05Z-
dc.date.issued2013-08-05-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/2445/69345-
dc.description.abstractMultivariate analysis is a very general and powerful technique for analysing Magnetoencephalography (MEG) data. An outstanding problem however is how to make inferences that are consistent over a group of subjects as to whether there are condition-specific differences in data features, and what are those features that maximise these differences. Here we propose a solution based on Canonical Variates Analysis (CVA) model scoring at the subject level and random effects Bayesian model selection at the group level. We apply this approach to beamformer reconstructed MEG data in source space. CVA estimates those multivariate patterns of activation that correlate most highly with the experimental design; the order of a CVA model is then determined by the number of significant canonical vectors. Random effects Bayesian model comparison then provides machinery for inferring the optimal order over the group of subjects. Absence of a multivariate dependence is indicated by the null model being the most likely. This approach can also be applied to CVA models with a fixed number of canonical vectors but supplied with different feature sets. We illustrate the method by identifying feature sets based on variable-dimension MEG power spectra in the primary visual cortex and fusiform gyrus that are maximally discriminative of data epochs before versus after visual stimulation.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pone.0071305-
dc.relation.ispartofPLoS One, 2013, vol. 8, num. 8, p. e71305-
dc.relation.urihttp://dx.doi.org/10.1371/journal.pone.0071305-
dc.rightscc-by (c) Jafarpour, Anna et al., 2013-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Cognició, Desenvolupament i Psicologia de l'Educació)-
dc.subject.classificationDiagnòstic per la imatge-
dc.subject.classificationAnàlisi multivariable-
dc.subject.classificationEncèfal-
dc.subject.otherDiagnostic imaging-
dc.subject.otherMultivariate analysis-
dc.subject.otherEncephalon-
dc.titlePopulation level inference for multivariate MEG analysis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec629189-
dc.date.updated2016-02-09T15:42:05Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid23940738-
Appears in Collections:Articles publicats en revistes (Cognició, Desenvolupament i Psicologia de l'Educació)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
629189.pdf1.4 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons