Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/69484
Title: Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
Author: MAGIC Collaboration
Marcote Martin, Benito
Munar i Adrover, Pere
Paredes i Poy, Josep Maria
Paredes Fortuny, Xavier
Ribó Gomis, Marc
Zanin, Roberta
Keywords: Raigs gamma
Púlsars
Telescopis
Astrofísica
Gamma rays
Pulsars
Telescopes
Astrophysics
Issue Date: 7-Feb-2015
Publisher: Elsevier B.V.
Abstract: The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χred2 = 35 / 26). Using systematic uncertainties of the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±3stat +31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state-of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 μG magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.
Note: Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.jheap.2015.01.002
It is part of: Journal of High Energy Astrophysics, 2015, vol. 5-6, p. 30-38
Related resource: http://dx.doi.org/10.1016/j.jheap.2015.01.002
URI: http://hdl.handle.net/2445/69484
ISSN: 2214-4048
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))
Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
657108.pdf282.68 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons