Please use this identifier to cite or link to this item:
Title: Tumor angiogenesis and vascular patterning: a mathematical model
Author: Travasso, Rui D. M.
Corvera Poiré, Eugenia
Castro, Mario
Rodriguez-Manzaneque Escribano, Juan Carlos
Hernández Machado, Aurora
Keywords: Endoteli
Proliferació cel·lular
Models matemàtics
Cell proliferation
Mathematical models
Issue Date: 27-May-2011
Publisher: Public Library of Science (PLoS)
Abstract: Understanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In this paper we present a multi-scale phase-field model that combines the benefits of continuum physics description and the capability of tracking individual cells. The model allows us to discuss the role of the endothelial cells' chemotactic response and proliferation rate as key factors that tailor the neovascular network. Importantly, we also test the predictions of our theoretical model against relevant experimental approaches in mice that displayed distinctive vascular patterns. The model reproduces the in vivo patterns of newly formed vascular networks, providing quantitative and qualitative results for branch density and vessel diameter on the order of the ones measured experimentally in mouse retinas. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of different parameters in this process, hence underlining the necessary collaboration between mathematical modeling, in vivo imaging and molecular biology techniques to improve current diagnostic and therapeutic tools.
Note: Reproducció del document publicat a:
It is part of: PLoS One, 2011, vol. 6, num. 5, p. e19989
Related resource:
ISSN: 1932-6203
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
600466.pdf955.4 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons