Please use this identifier to cite or link to this item:
Title: A lower bound for the number of components of the moduli schemes of stable rank 2 vector bundles on projective 3-folds
Author: Ballico, E.
Miró-Roig, Rosa M. (Rosa Maria)
Keywords: Varietats algebraiques
Espais fibrats (Matemàtica)
Surfaces and higher-dimensional varieties
Vector bundle
Issue Date: 1999
Publisher: American Mathematical Society
Abstract: Fix a smooth projective 3-fold X, c1, H ∈ Pic(X) with H ample, and d ∈ Z. Assume the existence of integers a, b with a ≠ 0 such that ac1 is numerically equivalent to bH. Let M(X, 2, c1, d, H) be the moduli scheme of H-stable rank 2 vector bundles, E, on X with c1(E) = c1 and c2(E) · H = d. Let m(X, 2, c1, d, H) be the number of its irreducible components. Then lim supd→ ∞m(X, 2, c1, d, H) = +∞ .
Note: Reproducció digital del document publicat en format paper, proporcionada per JSTOR
It is part of: Proceedings of the American Mathematical Society, 1999, vol. 127, núm. 9, p. 2557-2560.
ISSN: 1088-6826
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
147677.pdf587.67 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.