Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/8523

To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators

Títol de la revista

ISSN de la revista

Títol del volum

Resum

We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.

Descripció

Citació

Citació

YANG, Ying, WEBB, Geoffrey i., CERQUIDES BUENO, Jesús, KORB, Kevin b., BOUGHTON, Janice, TING, Kai ming. To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators. _IEEE Transactions on Knowledge and Data Engineering_. 2007. Vol. 19, núm. 12, pàgs. 1652-1665. [consulta: 25 de novembre de 2025]. ISSN: 1041-4347. [Disponible a: https://hdl.handle.net/2445/8523]

Exportar metadades

JSON - METS

Compartir registre