Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/9174
Title: Potential theory of signed Riesz Kernels: capacity and Hausdorff measure
Author: Prat, Laura
Keywords: Teoria del potencial (Matemàtica)
Geometria algebraica
Potentials and capacities
Hausdorff and packing measures
Issue Date: 2004
Publisher: Duke University Press
Abstract: In this paper, we study the natural capacity γα related to the Riesz kernels x/∣x∣1 + α in ℝn, where 0 < α < n. For noninteger α, an unexpected behaviour arises: for 0 < α < 1, compact sets in ℝn with finite α-Hausdorff measure have zero γα capacity. In the Ahlfors-David regular case, for any noninteger index α, 0 < α < n, we prove that compact sets of finite α-Hausdorff measure have zero γα capacity.
Note: Reproducció del document publicat a http://dx.doi.org/10.1155/S107379280413033X
It is part of: International Mathematics Research Notices, 2004, vol. 2004, núm. 19, p. 937-981.
Related resource: http://dx.doi.org/10.1155/S107379280413033X
URI: http://hdl.handle.net/2445/9174
ISSN: 1073-7928
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
514784.pdf396.77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.