Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/95986
Title: Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue
Author: Arriarán, Sofía
Agnelli, Silvia
Remesar Betlloch, Xavier
Fernández López, José Antonio
Alemany, Marià, 1946-
Keywords: Teixit adipós
Amoníac
Aminoàcids
Metabolisme dels lípids
Urea
Rates (Animals de laboratori)
Adipose tissues
Ammonia
Amino acids
Lipid metabolism
Urea
Rats as laboratory animals
Issue Date: 10-Nov-2015
Publisher: PeerJ
Abstract: Background and Objectives.White adipose tissue (WAT) shows marked sex- and diet-dependent differences.However, our metabolic knowledge ofWAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four mainWAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent ofWAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesentericWAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneousWAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole.
Note: Reproducció del document publicat a: http://dx.doi.org/10.7717/peerj.1399
It is part of: PeerJ, 2015, vol. 3, p. e1399
Related resource: http://dx.doi.org/10.7717/peerj.1399
URI: http://hdl.handle.net/2445/95986
ISSN: 2167-8359
Appears in Collections:Articles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)
Articles publicats en revistes (Institut de Biomedicina (IBUB))

Files in This Item:
File Description SizeFormat 
655300.pdf612.56 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons