Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/96448
Title: Entropy solutions for the $p(x)$-Laplace equations
Author: Sanchón, Manel
Urbano, José Miguel
Keywords: Equacions en derivades parcials
Operadors el·líptics
Anàlisi funcional no lineal
Partial differential equations
Elliptic operator
Nonlinear functional analysis
Issue Date: Dec-2009
Publisher: American Mathematical Society (AMS)
Abstract: We consider a Dirichlet problem in divergence form with variable growth, modeled on the $ p(x)$-Laplace equation. We obtain existence and uniqueness of an entropy solution for $ L^1$ data, as well as integrability results for the solution and its gradient. The proofs rely crucially on a priori estimates in Marcinkiewicz spaces with variable exponent, for which we obtain new inclusion results of independent interest.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-09-04399-2
It is part of: Transactions of the American Mathematical Society, 2009, vol. 361, num. 12, p. 6387-6405
Related resource: http://dx.doi.org/10.1090/S0002-9947-09-04399-2
URI: http://hdl.handle.net/2445/96448
ISSN: 0002-9947
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
569721.pdf308.98 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.