Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/96553
Title: The stability of exceptional bundles on hypersurfaces
Author: Miró-Roig, Rosa M. (Rosa Maria)
Soares, H.
Keywords: Geometria algebraica
Superfícies algebraiques
Algebraic geometry
Algebraic surfaces
Issue Date: 2008
Publisher: American Mathematical Society (AMS)
Abstract: A very long-standing problem in Algebraic Geometry is to determine the stability of exceptional vector bundles on smooth projective varieties. In this paper we address this problem and we prove that any exceptional vector bundle on a smooth complete intersection $ 3$-fold $ Y\subset\mathbb{P}^n$ of type $ (d_1,\ldots,d_{n-3})$ with $ d_1+\cdots+ d_{n-3}\leq n$ and $ n\geq 4$ is stable.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-08-09258-7
It is part of: Proceedings of the American Mathematical Society, 2008, num. 136, p. 3751-3757
Related resource: http://dx.doi.org/10.1090/S0002-9939-08-09258-7
URI: http://hdl.handle.net/2445/96553
ISSN: 0002-9939
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
589150.pdf163.56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.