Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/96560
Title: Dimension of families of determinantal schemes
Author: Kleppe, J.O.
Miró-Roig, Rosa M. (Rosa Maria)
Keywords: Geometria algebraica
Esquemes (Geometria algebraica)
Algebraic geometry
Schemes (Algebraic geometry)
Issue Date: 2005
Publisher: American Mathematical Society (AMS)
Abstract: A scheme $X\subset \mathbb{P} ^{n+c}$ of codimension $c$ is called standard determinantal if its homogeneous saturated ideal can be generated by the maximal minors of a homogeneous $t \times (t+c-1)$ matrix and $X$ is said to be good determinantal if it is standard determinantal and a generic complete intersection. Given integers $a_0,a_1,...,a_{t+c-2}$ and $b_1,...,b_t$ we denote by $W(\underline{b};\underline{a})\subset \operatorname{Hilb} ^p(\mathbb{P} ^{n+c})$(resp. $W_s(\underline{b};\underline{a})$) the locus of good (resp. standard) determinantal schemes $X\subset \mathbb{P} ^{n+c}$ of codimension $c$ defined by the maximal minors of a $t\times (t+c-1)$ matrix $(f_{ij})^{i=1,...,t}_{j=0,...,t+c-2}$ where $f_{ij}\in k[x_0,x_1,...,x_{n+c}]$ is a homogeneous polynomial of degree $a_j-b_i$. In this paper we address the following three fundamental problems: To determine (1) the dimension of $W(\underline{b};\underline{a})$ (resp. $W_s(\underline{b};\underline{a})$) in terms of $a_j$ and $b_i$, (2) whether the closure of $W(\underline{b};\underline{a})$ is an irreducible component of $\operatorname{Hilb} ^p(\mathbb{P} ^{n+c})$, and (3) when $\operatorname{Hilb} ^p(\mathbb{P} ^{n+c})$ is generically smooth along $W(\underline{b};\underline{a})$. Concerning question (1) we give an upper bound for the dimension of $W(\underline{b};\underline{a})$ (resp. $W_s(\underline{b};\underline{a})$) which works for all integers $a_0,a_1,...,a_{t+c-2}$ and $b_1,...,b_t$, and we conjecture that this bound is sharp. The conjecture is proved for $2\le c\le 5$, and for $c\ge 6$ under some restriction on $a_0,a_1,...,a_{t+c-2}$and $b_1,...,b_t$. For questions (2) and (3) we have an affirmative answer for $2\le c \le 4$ and $n\ge 2$, and for $c\ge 5$ under certain numerical assumptions.
Note: Reproducció del document publicat a:
It is part of: Transactions of the American Mathematical Society, 2005, vol. 357, num. 7
URI: http://hdl.handle.net/2445/96560
ISSN: 0002-9947
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
589137.pdf391.63 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.