Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/96825| Title: | A characterization of bilinear forms on the dirichlet space |
| Author: | Cascante, Ma. Carme (Maria Carme) Ortega Aramburu, Joaquín M. |
| Keywords: | Teoria del potencial (Matemàtica) Teoria d'operadors Operadors lineals Potential theory (Mathematics) Operator theory Linear operators |
| Issue Date: | Jul-2012 |
| Publisher: | American Mathematical Society (AMS) |
| Abstract: | Arcozzi, Rochberg, Sawyer and Wick obtained a characterization of the holomorphic functions $b$ such that the Hankel type bilinear form $T_{b}(f,g)=\int_{\mathbb{D}}(I+R)(f,g)(z)\overline{(I+R)b(z)}dv (z) $ is bounded on $ {\mathcal D}\times {\mathcal D}$, where $ {\mathcal D}$ is the Dirichlet space. In this paper we give an alternative proof of this characterization which tries to understand the similarity with the results of Maz$ '$ya and Verbitsky relative to the Schrödinger forms on the Sobolev spaces $ L_2^1(\mathbb{R}^n)$. |
| Note: | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-2011-11409-6 |
| It is part of: | Proceedings of the American Mathematical Society, 2012, vol. 140, num. 7, p. 2429-2440 |
| URI: | https://hdl.handle.net/2445/96825 |
| Related resource: | http://dx.doi.org/10.1090/S0002-9939-2011-11409-6 |
| ISSN: | 0002-9939 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 599452.pdf | 209.61 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
