Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/96849
Title: Exponentially small splitting of invariant manifolds of parabolic points
Author: Baldomá, Inmaculada
Fontich, Ernest, 1955-
Keywords: Sistemes hamiltonians
Teoria ergòdica
Sistemes dinàmics diferenciables
Equacions diferencials ordinàries
Hamiltonian systems
Ergodic theory
Differentiable dynamical systems
Ordinary differential equations
Issue Date: 2004
Publisher: American Mathematical Society (AMS)
Abstract: We consider families of one and a half degrees of freedom Hamiltonians with high frequency periodic dependence on time, which are perturbations of an autonomous system. We suppose that the origin is a parabolic xed point with non-diagonalizable linear part and that the unperturbed system has a homoclinic connexion associated to it. We provide a set of hypotheses under which the splitting is exponentially small and is given by the Poincaré-Melnikov function.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1090/memo/0792
It is part of: Memoirs of the American Mathematical Society, 2004, vol. 167, num. 792
Related resource: http://dx.doi.org/10.1090/memo/0792
URI: http://hdl.handle.net/2445/96849
ISSN: 0065-9266
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
523116.pdf552.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.