Please use this identifier to cite or link to this item:
Title: News similarity with natural language processing
Author: Parafita Martínez, Álvaro
Director/Tutor: Vitrià i Marca, Jordi
Keywords: Tractament del llenguatge natural (Informàtica)
Intel·ligència artificial
Treballs de fi de grau
Algorismes computacionals
Python (Llenguatge de programació)
Natural language processing (Computer science)
Artificial intelligence
Computer software
Bachelor's thesis
Computer algorithms
Python (Computer program language)
Issue Date: 28-Jan-2016
Abstract: News articles are pieces of Natural Language that comply with the model of 5W1H, meaning, they should answer to the following six questions: What, Who, Where, When, Why and How. This project takes advantage of that assumption to create an algorithm capable of building a representation of a news article and a distance between such representations for any pair of politics news. With that knowledge, a global dis- tance between entries based on similarity of content is built. That algorithm is assessed in comparison with the topic modeling algorithm Latent Dirichlet Allocation (LDA). Applications of the system with their corresponding visualisations are presented too.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Jordi Vitrià i Marca
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria2.36 MBAdobe PDFView/Open
codi_font.zipCodi font2.4 MBzipView/Open

This item is licensed under a Creative Commons License Creative Commons