Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/97731
Title: Resolubilitat efectiva per radicals de les quíntiques sobre cossos $p$-àdics
Author: Caelles i Vidal, Marc
Director: Travesa i Grau, Artur
Keywords: Nombres p-àdics
Tesis
Camps p-àdics
Polinomis
Equacions
Algorismes
p-adic numbers
Theses
p-adic fields
Polynomials
Equations
Algorithms
Issue Date: 18-Jan-2016
Abstract: Since every finite extension over the field $\mathbb{Q}_p$ of $p$-adic numbers is solvable, any degree 5 polynomial can be solved by radicals over the field of $p$-adic numbers. Using Panayi's algorithm we describe a method for expressing any root of an irreducible quintic over $\mathbb{Q}_p$ as a $\mathbb{Q}_p$-linear combination of radical expressions over the rationals.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Artur Travesa i Grau
URI: http://hdl.handle.net/2445/97731
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria684.99 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons