Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing
Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona -IDIBAPS, Barcelona, Spain
CIBER Enfermedades Respiratorias, Bunyola, Spain
Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta (GA), USA
Servei Pneumologia, Hospital Clínic-IDIBAPS, Barcelona, Spain
Institut de Bioenginyeria de Catalunya, Barcelona, Spain
Abstract
Background
The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing.
Methods
We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair.
Results
Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 ± 0.58 (m ± SE) and 1.00 ± 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 ± 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 ± 0.24 -fold; p < 0.05).
Conclusions
The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.
Background
Obstructive sleep apnea (OSA) is a prevalent disease affecting both children and adults. This sleep breathing disorder, caused by an abnormal increase in upper airway collapsibility, is characterized by recurrent events of airway obstruction, each finishing with the patient's unconscious arousal. These repetitive respiratory disturbances, which could appear more than once every minute in patients with severe OSA, induce increases in sympathetic activation, large negative intrathoracic pressure swings, hypoxia/reoxygenation events and disruption of sleep architecture. Extensive data in the literature prove that, in addition to immediate symptoms such as abnormal diurnal somnolence, OSA increases the mid- and long-term risk of metabolic dysfunctions and cardiovascular diseases
The main physiological response to the intermittent hypoxia and increased inspiratory efforts characteristic of OSA consists of the upregulation of well known signalling cascades that counteract oxidative stress and inflammation. Interestingly, data recently published on diseases distinct from OSA suggest that bone marrow-derived mesenchymal stem cells (MSC) circulating in peripheral blood could also contribute to the homeostatic response in OSA. Indeed, it has been shown that these stem cells play anti-inflammatory, anti-oxidative stress and endothelium-repairing roles via paracrine secretion of soluble factors
Methods
Application of recurrent obstructive apneas simulating OSA
This animal study was approved by the Ethical Committee for Animal Research of the University of Barcelona. Sixty Sprague-Dawley male rats (250-300 g) were intraperitoneally anaesthetized with urethane (1 mg/kg). Thirty rats were used as controls and 30 rats were subjected to recurrent airway obstructions at a rate of 60 apneas/hour for 5 hours, with each apnea lasting 15 seconds. The obstructive apneas were non-invasively applied by means of an electronically controlled nasal mask system recently described in detail by our group
Figure 1
Example of arterial blood oxygen saturation (SaO2) recorded in a rat during the application of recurrent airway obstructions
Example of arterial blood oxygen saturation (SaO2) recorded in a rat during the application of recurrent airway obstructions. The amplitude and time course of desaturations mimicked those typically observed in patients with obstructive sleep apnea.
Mesenchymal stem cells
The study was performed on well-characterized Lewis rat marrow stromal cells kindly provided by Tulane Center for Gene Therapy
Endothelial cell culture
Endothelial cell monolayers were obtained from anesthetized rats sacrificed by exsanguination through the carotid artery. A 2-cm long section of thoracic aorta was isolated and rinsed several times with Dulbecco's Phosphate Buffered Saline (DPBS) (Gibco™, Invitrogen, Carlsbad, CA, USA). The luminal artery surface was exposed to isolate the endothelial cells by incubation with collagenase II solution (1 mg/mL) (Gibco™, Invitrogen, Carlsbad, CA, USA) (37°C, 1 h) and centrifugation (1600 rpm, 10 min). After discarding the supernatant, cells were washed with DPBS and re-suspended in Dulbecco's modified Eagle's medium (DMEM) containing 1% (wt/vol) glucose (Gibco™, Invitrogen, Carlsbad, CA, USA), 10% inactivated fetal bovine serum (FBS) (Gibco™, Invitrogen, Carlsbad, CA, USA) and 0.5% antibiotics solution (streptomycin/penicillin solution 10,000U/ml) (Sigma Chemical Co., St. Louis, MO). Endothelial cells were cultured (37°C, 5% CO2, 100% humidity) by replacing the medium every 2-3 days until a cell monolayer was obtained (8-10 days).
MSC migration assay
The chemotaxis and chemokinesis induced in MSC by the serum from control rats and from rats subjected to apneas (apneic serum) were assessed by inducing cell migration through the permeable membrane of transwells (6.5 membrane diameter, 8.0 μm pore filters; Corning Costar, Cambridge, MA). The upper side of the transwell membrane was coated with 0.1% (wt/vol) bovine gelatin (Sigma Chemical Co., St. Louis, MO) in DPBS for 1 h at 37°C. A suspension of 1.5 × 105 MSC in 190 μL of serum was placed in the upper compartment of the transwell and 1 ml of serum was placed in the lower compartment. The sera from 10 rats subjected to apneas and 10 control rats were used. Three transwell measurements were carried out for each pair of rat sera (apneic and control): 1) control serum in both the upper and lower compartment of the transwell (Control/Control), 2) apneic serum in both the upper and lower compartment of the membrane (Apnea/Apnea), and 3) apneic serum and control serum in the upper and lower transwell compartments, respectively (Apnea/Control). After 8 h of incubation of the transwell plates (5% CO2 at 37°C, 100% humidity), the upper side of the membrane was washed with cold DPBS. Using a cotton wool swab, the MSC remaining on the upper face of the membrane were removed and the cells on the lower side of the membrane were stained (May-Grünwald-Giemsa). The membrane was cut out with a scalpel, with the edges discarded, before being mounted on a micro slide glass, with the lower side on the top, and the image was digitized and stored (Eclipse TE2000-E, Nikkon; MetaMorph 7.6.1.0 software). The number of cells that migrated to the lower side of the membrane was counted by means of light microscopy, operated by an investigator who was blind to the types of sera present in each preparation. A normalized chemokinesis index was computed by dividing the number of cells counted in the Apnea/Apnea transwells by the number of cells counted in the Control/Control transwells. Similarly, a normalized chemotaxis index was computed by dividing the number of cells counted in the Apnea/Control transwells by the number of cells counted in the Control/Control transwells.
MSC-endothelial adhesion assay
To assess the adhesion of MSC to endothelial cells when pretreated with control or apneic sera, they were first fluorescent-labelled with Vybrant CM-DiI (Gibco, Invitrogen, Carlsbad, CA, USA) at 6 μM for 20 min at 37°C and 15 min at 4°C (5% CO2, 100% humidity) and then washed with DPBS and re-suspended with complete medium. After labelling, MSC were pre-treated overnight with serum from 10 control rats or serum from 10 apneic rats and subsequently incubated on the endothelial cell monolayer for 6 h. The monolayer was then washed with medium and a fluorescent image was digitized and stored (Eclipse TE2000-E, Nikkon; MetaMorph 7.6.1.0 software). The MSC that remained adhered to the endothelial cells were counted by an investigator who was blind to the type of serum in each preparation. A normalized adhesion index was computed by dividing the number of cells counted by the mean value of counted cells in controls.
Endothelial wound healing assay
A wound healing assay was used to investigate the effects of apneic serum on the repair of aortic endothelial cell monolayers. Briefly, 4 × 104 endothelial cells/well were seeded into 24-well plates and incubated (37°C, 5% CO2, 100% humidity) until they reached confluence. The endothelial cell monolayer of each well was scratch-wounded using a sterile 2-200 μL pipette tip (Eppendorf AG, Hamburg, Germany) and the debris was removed by washing with DPBS (Dulbecco's Phosphate Buffered Saline 1 × [-] CaCl2, [-] MgCl2; Gibco, Invitrogen, Carlsbad, CA, USA). The washing medium was subsequently removed and 300 μL/well of rat serum were used as the culture medium for the wounded endothelial monolayers. The well plate was then placed on the motorized stage of a microscope (Eclipse Ti, Nikon) equipped with a CCD camera (C9100, Hamamatsu) driven by MetaMorph 7.6.1.0 software. A microscope incubator (Life Imaging Services) maintained the whole system at 37°C, 5% CO2 and 100% humidity throughout the experiment. The endothelial wound healing process was assessed by automatically recording phase-contrast images of each well every 10 min from the beginning of the experiment up to 24 h of incubation. This wound healing assay was carried out using serum from 10 control rats and 10 apneic rats, in both cases with and without preconditioning the serum with MSC. Accordingly, a total of 40 wells were studied: non-conditioned serum and MSC-conditioned serum from each of the 10 apneic rats and 10 control rats. MSC-conditioned serum was obtained by culturing confluent MSC with rat serum for 48 h (24-well plate, 300 μL/well). At the end of the experiments, an investigator blind to the type of serum used in each well computed a wound closure index by comparing the initial and final (24 h) images of the endothelial wound. MetaMorph software was used to identify the initial and final limits of the wound. The closure index was computed as the increase in the wound's endothelial area, normalized to the mean increase in the case of the control serum.
Statistical analysis
Data are presented as mean ± SEM. Comparisons between the different groups were carried out by means of the Student's t-test (when applicable) or the Mann-Whitney test. Statistical significance was established as p < 0.05.
Results
The serum of apneic rats increased the motility of MSC. As shown by the examples of transwell membrane images in Figure
Figure 2
MSC exhibited significantly more adhesion to the monolayer of cultured endothelial cells when incubated in apneic rat serum as compared to control rat serum. Figure
Figure 3
As shown in Figure
Figure 4
Discussion
In this work we have assessed whether MSC could play a role in the physiological response to the injurious stimuli that characterize OSA and cause the cardiovascular consequences of this sleep breathing disorder. We focused our attention on basic mechanisms that potentially contribute to the repair of endothelial damage. The results obtained in this acute animal model study show that short-term recurrent obstructive apneas mimicking OSA triggered an early activation of MSC: specifically, an increase in the mobility of these stem cells and in their adhesion to endothelial cells. Moreover, it was also found that the serum of apneic rats improved endothelial wound healing and that MSC could contribute to this enhanced repair.
The potential protective or therapeutic role of MSC in various human diseases
The methods used in the present study consisted of an
Our experimental setting was designed to assess the early effects on MSC and endothelial cells induced by the serum of rats subjected to recurrent airway obstructions. Accordingly, the changes observed in migration, adhesion and wound healing were exclusively caused by the soluble factors released into the animals' serum as a result of subjecting them to the breathing stimulus mimicking OSA. This approach allowed us to identify the effects of soluble factors in blood from the effects of the other potentially important stimuli also experienced by these cells in OSA patients, such as intermittent hypoxia due to the recurrent changes in arterial oxygen saturation. The specific effects of intermittent hypoxia on cultured MSC and endothelial cells in OSA remain mostly unknown, given the technical difficulty of adequately applying, at the cell level, the high-rate of oxygen pressure changes mimicking OSA
The blood serum of rats acutely subjected to recurrent obstructive apneas was chemoattractant for MSC (Figure
Once released into the blood, circulating MSC migrate and home at the injured organ via a dynamic process similar to that of neutrophils in response to inflammation
A remarkable finding in this study was that, when compared with controls, the serum of rats subjected to recurrent obstructive apneas enhanced the wound closure of endothelial cell monolayers (Figure
Conclusions
This animal model study suggests that bone marrow-derived MSC could play a role in the physiological response to counterbalance the pro-inflammatory, oxidative stress and endothelial dysfunction mechanisms that lead to the middle- and long-term consequences of OSA.
Competing interests
The authors declare that they have no competing interests.
Authors' contributions
The conception and scientific direction of this work was undertaken by RF. Animal experimentation was carried out by AC and TS. Data processing and statistical analysis was undertaken by AC, TS, and JMM. AC, MR, TS, JMM, and DN participated in the discussion of the results and contributed to the manuscript draft. All authors read and gave critical input to this manuscript.
Acknowledgements
The authors wish to thank the Tulane Center for Gene Therapy (Dr. D. Prockop) for kindly providing the rat mesenchymal stem cells used in this study. The authors are grateful to Dr. Isaac Almendros for his help in implementing the rat model of obstructive apneas and to Ms. Rocío Nieto and Mr. Miguel A. Rodríguez for their excellent technical assistance. This work was supported in part by the Ministerio de Ciencia e Innovación (SAF2008-02991 and PI08/0277).
Sleep apnea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities
Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation
Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives
Cardiovascular disease in obstructive sleep apnea syndrome: the role of intermittent hypoxia and inflammation
Morbidity due to obstructive sleep apnea: insights from animal models
"Stemness" does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs)
Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies
Obstructive apneas induce early release of mesenchymal stem cells into circulating blood
Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells
Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases
Mesenchymal Stem Cells Derived from Peripheral Blood Protects against Ischemia
Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction
Mesenchymal stem cells combat sepsis
Bone marrow-derived mesenchymal stem cells in repair of the injured lung
Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice
Intrapulmonary Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Survival and Attenuates Endotoxin-Induced Acute Lung Injury in Mice
Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung
Endothelial function and circulating endothelial progenitor cells in patients with sleep apnea syndrome
Circulating endothelial cells and endothelial progenitor cells in obstructive sleep apnea
Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea
Rat model of chronic recurrent airway obstructions to study the sleep apnea syndrome
Biological consequences of oxygen desaturation and respiratory effort in an acute animal model of obstructive sleep apnea (OSA)
The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities
Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms
Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1
Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells
In vitro intermittent hypoxia: challenges for creating hypoxia in cell culture
Recurrent obstructive apneas trigger early systemic inflammation in a rat model of sleep apnea
Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells
Secretome from mesenchymal stem cells induces angiogenesis via Cyr61