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1 Introduction

In this chapter we consider how to solve a rationing problem in which the

resource cannot be directly assigned to agents. We suppose that agents are

grouped and we propose solving this problem by using a two-stage procedure

that involves, first, distributing the resource among the groups and, second,

dividing it among their members. We call these situations decentralized ra-

tioning problems, which contrast with centralized rationing problems1 where

the resource is directly allocated to agents.

The agents may be grouped for many reasons, including lack of infor-

mation, geographical proximity, logistics, different typologies of agents, etc.

There are many real allocation problems in which the resource to be divided

cannot be directly assigned to agents. Consider, for instance, food supplies to

refugees and imagine that the refugees (agents) in the region are grouped in

several camps (groups). Suppose that the distributor is unable to assign the

food supplies (amount of resource) directly to refugees, but that the compe-

tent authorities at each camp can collect information about the feeding needs

of the refugees resident in that camp. Then, it seems reasonable to assume

that the food supplies must first be divided among the refugee camps and,

subsequently, the amount received by each camp can be distributed among

its resident refugees (members).

The model we analyse corresponds to the bankruptcy model with a priori

unions (Casas-Méndez et al., 2003). These authors define and characterize

a two-stage extension of the adjusted proportional rule. In the same line,

Borm et al. (2005) define and characterize a two-stage extension of the

constrained equal awards rule2 within the framework of bankruptcy with

a priori unions. Both studies are inspired in the classical paper by Owen

(1977), who considers, for cooperative games, the a priori partition of the

1We refer to these situations as either standard rationing problems in Chapter 2 or

single-issue rationing problems in Chapter 3.
2In our model we refer to the same extension of the constrained equal awards rule as

the decentralized constrained equal awards rule.
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agent set. That is, agents are partitioned in groups according to previously

reached agreements.

In spite of proposing a formally equivalent model to that with a priori

unions, our model focuses on the need for the central distributor to decen-

tralize the allocation process in several intermediate distribution centers. In

Sections 2, 3 and 4, we suppose that agents are already (a priori) attached

to centers (groups). However, in Section 5 we propose a strategic game in

which agents can move freely across centers. That is, each agent selects the

center through which she wants to submit her claim.

A closely related model to the one proposed in this chapter is the multi-

issue allocation (MIA) model, where each agent makes several claims related

to different issues. Two approaches to MIA situations have been studied in

the literature. In the first (see, e.g., Calleja et al., 2005; González-Alcón

et al., 2007), a rule assigns a single amount to each agent. In the second

(e.g., Bergantiños et al., 2010, 2011; Lorenzo-Freire et al., 2010; Moreno-

Ternero, 2009), a rule assigns an amount to each agent for each issue and

the allocation process is also conducted by means of a two-stage procedure.

First, the resource is distributed between issues and, second, it is divided

among agents. In fact, each decentralized rationing problem can be easily

reinterpreted as a MIA situation (following the second approach), where the

groups play the role of issues and each agent (being a member of exactly one

group) claims for only one issue.

Within the MIA framework, a two-stage extension of the constrained

equal awards rule is axiomatically characterized by Lorenzo-Freire et al.

(2010) and Bergantiños et al. (2011). The former also characterize (by

using duality relations) a two-stage extension of the constrained equal losses

rule. The latter use, in their characterization of the two-stage extension of

the constrained equal awards rule, the axioms of equal treatment within the

issues and equal treatment between the issues,3 among other axioms. The first

3Lorenzo-Freire et al. (2010) also use these same axioms in their characterizations, but

they call them equal treatment for the players within an issue and equal treatment for the
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of these properties states that if two agents have equal claims for an issue,

they should receive equal amounts in this issue. The second states that if the

total (aggregate) claim over two issues is the same, the total amount assigned

to both issues should coincide. However, if each agent claims for just one

issue, a MIA situation can be reinterpreted as a decentralized problem in

which issues are identified with groups. In this decentralized context, it is

relevant to consider the property of individual inter-group equal treatment of

equals, which states that if two agents are members of different groups and

both have equal claims, they should receive equal amounts. In this chapter,

we characterize the decentralized (two-stage extension) proportional rule by

using just this last property and intra-group equal treatment of equals4 (see

Theorem 1).

The overriding goal in this chapter is to find solutions that assign the same

allocation regardless of whether the resource is distributed directly to agents

or in a decentralized manner. We name these solutions decentralized consis-

tent rules. Regarding this point, in the MIA context, Moreno-Ternero (2009)

characterizes the proportional rule as the only anonymous rule that assigns

the same allocation directly, or through a two-stage procedure. In Section

4, we prove that decentralized consistency (without anonymity) is enough to

characterize the proportional rule (see Theorem 3). In this section we also

show that decentralized consistency is equivalent to other concepts studied in

the literature, such as strategy-proofness5 (O’Neill, 1982) and non manipu-

lability6 (de Frutos, 1999) (see Proposition 5). De Frutos studies “rules that

are immune to strategic manipulations whereby a group of creditors merge

(i.e., consolidate their claims) in order to represent a single creditor, or a

issues, respectively.
4When issues play the role of groups intra-group equal treatment of equals is equivalent

to equal treatment within the issues.
5Chun (1988) states that “strategy-proofness requires that merging or splitting groups

of claimants (an operation which changes the number of claimants) is never globally ben-

eficial to the members of that group.”
6Non manipulability and strategy-proofness are equivalent.
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single creditor splits her claim to represent several creditors.” On the other

hand, within the MIA framework, Bergantiños et al. (2010) provide a char-

acterization of a two-stage extension of the proportional rule by using the

properties of non-advantageous transfer across issues and non-advantageous

transfer within issues which adapt the axiom of non-advantageous realloca-

tion (Chun, 1988) to MIA situations.

The remainder of the chapter is organized as follows. In Section 2, we

introduce the main notations, describe decentralized rationing problems and

define decentralized rationing rules. In Section 3, we analyse (see Proposi-

tions 1, 2 and 3) whether the extensions to this model of the constrained equal

awards, the constrained equal losses and the proportional rules satisfy some

essential properties that characterize their corresponding classical centralized

rules (see Moulin, 2000). Moreover, we characterize the extension of the pro-

portional rule on the subdomain of problems with rational claims by using

the property of individual equal treatment of equals7 (see Theorem 1). In Sec-

tion 4, we analyse the conditions under which the constrained equal awards

and the constrained equal losses rules satisfy decentralized consistency for

some particular partitions (see Theorem 2 and Corollary 1, respectively).

Finally, we prove that the only decentralized consistent rule is the propor-

tional rule (see Theorem 3). In Section 5, we propose and analyse a strategic

game based on the decentralized model and we check the existence of equi-

librium (no agent has an incentive to move from one group to another) when

the extension of the proportional distribution is applied as an allocation rule

(see Corollary 3). Moreover, we also show the existence of equilibrium under

certain conditions when the extensions of the constrained equal awards and

of the constrained equal losses rules are applied (see Propositions 6 and 7,

respectively). In Section 6, we conclude.

7If two agents have equal claims (regardless of their membership), then they should

receive equal amounts.
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2 Decentralized rationing problems and rules

We first restate the definition of the standard rationing problem or, from

now on, the centralized rationing problem. As usual, let N be the set of

natural numbers that we identify with the universe of potential agents, and

let N be the family of all finite subsets of N. Given T ∈ N , we denote by

t the cardinality of T . On the other hand, given a finite subset of agents

N = {1, 2, . . . , n} ∈ N , a centralized rationing problem (r, c) for N aims to

distribute r ≥ 0 among these n agents with claims c = (c1, c2, . . . , cn) ∈ RN
+ .

It is assumed that r ≤
∑

i∈N ci since otherwise no rationing problem exists.

Let RN denote the domain of all centralized rationing problems with agent

set N . The family of all centralized rationing problems is R = ∪N∈NRN .

A centralized rationing rule F associates to each problem (r, c) a unique

allocation F (r, c) = x = (x1, x2, . . . , xn) ∈ RN such that 0 ≤ xi ≤ ci, for all

i ∈ N , and
∑

i∈N xi = r, where xi represents the payoff to agent i ∈ N .

The three most important rules in centralized rationing problems are

the constrained equal awards (CEA) rule, which aims to equalize gains; the

constrained equal losses (CEL) rule, which aims to equalize losses from

claims; and, the proportional (P ) rule, which allocates the amount of resource

proportionally to the claims. Formally, for any (r, c) ∈ RN , with N ∈ N ,

the CEA rule is defined as CEAi(r, c) = min{ci, λ} for all i ∈ N , the CEL

rule is defined as CELi(r, c) = max{0, ci− λ} for all i ∈ N and the P rule is

defined as Pi(r, c) = λ · ci for all i ∈ N , where, in each case, λ ∈ R+ is chosen

such that the resultant allocation is efficient.

Now, assume that in a decentralized rationing problem the agent set N

has been partitioned in g groups. That is, we consider a partition P of N

formed by a collection of non-empty subsets of N , {N1, N2, . . . , Ng}, such

that N = ∪j∈{1,2,...,g}Nj with Nj ∩Nj′ = ∅, for all j 6= j′ ∈ {1, 2, . . . , g} and

Nj 6= ∅, for all j ∈ {1, 2, . . . , g}. Let us denote by G = {1, 2, . . . , g} the

set of groups. Associated to each group j ∈ G we have a vector of claims

cj = (ci)i∈Nj
∈ RNj

+ , where ci represents the claim of agent i who belongs to

group j.
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Definition 1 Let N = {1, 2, . . . , n} ∈ N be a finite set of agents. A de-

centralized rationing problem for N is a triple (r, c,P), where r ∈ R+ is

the amount of resource, c = (c1, c2, . . . , cn) ∈ RN
+ is the claims vector and

P = {Nj}j∈G is a partition of the agent set N , such that

r ≤
∑
j∈G

∑
i∈Nj

ci =
∑
i∈N

ci (scarcity condition).

Let us denote by DN the set of all decentralized rationing problems with

agent set N , and by D = ∪N∈NDN the family of all decentralized rationing

problems.

We suppose that the resource cannot be directly assigned to agents.

Therefore, we assume that it has to be first allocated to groups and, in a

second stage, each group divides the amount received among its members.

That is:

1. First, the amount r is allocated to groups according to a centralized

rationing rule F 1. This allocation is obtained as the solution to a

centralized rationing problem
(
r, CP = (C1, C2, . . . , Cg)

)
, where the

groups play the role of agents and the claim related to each group is

the total (aggregate) claim of its members, i.e. Cj =
∑

i∈Nj
ci, for

j = {1, 2, . . . , g}. Therefore, each group j ∈ G receives F 1
j (r, CP).

2. Second, the amount that each group j ∈ G receives, i.e. F 1
j (r, CP),

is divided among its members. The allocation is obtained as the so-

lution of a centralized rationing problem
(
F 1
j (r, CP), cj

)
according to

a centralized rationing rule F 2. Then, each agent i ∈ Nj receives

F 2
i

(
F 1
j (r, CP), cj

)
.

Next, we formally describe this two-stage procedure.

Definition 2 Let F 1 and F 2 be two centralized rationing rules. A decentral-

ized rationing rule relative to F 1 and F 2 is a function F that associates to

each problem (r, c,P) ∈ DN a unique allocation F(r, c,P) ∈ RN
+ as follows:

for all j ∈ G and all i ∈ Nj,
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Fi(r, c,P) := F 2
i

(
F 1
j (r, CP), cj

)
.

A particular case of this two-stage procedure occurs when both centralized

rationing rules (F 1 and F 2) are the same (F 1 = F 2 = F ). We name these

solutions self-decentralized rationing rules. Examples of self-decentralized

rationing rules are the following.

Definition 3 The decentralized constrained equal awards (CEAd) rule is

the self-decentralized rationing rule that takes F 1 = F 2 = CEA. The decen-

tralized constrained equal losses (CELd) rule takes F 1 = F 2 = CEL and

the decentralized proportional (P d) rule takes F 1 = F 2 = P .

Remark 1 Note that each of these self-decentralized rationing rules general-

izes its corresponding centralized rationing rule, in the sense that F(r, c,P)

coincides with F (r, c) if agents are not divided in groups (there is only one

group), i.e. P = {N} (see Figure 1 (a)).

Let us illustrate the application of each of these three decentralized ra-

tioning rules with an example.

Example 1 Consider the five-person and two-group decentralized rationing

problem (see Figure 1 (b))

(r, c,P) =
(
r,
(
c1, c2, c3, c4, c5

)
,
{
N1, N2

})
=
(

150,
(
40, 60, 10, 40, 100

)
,
{
{1, 2}, {3, 4, 5}

})
.

Then, the vector of total claims of the groups is

CP =
(
C1, C2

)
=
(
c1 + c2, c3 + c4 + c5

)
= (100, 150).

The allocation assigned by the CEAd rule is

CEAd(r, c,P) =
(
x1, x2, x3, x4, x5

)
=
(
37.5, 37.5, 10, 32.5, 32.5

)
.

Recall that this allocation is the result of a two-stage procedure,8 i.e.

8Given a vector x ∈ RN and a subset T ⊆ N , we denote by x|T ∈ RT the vector x

restricted to the members of T .
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        (a) CENTRALIZED      (b) DECENTRALIZED
r =150

40  60   10    40 10040404040   40   60 10   40 100

r =150

 C1 =100 C2 =150

Figure 1: Centralized and decentralized examples.

(a) The five-person centralized rationing problem (r, c) =(
150, (40, 60, 10, 40, 100)

)
. (b) The five-person and two-group decentral-

ized rationing problem (r, c,P) =
(
150, (40, 60, 10, 40, 100),

{
{1, 2}, {3, 4, 5}

})
.

CEAd(r, c,P)|Nj
= CEA

(
CEAj(r, C

P), cj
)
, for all j ∈ G.

1. First, the amount of resource is allocated to groups. In this case,

CEA(r, CP) = CEA
(
r, (C1, C2)

)
= CEA

(
150, (100, 150)

)
= (75, 75).

2. Second, the amount that each group receives is divided among its mem-

bers:(
x1, x2

)
= CEA

(
CEA1(r, C

P), c1
)

= CEA
(
75, (40, 60)

)
= (37.5, 37.5),(

x3, x4, x5
)

= CEA
(
CEA2(r, C

P), c2
)

= CEA
(
75, (10, 40, 100)

)
= (10, 32.5, 32.5).

In the same example if we apply the CELd and the P d rules we obtain

CELd(r, c,P) =
(
15, 35, 0, 20, 80

)
and

P d(r, c,P) =
(
24, 36, 6, 24, 60

)
, respectively.
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In contrast to decentralized rationing rules, the corresponding centralized ra-

tioning rules assign

CEA(r, c) = (35, 35, 10, 35, 35),

CEL(r, c) = (17.5, 37.5, 0, 17.5, 77.5) and

P (r, c) = (24, 36, 6, 24, 60), respectively.

Notice that CEA(r, c) 6= CEAd(r, c,P), CEL(r, c) 6= CELd(r, c,P), but

P (r, c) = P d(r, c,P).

3 Analysis of properties

In the previous section we have studied the decentralization of the CEA, the

CEL and the P rules. We selected these rules as they are the most frequently

used in the resolution of real rationing situations. Moulin (2000) states9 the

following characterization of these three rules:

There are exactly three rules on R satisfying equal treatment of

equals, scale invariance, path-independence, composition and con-

sistency: The constrained equal awards, the constrained equal-losses

and the proportional rules.

In this section, we adapt these five essential properties to the new frame-

work and we show that the CEAd and the CELd rules do not satisfy all

these properties. Later, in the next section, we analyse the conditions under

which they preserve these properties.

In the centralized framework, equal treatment of equals states that if two

agents have equal claims, then they should receive equal amounts. Since

in the decentralized framework agents are not only characterized by their

claims but also by their membership of a group, equal treatment of equals

arises from a combination of two subproperties.

9Corollary of Theorem 2 on page 662 of Moulin (2000).
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First, intra-group equal treatment of equals10 states that if two agents are

members of the same group and both have equal claims, then they should

receive equal amounts.

Definition 4 A decentralized rationing rule F satisfies intra-group equal

treatment of equals if for all N ∈ N and all (r, c,P) ∈ DN , it holds

if ci = ci′, with i, i′ ∈ Nj ∈ P, then Fi(r, c,P) = Fi′(r, c,P).

It is obvious that a decentralized rationing rule F relative to F 1 and F 2

satisfies intra-group equal treatment of equals if and only if the centralized

rationing rule F 2 satisfies equal treatment of equals.

Second, individual inter-group equal treatment of equals states that if two

agents are members of different groups and both have equal claims, then they

should receive equal amounts.

Definition 5 A decentralized rationing rule F satisfies individual inter-group

equal treatment of equals if for all N ∈ N and all (r, c,P) ∈ DN , it holds

if ci = ci′, with i ∈ Nj ∈ P and i′ ∈ Nj′ ∈ P , j 6= j′,

then Fi(r, c,P) = Fi′(r, c,P).

Two members of different groups might have equal claims, but if the group’s

characteristics (number of members, members’ claims) differ, then these two

agents are not identical and, thus, the individual inter-group equal treatment

of equals property is usually not satisfied. Indeed, as the reader can verify, in

Example 1 in spite of the claims of agents 1 and 4 being equal (c1 = c4 = 40),

the CEAd rule (the CELd rule) suggests different allocations for these agents,

10In the context of rationing problems with a priori unions, Casas-Méndez et al. (2003)

and Borm et al. (2005) define an equivalent property. They call it equal treatment within

the unions. On the other hand, in the context of multi-issue allocation situations an

equivalent property, when issues play the role of groups, is defined. Lorenzo-Freire et al.

(2010) call this equal treatment within the issues and Bergantiños et al. (2011) call it equal

treatment for the players within an issue.
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i.e. CEAd
1(r, c,P) = 37.5 6= 32.5 = CEAd

4(r, c,P) and CELd
1(r, c,P) = 15 6=

20 = CELd
4(r, c,P).

Finally, individual equal treatment of equals arises as a result of the combi-

nation of the above two properties: if two agents have equal claims (regardless

of their membership), then they should receive equal amounts.

Definition 6 A decentralized rationing rule F satisfies individual equal treat-

ment of equals if it satisfies intra-group equal treatment of equals and indi-

vidual inter-group equal treatment of equals.

We have checked in Example 1 that the CEAd and the CELd rules do not

satisfy individual inter-group equal treatment of equals. Thus, we conclude

that these rules do not satisfy individual equal treatment of equals. In fact,

we next show (in Theorem 1 below) that, for the case in which all claims

are rational numbers, the only self-decentralized rationing rule that satisfies

individual equal treatment of equals is the decentralized proportional rule.

In order to state the theorem we denote by

DN
Q :=

{
(r, c,P) ∈ DN

∣∣ci ∈ Q+, for all i ∈ N
}

the domain of all decentralized rationing problems with agent set N and all

claims being rational numbers. The family of all these problems is denoted

by DQ := ∪N∈NDN
Q .

Theorem 1 A self-decentralized rationing rule F on DQ satisfies individual

equal treatment of equals if and only if it is the decentralized proportional

rule.

Proof. The proof of the “if” part is straightforward. Next, we prove the “only

if” part. That is, if a self-decentralized rationing rule F satisfies individual

equal treatment of equals, then this rule is the decentralized proportional

rule, i.e. F = P d.

For the sake of simplicity, let us first prove the case where claims are

natural numbers, i.e. ci ∈ N, for all i ∈ N . We denote by DN
N this subset of
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problems. Let (r, c,P) ∈ DN
N be a decentralized rationing problem and let F

be a self-decentralized rationing rule that satisfies individual equal treatment

of equals. We must prove that, for all i ∈ N ,

Fi(r, c,P) = P d
i (r, c,P),

where P = {Nj}j∈G is an arbitrary partition of N . To this end, consider the

associated decentralized rationing problem
(
r, ĉ, P̂

)
∈ DN̂

N where

• N̂ = {1, 2, . . . , n̂} with n̂ =
∑

i∈N ci,

• ĉk = 1, for all k ∈ N̂ and

• P̂ = {N̂j}j∈G is such that |N̂j| =
∑

i∈Nj
ci = Cj, for all j ∈ G.

Notice that every agent splits her claim into unit claims and, by definition,

we have that

ĈP̂ = (Ĉ1, Ĉ2, . . . , Ĉg) = (C1, C2, . . . , Cg) = CP . (1)

Next, we claim that, for all k ∈ N̂ ,

Fk

(
r, ĉ, P̂

)
=
r

n̂
=

r∑
i∈N ci

. (2)

To check this, consider two cases:

Case 1: If P̂ = {N̂}. Since all claims are equal (ck = 1, for all k ∈ N̂)

and F satisfies intra-group equal treatment of equals the proof of this case

is done.

Case 2: If P̂ contains at least two groups. Since all claims are equal (ck = 1,

for all k ∈ N̂) and since F satisfies individual inter-group equal treatment of

equals, the proof of this case is straightforward, and the proof of the claim

is done.

At this point, we focus on the resolution of the first stage of the F rule.

In this stage, by (1) and (2), we have that, for all j ∈ G,

Fj(r, C
P) = Fj(r, Ĉ

P̂) =
∑

k∈N̂j
Fk(r, ĉ, P̂) = |N̂j| ·

r∑
i∈N ci

= r · Cj∑
i∈N ci

= Pj(r, C
P).

(3)
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Next, take an arbitrary j ∈ G and denote rj = Fj(r, Ĉ
P̂). Then, consider

the centralized rationing problem (rj, ĉ
j) ∈ RN̂j , where ĉj = (ck)k∈N̂j

, and

associate with it a decentralized rationing problem
(
rj, c̃, P̃

)
∈ DÑ where

• Ñ = N̂j,

• c̃k = 1, for all k ∈ Ñ and

• P̃ = {Ñi}i∈Nj
is such that |Ñi| = ci, for all i ∈ Nj.

Notice that,

C̃P̃ = (ci)i∈Nj
= cj. (4)

On the other hand, following the same guidelines used to prove (2), we

obtain that, for all k ∈ Ñ ,

Fk(rj, c̃, P̃) =
rj

|Ñ |
=

rj

|N̂j|
=

rj∑
i∈Nj

ci
. (5)

Thus, by (4) and (5), for all i ∈ Nj,

Fi(r, c,P) = Fi(rj, c
j) = Fi(rj, C̃

P̃) =
∑

k∈Ñi
Fk(rj, c̃, P̃)

= |Ñi| ·
rj∑
i∈Nj

ci
= rj ·

ci∑
i∈Nj

ci
= Pi(rj, c

j).
(6)

Since j ∈ G is an arbitrary group, by (3) and (6), it follows that, for all

j ∈ G and all i ∈ Nj,

Fi(r, c,P) = Fi(Fj(r, C
P), cj) = Pi(Pj(r, C

P), cj) = P d
i (r, c,P). (7)

We can easily extend this proof to the whole family of decentralized ra-

tioning problems with rational claims (r, c,P) ∈ DN
Q by simply splitting the

agents’ claims as follows. Notice that for all i ∈ N , ci = ai
bi

, where ai ∈ N+

and bi ∈ N++. Then, if we denote by lm the least common multiple of (bi)i∈N ,

we have that ci = ai·lm/bi
lm

, for all i ∈ N , and, thus, ai · lm/bi ∈ N+, for all

i ∈ N . To complete the proof just split the agents’ claims into several equal

claims of value 1
lm

.
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The next four properties express the invariance of the solution with re-

spect to certain changes in the parameters of the problem. A rule is scale

invariant if it is homogeneous of degree one. Thus, changes in the measure-

ment unit will not have any effect on the final allocation.

Definition 7 A decentralized rationing rule F satisfies scale invariance if

for all N ∈ N , all (r, c,P) ∈ DN and any positive real number θ ∈ R++, it

holds that

F(θr, θc,P) = θ · F(r, c,P).

The proof of the next proposition can be found in the Appendix.

Proposition 1 Let F be a decentralized rationing rule relative to F 1 and

F 2 where F 1 and F 2 satisfy scale invariance, then F also satisfies scale

invariance.

The property of composition was introduced in the centralized rationing

model by Young (1988). This property states that the result of directly

allocating the amount of resource r is the same as that achieved when first

distributing a smaller amount r′ and, after that, distributing the remaining

quantity r − r′ in a new problem in which the claim of each agent i ∈ N is

diminished by the amount initially received, i.e. ci −Fi(r
′, c,P).

Definition 8 A decentralized rationing rule F satisfies composition if for

all N ∈ N and all (r, c,P) ∈ DN it holds

F(r, c,P) = F(r′, c,P) + F
(
r − r′, c−F(r′, c,P),P

)
,

where 0 ≤ r′ ≤ r ≤
∑

i∈N ci.

The proof of the next proposition is provided in the Appendix.

Proposition 2 Let F be a decentralized rationing rule relative to F 1 and F 2

where F 1 and F 2 satisfy composition, then F also satisfies composition.
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The property of path-independence was introduced in the centralized ra-

tioning model by Moulin (1987). This property states that if we apply a

decentralized rationing rule F to a problem (r′, c,P) but resource availability

diminishes suddenly, that is r′ > r, the new allocation obtained by applying

the same rule again (to the new amount and with the original claims), i.e.

F(r, c,P), is equal to that obtained when using the previous allocation as

claims, i.e. F
(
r,F(r′, c,P),P

)
.

Definition 9 A decentralized rationing rule F satisfies path-independence

if for all N ∈ N and all (r, c,P) ∈ DN it holds

F(r, c,P) = F
(
r,F(r′, c,P),P

)
,

where r ≤ r′ ≤
∑

i∈N ci.

At this point, let us recall that if a rule satisfies either composition or

path-independence, then it is monotonic with respect to r. That is, for all

N ∈ N , all c ∈ RN
+ and all r, r′:{
r ≤ r′ ≤

∑
i∈N

ci

}
⇒
{
F (r, c) ≤ F (r′, c)

}
. (8)

This property is known as resource monotonicity.

Proposition 3 Let F be a decentralized rationing rule relative to F 1 and

F 2 where F 1 and F 2 satisfy path-independence, then F also satisfies path-

independence.

The proof of this proposition can be found in the Appendix.

Finally, consistency allows us to reduce any problem to any subset of

agents. Consistency requires that when we re-evaluate the resource allocation

within a subgroup of agents using the same rule, the allocation does not

change. Henceforth, we use the following notation: for all c ∈ RN
+ , all P =

{Nj}j∈G of N and all T ⊆ N , c|T = (ci)i∈T ∈ RT
+ and P|T =

{
Nj ∩ T

∣∣ j ∈
G and Nj ∩ T 6= ∅

}
.
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Definition 10 A decentralized rationing rule F is consistent if for all N ∈
N , all (r, c,P) ∈ DN and all T ⊆ N with T 6= ∅ it holds

F(r, c,P)|T = F
(
r −

∑
i∈N\T

Fi(r, c,P), c|T ,P|T
)
.

If T is formed by entire groups, then every decentralized rationing rule

(F) relative to consistent centralized rationing rules (F 1 and F 2) satisfies the

consistency condition. If T is not formed by entire groups, then there are

decentralized rationing rules relative to consistent centralized rationing rules

that do not satisfy the consistency condition. For instance, the CEAd and the

CELd rules are not consistent. To check this, see Example 1 and imagine that

agent 4 leaves the problem with her intended assignment
(
CEAd

4(r, c,P) =

x4 = 32.5 and CELd
4(r, c,P) = x4 = 20

)
. If we solve the problem(

r − x4, c|N\{4},P|N\{4}
)

=
(
r − x4, (c1, c2, c3, c5),

{
{1, 2}, {3, 5}

})
,

we obtain

CEAd
(
r − x4, c|N\{4},P|N\{4}

)
=
(
x1, x2, x3, x5

)
=
(
29.375, 29.375, 10, 48.75

)
and CELd

(
r − x4, c|N\{4},P|N\{4}

)
=
(
x1, x2, x3, x5

)
=
(
20, 40, 0, 70

)
.

Notice that these payoffs clearly differ from the initial payoffs (see Example

1). Therefore, Moulin’s characterization (see page 11) cannot be extended

to this framework, since the CEAd and the CELd rules satisfy neither con-

sistency, nor individual equal treatment of equals.

So far we have adapted to the decentralized framework properties that are

common to the CEA, the CEL and the P rules in the centralized framework.

Now, we extend two properties to the decentralized framework, each of which

is considered to be the essence of either the CEA rule or the CEL rule in

the centralized framework. Such properties represent dual criteria as to how

a solution should treat agents with small enough claims.

The exemption property says that if an agent has a small enough claim

(below the average amount of resource), then she should not suffer rationing,
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and, thus, only agents with larger claims will suffer from rationing. Thus,

this property states that the smaller claims are not responsible for scarcity.

Definition 11 A decentralized rationing rule F satisfies exemption if for all

N ∈ N and all (r, c,P) ∈ DN , it holds that

if ci ≤
r

n
then Fi(r, c,P) = ci.

This property is considered the essence of the CEA rule, since it gives

priority to those agents with smaller claims. When the CEA rule is extended

to the decentralized framework, it does not satisfy this property. Let us

illustrate this with an example.

Example 2 Consider the fourteen-person and three-group decentralized ra-

tioning problem (r, c,P) defined as (see Figure 2)

• r = 120,

• ci =


5 if i = 1, 2, . . . , 10,

50 if i = 11, 12,

20 if i = 13,

80 if i = 14 and

• P =
{
{1, 2, . . . , 10}, {11, 12}, {13, 14}

}
.

Then, the vector of total claims of the groups is

CP =
(
C1, C2, C3

)
=
(
c1 + c2 + . . .+ c10, c11 + c12, c13 + c14

)
= (50, 100, 100).

The allocation assigned by the CEAd rule is

CEAd(r, c,P) =
(
x1, x2, . . . , x10, x11, x12, x13, x14

)
=
(
4, 4, . . . , 4, 20, 20, 20, 20

)
.

Notice that the claim of every member of group 1 is smaller than the average

amount of resource, i.e. ci = 5 < r
n

= 120
14

= 8.57, for all i ∈ N1, but the
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payoff assigned by the CEAd rule to each of these agents is lower than her

claim, i.e. xi = 4 < ci = 5, for all i ∈ N1. Therefore, we conclude that the

CEAd rule does not satisfy the exemption property. However, observe that

the claim of agent 13 which is well above the average amount of resource, i.e.

c13 = 20 > r
n

, is entirely satisfied, i.e. x13 = c13.

 5     5      5      5      5      5      5      5     5     5    50                          50                  20                         80

         C1 =50                                      C2 =100                                                    C3 =100

       r =120

Figure 2: The fourteen-person and three-group decentralized rationing prob-

lem (r, c,P).

The exclusion property implies the dual principle that the exemption

property suggests. That is, an agent with a small enough claim (below that

of the average loss) should not receive anything. Thus, the exclusion property

states that irrelevant claims should be ignored.11

Definition 12 A decentralized rationing rule F satisfies exclusion if for all

N ∈ N and all (r, c,P) ∈ DN , it holds that

if ci ≤
∑

j∈G
∑

i∈Nj
ci − r

n
=

∑
i∈N ci − r
n

then Fi(r, c,P) = 0.

11Notice that exemption and exclusion also characterize the CEA and the CEL rules,

respectively, for the centralized framework. For instance, the CEA rule is the only rule

satisfying exemption, consistency and path-independence and the CEL rule is the only

rule satisfying exclusion, consistency and composition (Herrero and Villar, 2001). Let us

recall that we use both characterizations to axiomatize the generalized equal awards and

generalized equal losses rules in Chapter 2.
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This property is considered the essence of the CEL rule, since it gives

priority to those agents with larger claims.12 When the CEL rule is extended

to the decentralized framework, it does not satisfy this property. We can

illustrate this by using Example 2. For this fourteen-person and three-group

decentralized problem the allocation assigned by the CELd rule is

CELd(r, c,P) =
(
x1, x2, . . . , x10, x11, x12, x13, x14

)
=
(

2
3
, 2
3
, . . . , 2

3
, 85

3
, 85

3
, 0, 170

3

)
.

Notice that the claim of every member of group 1 is smaller than the average

loss, i.e. ci = 5 <

∑
j∈G

∑
i∈Nj

ci−r
n

= 130
14

= 9.29, for all i ∈ N1, but the CELd

rule assigns to each of these agents a positive payoff, i.e. xi = 2
3
> 0, for all

i ∈ N1. Therefore, we conclude that the CELd does not satisfy the exclusion

property. However, observe that agent 13, who has a claim well above the

average loss, i.e. c13 = 20 >

∑
j∈G

∑
i∈Nj

ci−r
n

, does not receive anything, i.e.

x13 = 0.

To conclude this section, we adapt the duality relations between rules to

the decentralized framework. Two rules are the dual of each other if one rule

distributes the total gain r, in the same way as the other rule distributes the

total loss
∑

i∈N ci − r.

Definition 13 Two decentralized rationing rules F∗ and F are the dual of

each other, if, for all N ∈ N and all (r, c,P) ∈ DN ,

F∗(r, c,P) = c−F
(∑

i∈N

ci − r, c,P
)
.

The proof of the next proposition is provided in the Appendix.

Proposition 4 Let F and F∗ be two self-decentralized13 rationing rules rel-

ative to F and F ∗, respectively. If F and F ∗ are the dual of each other, then

F and F∗ are also the dual of each other.

12Note that, since the proportional rule allocates the resource proportionally to the

claims, it gives priority neither to smaller nor larger claims.
13Notice that this proposition can easily be extended to the more general case of decen-

tralized rationing rules.
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Therefore, since the CEA and the CEL rules are the dual of each other

and the P rule is self-dual (dual of itself), then the CEAd and the CELd rules

are also the dual of each other and the P d rule is also self-dual. The duality

between the CEAd and the CELd rules is crucial for proving Corollary 1.

4 Decentralized consistent rules

In this section we aim to find centralized solutions F that assign the same

allocation regardless of whether the resource is distributed directly to agents,

i.e. F (r, c), or in a decentralized manner (with agents grouped (r, c,P))

taking F 1 = F 2 = F . If this occurs, we say that the centralized rule F is a

decentralized consistent rule. As we have already shown in Example 1, the

CEA and the CEL rules do not satisfy decentralized consistency.

Definition 14 A centralized rationing rule F on R satisfies decentralized

consistency if for any arbitrary partition P = {Nj}j∈G of N it holds that

F (r, c) = F(r, c,P),

where F is the self-decentralized rationing rule relative to F .

The main implication for a centralized rule of satisfying decentralized

consistency is that its corresponding self-decentralized rule preserves all the

properties that characterize it in the centralized framework. In Section 3 we

have shown that the CEAd and the CELd rules do not preserve some proper-

ties that characterize the CEA and the CEL rules in the centralized context.

This is because the CEA and the CEL rules are not decentralized consistent

rules (see Example 1). Next, we analyse the conditions under which these

rules satisfy decentralized consistency for some particular partitions. Previ-

ously, we introduce some individual and group features that will be useful in

meeting this aim.

Individual features: We say that
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• agent i is marginal if her claim is smaller than the average amount of

resource, i.e. ci ≤ r
n
.

• agent i is marginal in losses if her claim is smaller than the average

loss, i.e. ci ≤
∑

i∈N ci−r
n

.

Group features: We say that

• two groups j, j′ ∈ G are homogeneous in the number of agents if both

have the same number of agents, i.e. |Nj| = |Nj′ |.

• group j is marginal if its total claim is smaller than the average amount

of resource with respect to the g groups, i.e. Cj ≤ r
g
.

• group j is marginal in losses if its total claim is smaller than the average

loss with respect to the g groups, i.e. Cj ≤
∑

j∈G Cj−r
g

.

Now, imagine a centralized rationing problem without marginal agents.

Then, the CEA rule is a decentralized consistent rule for a partition P if and

only if all groups in P are homogeneous in terms of the number of agents.

Theorem 2 Let (r, c) ∈ RN be a centralized rationing problem, where ci >
r
n

, for all i ∈ N , and let (r, c,P) ∈ DN be the decentralized problem associated

with a partition P = {Nj}j∈G of N . Then,

CEA(r, c) = CEAd(r, c,P) if and only if |Nj| = |Nj′|, for all j, j′ ∈ G.

Proof. First, notice that, since ci >
r
n
, for all i ∈ N ,

CEAi(r, c) =
r

n
, for all i ∈ N. (9)

Now, we prove the “if” part. Since CEA(r, c) = CEAd(r, c,P) and by

(9), it follows that, for all k ∈ G,

CEAk(r, CP) =
∑
i∈Nk

CEAd
i (r, c,P) = |Nk| ·

r

n
. (10)
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Now, suppose on the contrary that there are two groups j, j′ ∈ G such

that |Nj| > |Nj′|. Then, by (10), we obtain that

CEAj(r, C
P) = min {λ1, Cj} = |Nj| ·

r

n
> |Nj′| ·

r

n
= min

{
λ1, C

j′
}

= CEAj′(r, C
P),

(11)

where λ1 ∈ R+ is such that
∑

k∈GCEAk(r, CP) = r. Hence,

λ1 ≥ min
{
λ1, C

j
}
> min

{
λ1, C

j′
}
,

which implies that λ1 > Cj′ and thus, by (11),

Cj′ = |Nj′ | ·
r

n
. (12)

But, since ci >
r
n
, for all i ∈ N , Cj′ =

∑
i∈Nj′

ci > |Nj′ | · rn , which contradicts

(12).

Next, we prove the “only if” part. By (9), we have to prove that

CEAd
i (r, c,P) =

r

n
, for all i ∈ N.

First, we claim that CEAk(r, CP) = |Nk| · r
n
, for all k ∈ G. Suppose

that this is not true; then, by efficiency, there are two groups j, j′ ∈ G

such that CEAj(r, C
P) > |Nj| · r

n
and CEAj′(r, C

P) < |Nj′| · r
n
. There-

fore, since CEAj(r, C
P) = min {λ1, Cj}, where λ1 ∈ R+ is such that r =∑

k∈GCEAk(r, CP), we have that min {λ1, Cj} > |Nj| · r
n
. Hence, λ1 >

|Nj| · rn . Thus, since |Nk| = |Nk′ |, for all k, k′ ∈ G, we obtain that

λ1 > |Nk| ·
r

n
, for all k ∈ G. (13)

On the other hand, since ci >
r
n
, for all i ∈ N , it holds that

Ck > |Nk| ·
r

n
, for all k ∈ G. (14)

Therefore, by efficiency, (13) and (14), we obtain that

r =
∑
k∈G

CEAk(r, CP) =
∑
k∈G

min
{
λ1, C

k
}
>
∑
k∈G

|Nk| ·
r

n
= r,
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which is a contradiction.

Finally, take an arbitrary j ∈ G. Then, we have to prove that CEAi

(
|Nj|·

r
n
, cj
)

= r
n
, for all i ∈ Nj. Now, notice that, since |Nj| = |Nj′|, for all

j, j′ ∈ G, n =
∑

j∈G |Nj| = g · |Nj|. Hence, since CEAj(r, C
P) = |Nj| · rn and

the allocation
(
r
n

)
i∈Nj

=
(

r
g·|Nj |

)
i∈Nj

is feasible, the result trivially holds.

�

Notice that, because of the conditions in Theorem 2, the CEA rule al-

locates the average amount of resource to each agent. Thus, the CEA rule

coincides with the equal awards (EA) function.14 That is, if ci >
r
n
, for all

i ∈ N , and the partition P = {Nj}j∈G of N is such that |Nj| = |Nj′ |, for all

j, j′ ∈ G, then CEA(r, c) = EA(r, c) = CEAd(r, c,P) =
(
r
n

)
i∈N .

Now, we turn to losses and imagine a centralized rationing problem where

no agent is marginal in losses. Then, the CEL rule is a decentralized consis-

tent rule for a partition P if and only if all groups in P are homogeneous in

the number of agents.

Corollary 1 Let (r, c) ∈ RN be a centralized rationing problem, where ci >∑
i∈N ci−r

n
, for all i ∈ N , and let (r, c,P) ∈ DN be the decentralized problem

associated with a partition P = {Nj}j∈G of N . Then,

CEL(r, c) = CELd(r, c,P) if and only if |Nj| = |Nj′ |, for all j, j′ ∈ G.

This corollary arises from Proposition 4 and Theorem 2.

Analogously to the case of the CEA rule, because of the conditions in

Corollary 1, the CEL rule allocates the average loss to each agent. Thus,

the CEL rule coincides with the equal losses (EL) function.15 That is, if

ci >
∑

i∈N ci−r
n

, for all i ∈ N , and the partition P = {Nj}j∈G of N is such that

14The EA function distributes the available amount of resource equally among agents,

i.e. for any (r, c) ∈ RN , with N ∈ N , EA(r, c) = ( rn )i∈N . Notice that since the EA

function is not constrained by claims, it does not necessarily select a feasible allocation.
15The EL function assigns the total loss equally to agents, i.e. for any (r, c) ∈ RN , with

N ∈ N , EL(r, c) = (ci−
∑

i∈N ci−r
n )i∈N . Notice that, the EL function can assign negative

payoffs, and thus, it does not necessarily select a feasible allocation.
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|Nj| = |Nj′ |, for all j, j′ ∈ G, then CEL(r, c) = EL(r, c) = CELd(r, c,P) =(
ci −

∑
i∈N ci−r

n

)
i∈N .

De Frutos (1999) studies the non manipulability of rules. A rule is non

manipulable if no agent has an incentive to split her claim in several claims

and no subset of agents has an incentive to merge their claims in a single

claim.

Definition 15 A centralized rationing rule F is a non manipulable rule if

for all T,N ∈ N with T ⊂ N , all (r, c) ∈ RN and all (r, c′) ∈ RT such that

c′i = ci +
∑

k∈N\T ck, for some i ∈ N , and c′k = ck, for all k ∈ T \{i}, it holds

that

Fi(r, c
′) = Fi(r, c) +

∑
k∈N\T

Fk(r, c).

The next proposition states that decentralized consistency and non ma-

nipulability are equivalent.

Proposition 5 A centralized rationing rule F is a decentralized consistent

rule if and only if it is a non manipulable rule.

Proof. First, we prove that if F is a decentralized consistent rule, then it

is a non manipulable rule. Recall (Definition 14) that we define F as a

decentralized consistent rule if for all N ∈ N , all (r, c) ∈ RN and for any

arbitrary partition P = {Nj}j∈G of N it holds that, for all j ∈ G and all

i ∈ Nj,

Fi(r, c) = Fi(r, c,P) = Fi

(
Fj(r, C

P), cj
)
. (15)

Let T,N ∈ N be two arbitrary finite sets of agents such that T ⊂ N =

{1, 2, . . . , n} with T 6= ∅. Suppose w.l.o.g. that T = {1, 2, . . . , t} and, thus,

N \ T = {t + 1, t + 2, . . . , n}. Take an arbitrary agent i ∈ T and consider

the partition P =
{
{1}, {2}, . . . , {i− 1}, {i} ∪N \ T, {i+ 1}, . . . , {t}

}
of N ;

henceforth, we name Ni = {i} ∪ N \ T . Notice that the components of the
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vector CP are Ck = ck, for all k ∈ T \ {i} and Ci = ci +
∑

k∈N\T ck. Hence,

F (r, CP) = F
(
r, (C1, C2, . . . , Ci−1, Ci, Ci+1, . . . , Ct)

)
= F

(
r,
(
c1, c2, . . . , ci−1, ci +

∑
k∈N\T

ck, ci+1, . . . , ct

))
.

On the other hand, since F is a decentralized consistent rule (see (15))

and by efficiency of F , we obtain that

Fi(r, c) +
∑

k∈N\T

Fk(r, c) = Fi(r, c,P) +
∑

k∈N\T

Fk(r, c,P)

=
∑

k∈{i}∪N\T

Fk

(
Fi(r, C

P), ci
)

=
∑

k∈{i}∪N\T

Fk

(
Fi(r, C

P), (ci, ct+1, ct+2, . . . , cn)
)

= Fi(r, C
P).

Thus, we conclude that F is non manipulable.

Next, we prove that if F is a non manipulable rule, then it is also a

decentralized consistent rule.

First, we claim that if F is non manipulable, then, for any arbitrary

partition P = {Nj}j∈G of N , Fj(r, C
P) =

∑
i∈Nj

Fi(r, c), for all j ∈ G.

To check this, take an arbitrary group j ∈ G and consider the partition

Pa =
{
Nj, {i}i∈N\Nj

}
of N . Since F is a non manipulable rule, then∑

i∈Nj

Fi(r, c) = Fj(r, C
Pa). (16)

Next, suppose that every agent i ∈ N \ Nj merges in one group. That is,

consider the partition Pb =
{
Nj, Nj′

}
of N , where Nj′ = ∪i∈N\Nj

{i}. Then,

since F is a non manipulable rule, we have that∑
i∈Nj′

Fi(r, C
Pa) = Fj′(r, C

Pb), (17)

where Fj′(r, C
Pb) refers to the payoff assigned to the group j′ according to F

in the two-person centralized rationing problem (r, CPb).
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Taking into account (16), (17) and by efficiency of F , we obtain

Fj(r, C
Pb) = r − Fj′(r, C

Pb) = r −
∑
i∈Nj′

Fi(r, C
Pa) = Fj(r, C

Pa)

=
∑
i∈Nj

Fi(r, c).
(18)

At this point, split Nj′ in |G| − 1 groups. That is, consider the partition

Pc = {Nk}k∈G = P of N . Then, since F is a non manipulable rule, we have

that

Fj′(r, C
Pb) =

∑
k∈G\{j}

Fk(r, CP),

and thus, by efficiency,

Fj(r, C
Pb) = Fj(r, C

P). (19)

Therefore, by (18) and (19), we have that Fj(r, C
P) =

∑
i∈Nj

Fi(r, c). Since

j ∈ G is an arbitrary group we have

Fj(r, C
P) =

∑
i∈Nj

Fi(r, c), for all j ∈ G, (20)

and, thus, the claim is proved.

Next, we have to prove that F
(
Fk(r, CP), ck

)
= F (r, c)|Nk

, for all k ∈ G.

Since the only non manipulable rule is the proportional rule (de Frutos, 1999),

we have F = P and since the P rule is consistent, it follows that F is also

consistent.

Take an arbitrary group j ∈ G. Then

F (r, c)|Nj
= F

(
r −

∑
i∈N\Nj

Fi(r, c), c|Nj

)
= F

(
r −

∑
k∈G\{j}

Fk(r, CP), cj
)

= F
(
Fj(r, C

P), cj
)
,

where the first, second and third equalities follow, respectively, from consis-

tency of F , by (20) and by efficiency of F . Therefore, we conclude that F is

a decentralized consistent rule.
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In the context of MIA situations, Moreno-Ternero (2009) proves that the

proportional rule is the only anonymous16 rule that assigns the same allo-

cation directly or via a two-stage procedure. We show that the anonymity

requirement can be dropped, in the context of decentralized rationing prob-

lems, from his characterization result.

Theorem 3 A centralized rationing rule F on R is a decentralized consistent

rule if and only if it is the proportional rule.

Proof. First we prove the “if” part. Let (r, c) ∈ RN be a centralized rationing

problem and P = {Nj}j∈G be an arbitrary partition of N . We have to prove

that the P rule is a decentralized consistent rule, i.e. P (r, c) = P d(r, c,P).

By definition of the P d rule we have that, for all j ∈ G and all i ∈ Nj,

P d
i (r, c,P) = Pi

(
Pj(r, C

P), cj
)
. (21)

Then, simply applying the P rule, we obtain that, for all j ∈ G and all

i ∈ Nj,

Pi

(
Pj(r, C

P), cj
)

= Pi

(
r · Cj∑

j∈GC
j
, cj

)
=

(
r · Cj∑

j∈GC
j

)
· ci
Cj

= r · ci∑
j∈GC

j
= r · ci∑

i∈N ci
= Pi(r, c).

(22)

Therefore, by (21) and (22), we conclude that P (r, c) = P d(r, c,P), and thus,

the “if” part of the proof is done.

Next, we prove the “only if” part. That is, if a centralized rationing rule

F is a decentralized consistent rule, then this rule is the proportional one,

i.e. F = P . By Proposition 5, since F is a decentralized consistent rule, F is

a non manipulable rule. Finally, in line with de Frutos (1999) we know that

the only non manipulable rule is the P rule, and thus, F = P .

16Let us denote by ΠN the class of bijections from N into itself. A rule F satisfies

anonymity if for all N ∈ N , all (r, c) ∈ RN , all π ∈ ΠN and all i ∈ N , it holds that

Fπ(i)
(
r, (cπ(i))i∈N

)
= Fi(r, c).
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From Theorem 3 and Moulin’s characterization we obtain the next corol-

lary.

Corollary 2 Decentralized consistency implies scale invariance, equal treat-

ment of equals, composition, path-independence and consistency.

5 Strategic considerations of decentralized ra-

tioning rules

In this section we allow agents to move freely from one group to another.

Therefore, whether an equilibrium situation exists (no agent has an incen-

tive to move from one group to another) becomes relevant and we need to

understand the strategic behaviour of agents.

In the previous section we have seen that the P rule is the only solution

that assigns the same allocation, regardless of whether the resource is dis-

tributed directly to agents or in a decentralized manner. Thus, all possible

situations (regardless of the group to which each agent opts to submit her

claim) are of equilibrium when the P d rule is applied. At this point, we need

to determine whether there are other rules than that of the proportional rule

that assign at equilibrium the same allocation directly or via a two-stage

procedure.

To this end, consider g groups as intermediate distribution centers to

which players (agents) can submit their claims. That is, each player selects

the distribution center to which she wishes to submit her claim.

A strategic rationing problem is a tuple SR = (N,G, r, c,F), where N

is the agent set with |N | = n ≥ 2, G is the set of intermediate distribution

centers with |G| = g ≥ 2, r ∈ R+ is the available amount of resource, c ∈ RN
++

is the claims vector such that r ≤
∑

i∈N ci, and F is a decentralized rationing

rule.

Next, we define a non-cooperative game (decentralized rationing game)
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where agents simultaneously choose the distribution center to which they

want to submit their claims, and payoffs are determined according to a de-

centralized rationing rule.

Let i ∈ N be a player; a strategy si of this player consists on selecting one

of the g centers available in G. Given a strategy profile s = (s1, s2, . . . , sn),

the payoff to a player i ∈ N is

ui(s) = Fi

(
r, c,P(s)

)
= F 2

i

(
F 1
si

(
r, CP(s)

)
, csi(s)

)
,

where P(s) = {Nj(s)|j ∈ G and Nj(s) 6= ∅} is the partition of N according

to s, with Nj(s) = {i ∈ N |si = j}, for all j ∈ G.

We denote by S the set of all strategy profiles. Let us illustrate decen-

tralized rationing games with an example.

Example 3 Suppose that a central distributor wants to allocate, according

to the CEA rule, the amount of resource r = 30 among n = 6 players with

an associated claims vector

c = (c1, c2, c3, c4, c5, c6) = (1, 2, 4, 6, 7, 20).

However, suppose that the resource cannot be directly allocated to players.

Then, the central distributor decentralizes the allocation process through two

intermediate distribution centers, i.e. g = 2, where players are not a priori

attached to any of these centers, but they can move freely between them. That

is, we have the following strategic rationing problem(
N,G, r, c,F

)
=
(
{1, 2, 3, 4, 5, 6}, {1, 2}, 30, (1, 2, 4, 6, 7, 20), CEAd

)
.

Consider the following two strategy profiles s = (1, 1, 1, 1, 1, 2) and s′ =

(1, 1, 1, 1, 2, 2). Then, the corresponding decentralized rationing problems are

(see Figure 3):

a.
(
r, c,P(s)

)
=
(

30, (1, 2, 4, 6, 7, 20),
{
{1, 2, 3, 4, 5}, {6}

})
.

b.
(
r, c,P(s′)

)
=
(

30, (1, 2, 4, 6, 7, 20),
{
{1, 2, 3, 4}, {5, 6}

})
.
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Next, we apply the CEAd rule to determine the payoff vector in each case.

a. CEAd
(
r, c,P(s)

)
=
(
x1, x2, x3, x4, x5, x6

)
= (1, 2, 4, 4, 4, 15).

b. CEAd
(
r, c,P(s′)

)
=
(
x1, x2, x3, x4, x5, x6

)
= (1, 2, 4, 6, 7, 10).

Notice that s is not an equilibrium of the game since player 5, who claims

7 units and obtains 4 units, has an incentive to move from distribution center

1 to center 2, that is, attaining strategy profile s′, where this player obtains

all of her claim.

       r =30                r =30

                   C1 =13                   C2 =27           C1 =20    C2 =20

 1       2     4      6      7

     a) NO EQUILIBRIUM               b) EQUILIBRIUM

                 7             20 1       2     4      6      7         20            1      2            4       6

Figure 3: The six-person and two-group decentralized rationing problems.

a. (r, c,P(s)) =
(
30, (1, 2, 4, 6, 7, 20),

{
{1, 2, 3, 4, 5}, {6}

})
and b. (r, c,P(s′)) =(

30, (1, 2, 4, 6, 7, 20),
{
{1, 2, 3, 4}, {5, 6}

})
.

Let us point out that s′ is an equilibrium of the game. Note that, in

this equilibrium, players are not uniformly distributed between the centers(
|N1(s

′)| − |N2(s
′)| = 2

)
. In fact, for this problem we can obtain 22 different

equilibria in pure strategies. It is interesting to note that, even when players

are uniformly distributed between the centers, this is not necessarily an equi-

librium of the game; for instance, consider the strategy s′′ = (1, 1, 2, 2, 2, 1).

In this last example, the allocation attached to all these equilibria coin-

cides with the payoff vector proposed by the CEA rule when applied to the

centralized problem (r, c) =
(
30, (1, 2, 4, 6, 7, 20)

)
, i.e. if s is an equilibrium

32



of the game, then CEA(r, c) = CEAd
(
r, c,P(s)

)
. However, this does not

generally occur, as the following example shows.

Example 4 In the six-person (n = 6) and two-center (g = 2) strategic

rationing problem SR = (N,G, r, c, CEAd) where r = 30 and

c = (1, 6, 8, 8, 15, 20),

there are 8 equilibria, but none of the resulting allocations coincides with

the payoff vector proposed by the CEA rule in the corresponding centralized

problem.

Next, we analyse the existence of equilibrium for the cases of the P d, the

CEAd and the CELd rules. We know that the proportional rule assigns the

same allocation regardless of whether the resource is distributed directly or in

a decentralized manner (see Theorem 3). This implies that for any strategic

rationing problem where the proportional rule is applied any strategy profile

is an equilibrium of the game.

Corollary 3 For any strategic rationing problem (N,G, r, c, P d) and its as-

sociated decentralized rationing game ΓSR, every strategy profile s is an equi-

librium of the game.

In the case of the CEAd rule, we prove that for any strategic rationing

problem where the number of players is large enough, any strategy profile in

which players are distributed among centers as uniformly as possible is an

equilibrium of the game.

Proposition 6 Let (N,G, r, c, CEAd) be a strategic rationing problem and

let ΓSR be the associated decentralized rationing game such that n > r
min
i∈N
{ci} +

2g. If s ∈ S is such that
∣∣|Nj(s)| − |Nj′(s)|

∣∣ ≤ 1, for all j, j′ ∈ G, then

a. s is an equilibrium of the game, and

b. for all k ∈ G and all i ∈ Nk,∣∣∣CEAd
i

(
r, c,P(s)

)
− CEAi(r, c)

∣∣∣ ≤ max
{

r

g·
[

n
g

] − r
n
, r
n
− r

g·
([

n
g

]
+1
)},

where
[
n
g

]
is the integer part of n

g
.
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The proof of this proposition can be found in the Appendix. The payoff vector

at equilibrium proposed by the CEAd rule does not necessarily coincide with

the payoff vector assigned by the CEA rule in the corresponding centralized

problem (see Example 4). As a consequence of Proposition 6 b., if the strategy

profile s is such that players are distributed among centers as uniformly as

possible and the number of players is large enough, then the payoff vectors

obtained via centralized and decentralized procedures using the CEA rule

approach each other17 as the number of players rises.

In Proposition 6, we have shown that, for any strategic rationing problem

relative to CEAd, there exists at least one equilibrium under certain condi-

tions.

Conjectures for the CEAd rule

For the general case we have not reached any definitive conclusions, but

we conjecture the following statements for any strategic rationing problem

relative to the CEAd rule:

C1. For any game, there exists at least one equilibrium.

C2. If all players have equal claims (ci = c̄ ∈ R+, for all i ∈ N), then

every strategy profile s is an equilibrium of the game if and only if

the players are distributed among centers as uniformly as possible, i.e.∣∣|Nj(s)| − |Nj′(s)|
∣∣ ≤ 1, for all j, j′ ∈ G.

C3. If no player is marginal (ci >
r
n
, for all i ∈ N), then the only strat-

egy profiles s that are equilibria are those in which the players are

distributed among centers as uniformly as possible.

However, the fact that players are distributed as uniformly as possible does

not imply that s is an equilibrium of the game. We can illustrate this point

17The difference between these payoffs does not decrease monotonically with respect to

n, but with respect to
[
n
g

]
.

34



by analysing the decentralized problem(
r, (c1, c2, c3),P(s)

)
=
(
6, (2.1, 2.1, 4),

{
{1, 2}, {3}

})
,

where players have chosen the strategy profile s = (s1, s2, s3) = (1, 1, 2).

Then, CEAd
(
r, (c1, c2, c3),P(s)

)
= (x1, x2, x3) = (1.5, 1.5, 3), but, despite

|N1(s)| − |N2(s)| = 1, s is not an equilibrium, since player 2 has an incentive

to choose strategy s′2 = 2. This is because

CEAd
(
r, c,P(s′)

)
= CEAd

(
6, (2.1, 2.1, 4),

{
{1}, {2, 3}

})
= (x1, x2, x3) = (2.1, 1.95, 1.95).

In the case of the CELd rule, we prove that for any strategic rationing

problem where no player is marginal in losses, any strategy profile in which

all players have chosen the same distribution center is an equilibrium of the

game.

Proposition 7 Let (N,G, r, c, CELd) be a strategic rationing problem and

let ΓSR be the associated decentralized rationing game such that ci >
∑

i∈N ci−r
n

,

for all i ∈ N . If s ∈ S is such that |Nj(s)| = n, for some j ∈ G and

|Nj′(s)| = 0, for all j′ ∈ G \ {j}, then

a. s is an equilibrium of the game, and

b. CELd
(
r, c,P(s)

)
= CEL(r, c).

The proof can be found in the Appendix. Note that statement b. in Propo-

sition 7 states that if the strategy profile s is such that all players choose the

same distribution center and no player is marginal in losses, then the payoff

vectors obtained in a centralized and in a decentralized manner by using the

CEL rule coincide.

In Proposition 7, we have shown that, for any strategic rationing problem

relative to CELd, there exists at least one equilibrium under certain condi-

tions.
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Conjectures for the CELd rule

For the general case, we have not reached any definitive conclusions, but

we conjecture the following statements:

C’1. For any game, there exists at least one equilibrium.

C’2. If all players have equal claims (ci = c̄ ∈ R+, for all i ∈ N), then every

strategy profile s is an equilibrium of the game if and only if all play-

ers have chosen the same distribution center. In this case, we would

conclude that if s is an equilibrium of the game, then CEL(r, c) =

CELd(r, c,P(s)). We also believe that we can extend this characteri-

zation to the more general case where no player is marginal in losses.

C’3. In the general case, the strategy profile s such that |Nj(s)| = n, for some

j ∈ G and |Nj′(s)| = 0, for all j′ ∈ G \ {j}, is always an equilibrium,

but it is not necessarily the only one.

6 Conclusion

In this chapter we have proved that the only decentralized consistent rule is

the P rule (Theorem 3). We have also shown that the CEA and the CEL

rules are decentralized consistent rules only under certain restrictive condi-

tions and for some particular partitions. This is because the CEAd and the

CELd rules do not satisfy some essential properties, such as individual equal

treatment of equals, and they are manipulable rules. In particular, these

rules do not satisfy individual inter-group equal treatment of equals, which

implies that two agents with equal claims might be discriminated against

not only in terms of their claims, but also in terms of their membership.

As a consequence, individual interests might enter in conflict with collective

(group) interests. If all groups are homogeneous as regards the number of

agents and no agent is marginal, then the conflict is avoided (see Theorem 2

and Corollary 1).
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Table 1 compares the properties that are satisfied by centralized rationing

rules in the centralized framework with those satisfied by their corresponding

decentralized rationing rules in the decentralized framework.

ETE SI CMP PI CONS CNT EXE EXC DC

CEA
√ √ √ √ √ √ √

X X

CEAd X
√ √ √

X
√

X X

CEL
√ √ √ √ √ √

X
√

X

CELd X
√ √ √

X
√

X X

P
√ √ √ √ √ √

X X
√

P d
√ √ √ √ √ √

X X

Table 1: Properties of centralized and decentralized rationing rules.

ETE=equal treatment of equals, SI=scale invariance, CMP=composition,

PI=path-independence, CONS=consistency, CNT=continuity,

EXE=exemption, EXC=exclusion and DC=decentralized consistency.

As can be seen in Table 1, two of the properties (ETE and CONS) that

characterize the CEA, the CEL and the P rules in the centralized model

are not satisfied by the CEAd and CELd rules in the decentralized model.

In fact, the only one of these three decentralized rules that still satisfies the

properties (adapted to the decentralized framework) required by Moulin’s

characterization is the P d rule. Indeed, by Theorem 1, the P d rule is the only

self-decentralized rule (on the subdomain of problems with rational claims)

that satisfies individual equal treatment of equals (see Theorem 1).

In future research it might be interesting to decentralize other well-known

rationing rules.

Based on the above results, we have also studied a strategic game in which

each player selects the distribution center to which she wishes to submit her

claim. The P d rule also arises as an outstanding solution since if the P d rule
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is applied, then any strategy profile is an equilibrium (see Corollary 3). In

future research it might also be interesting to introduce a cost of access to

the intermediate distribution centers. Then, players with greater needs (with

larger claims) will be more willing to assume the cost. Thus, the utility can

be represented by the difference between the payoff obtained and the cost of

access to the intermediate distribution center. Another interesting extension

of this strategic model would be to impose the rule by which each interme-

diate distribution center has maximum capacity to accommodate players or

claims.

Appendix

Proof of Proposition 1 Let (r, c,P) ∈ DN be a decentralized rationing

problem and let θ ∈ R++ be a positive real number. Then, it follows that,

for all j ∈ G,

F(θr, θc,P)|Nj
= F 2

(
F 1
j (θr, θCP), θcj

)
= F 2

(
θ · F 1

j (r, CP), θcj
)

= θ · F 2
(
F 1
j (r, CP), cj

)
= θ · F(r, c,P)|Nj

.

where the second and the third equalities follow from the scale invariance of

F 1 and of F 2, respectively. Since this holds for each group j ∈ G, we are

done.

�

Proof of Proposition 2 Given a decentralized rationing problem (r, c,P),

we must prove that, for all j ∈ G,

F(r, c,P)|Nj
= F(r′, c,P)|Nj

+ F
(
r − r′, c−F(r′, c,P),P

)
|Nj
, (23)

where 0 ≤ r′ ≤ r. If r = r′, the result is straightforward. If r′ < r then, for
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all j ∈ G,

F(r, c,P)|Nj
= F 2(F 1

j (r, CP), cj)

= F 2
(
F 1
j (r′, CP) + F 1

j

(
r − r′, CP − F 1(r′, CP)

)
, cj
)

= F 2(F 1
j (r′, CP), cj)

+F 2
(
F 1
j

(
r − r′, CP − F 1(r′, CP)

)
, cj − F 2(F 1

j (r′, CP), cj)
)

= F(r′, c,P)|Nj
+ F 2

(
F 1
j

(
r − r′, CP

−
(∑

i∈Nj

Fi(r
′, c,P)

)
j∈G

)
, cj −F(r′, c,P)|Nj

)
= F(r′, c,P)|Nj

+ F
(
r − r′, c−F(r′, c,P),P

)
|Nj
,

where the second and third equalities follow, respectively, from the fact that

F 1 and F 2 satisfy composition. Therefore, (23) is fulfilled, and we are done.

�

Proof of Proposition 3 Given a decentralized rationing problem (r, c,P),

we must prove that, for all j ∈ G,

F(r, c,P)|Nj
= F(r,F(r′, c,P),P)|Nj

, (24)

where r ≤ r′. If r = r′, the result is straightforward. If r < r′ then, for all

j ∈ G,

F(r, c,P)|Nj
= F 2(F 1

j (r, CP), cj) = F 2
(
F 1
j

(
r, F 1(r′, CP)

)
, cj
)

= F 2
(
F 1
j

(
r, F 1(r′, CP)

)
, F 2

(
F 1
j

(
r′, F 1(r′, CP)

)
, cj
))

= F 2
(
F 1
j

(
r, F 1(r′, CP)

)
, F 2

(
F 1
j (r′, CP), cj

))
= F 2

(
F 1
j

(
r,
(∑

i∈Nj
Fi(r

′, c,P)
)
j∈G

)
,F(r′, c,P)|Nj

)
= F(r,F(r′, c,P),P)|Nj

,

where the second and fourth equalities follow from the path-independence of

F 1 and the third follows from the path-independence of F 2 and the resource

monotonicity of F 1 (see (8)) since r < r′ and thus F 1
j

(
r′, F 1(r′, CP)

)
≥

F 1
j

(
r, F 1(r′, CP)

)
, for all j ∈ G. Therefore, (24) is fulfilled, and we are done.
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Proof of Proposition 4 First of all, since F ∗ is the dual rule of F , it holds

that F ∗i (r, c) = ci − Fi(
∑

i∈N ci − r, c), for all i ∈ N .

Let (r, c,P) ∈ DN be a decentralized rationing problem. Then, since F ∗

is the dual rule of F , it follows that, for all j ∈ G,

F ∗j (r, CP) = Cj − Fj

(∑
i∈N

ci − r, CP
)
. (25)

Next, take an arbitrary j ∈ G. Then, since F ∗ is the dual rule of F , we

obtain that, for all i ∈ Nj,

F∗i (r, c,P) = F ∗i (F ∗j (r, CP), cj) = ci − Fi

(
Cj − F ∗j (r, CP), cj

)
= ci − Fi

(
Fj

(∑
i∈N ci − r, CP

)
, cj
)

= ci −Fi(
∑

i∈N ci − r, c,P),

where the third equality follows from (25). Thus, F and F∗ are the dual of

each other and we are done.

�

Proof of Proposition 6 Let us first prove part a. We denote ĉ = min
i∈N
{ci}.

Notice that, by reordering the initial assumption
(
n > r

ĉ
+ 2g

)
, we have that

ĉ ·
(n
g
− 2
)
>
r

g
. (26)

Then, since ci ≥ ĉ > 0, for all i ∈ N , we get that, for all i ∈ N ,

ci ≥ ĉ >
r

g ·
(
n
g
− 2
) =

r

n− 2 · g
>
r

n
, (27)

and, thus, we conclude that no player is marginal.

Now, consider a strategy profile s ∈ S such that
∣∣|Nj(s)| − |Nj′(s)|

∣∣ ≤ 1,

for all j, j′ ∈ G and take an arbitrary player i∗ ∈ N such that si∗ = j. Next,

consider a strategy profile s′ ∈ S such that s′i∗ = j′ and s′i = si, for all

i ∈ N \ {i∗}. Then, we consider two cases:
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Case 1: |Nj(s)| = |Nj′(s)| = Ñ , for all j, j′ ∈ G. First, by (26), for all

k ∈ G,

Ck(s) =
∑

i∈Nk(s)

ci ≥ ĉ · |Nk(s)| = ĉ · n
g
> ĉ ·

(n
g
− 2
)
>
r

g
. (28)

Thus, there are no marginal groups. Hence, for all k ∈ G,

CEAk

(
r, CP(s)

)
=
r

g
. (29)

Furthermore, by the hypothesis of this case and since P(s) is a partition of

N , it holds that n =
∑

k∈G |Nk(s)| = g · Ñ . Hence, by (27), we obtain that,

for all i ∈ N ,

ci ≥ ĉ >
r

n
=

r

g · Ñ
. (30)

Therefore, by (29) and (30), we have that, for all k ∈ G and all i ∈ Nk,

CEAd
i

(
r, c,P(s)

)
= CEAi

(
CEAk

(
r, CP(s)

)
, ck(s)

)
= CEAi

(r
g
, ck(s)

)
=

r

g · |Nk(s)|
=

r

g · Ñ
=
r

n
.

(31)

On the other hand, notice that

|Nj′(s
′)| = |Nj′(s)|+ 1 = |Nj(s)|+ 1. (32)

Hence, by (26), we have that

Cj(s′) =
∑

i∈Nj(s′)

ci ≥ ĉ · |Nj(s
′)| = ĉ ·

(n
g
− 1
)
> ĉ ·

(n
g
− 2
)
>
r

g
. (33)

Notice that this expression implies that |Nj(s
′)| ≥ 1. Then, by (28), (32),

(33) and since s′i = si, for all i ∈ N\{i∗}, it holds that Ck(s′) =
∑

i∈Nk(s′)
ci >

r
g
, for all k ∈ G (there are no marginal groups). Thus, for all k ∈ G,

CEAk

(
r, CP(s

′)
)

=
r

g
. (34)

At this point, by (30) and (32), we have that, for all i ∈ Nj′(s
′),

ci ≥ ĉ >
r

n
=

r

g · Ñ
=

r

g · |Nj′(s)|
>

r

g · |Nj′(s′)|
.
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Hence, from the last expression, by (31), (32) and (34), we conclude that

CEAd
i∗

(
r, c,P(s′)

)
= CEAi∗

(
CEAj′

(
r, CP(s

′)
)
, cj
′
(s′)
)

= CEAi∗

(r
g
, cj
′
(s′)
)

=
r

g · |Nj′(s′)|
<

r

g · |Nj(s)|
=
r

n
= CEAd

i∗

(
r, c,P(s)

)
,

Thus, player i∗ has no incentive to move from distribution center j.

Case 2: There exist two distribution centers j, j′ ∈ G such that |Nj(s)| −
|Nj′(s)| = 1. Notice that, |Nj(s)| ≥ |Nk(s)|, for all k ∈ G, and |Nj′(s)| ≤
|Nk(s)|, for all k ∈ G. First, by (26), we have that, for all k ∈ G,

Ck(s) =
∑

i∈Nk(s)

ci ≥ ĉ · |Nk(s)| ≥ ĉ ·
(n
g
− 1
)
> ĉ ·

(n
g
− 2
)
>
r

g
. (35)

Thus, there are no marginal groups. Hence, for all k ∈ G,

CEAk

(
r, CP(s)

)
=
r

g
. (36)

Then, we consider two subcases:

Subcase 2a: si∗ = j and the strategy profile s′ is such that s′i∗ = k′, where

k′ 6= j ∈ G, and s′i = si, for all i ∈ N \ {i∗}.
First, notice that, since |Nj(s)| ≥ |Nk(s)|, for all k ∈ G, and n =∑

k∈G |Nk(s)|, it holds that g · |Nj(s)| > n, and, thus, by (27),

ci ≥ ĉ >
r

n
>

r

g · |Nj(s)|
, for all i ∈ Nj(s). (37)

Hence, by (36) and (37), we obtain that

CEAd
i∗

(
r, c,P(s)

)
= CEAi∗

(
CEAj

(
r, CP(s)

)
, cj(s)

)
= CEAi∗

(r
g
, cj(s)

)
=

r

g · |Nj(s)|
.

(38)

On the other hand, notice that

|Nk′(s
′)| ≥ |Nj(s)|. (39)
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Moreover, by (35) and since s′i = si, for all i ∈ N \ {i∗}, we have that

Ck(s′) =
∑

i∈Nk(s′)
ci >

r
g
, for all k ∈ G. Thus,

CEAk

(
r, CP(s

′)
)

=
r

g
, for all k ∈ G. (40)

At this point, since |Nk′(s
′)| ≥ |Nk(s′)|, for all k ∈ G, and n =

∑
k∈G |Nk(s′)|,

it holds that g·|Nk′(s
′)| > n.Hence, by (27), we obtain that, for all i ∈ Nk′(s

′),

ci ≥ ĉ >
r

n
>

r

g · |Nk′(s′)|
.

Hence, by (38), (39) and (40), we have that

CEAd
i∗

(
r, c,P(s′)

)
= CEAi∗

(
CEAk′

(
r, CP(s

′)
)
, ck

′
(s′)
)

= CEAi∗

(r
g
, ck

′
(s′)
)

=
r

g · |Nk′(s′)|
≤ r

g · |Nj(s)|
= CEAd

i∗

(
r, c,P(s)

)
.

Therefore, we conclude that player i∗ has no incentive to move from distri-

bution center j.

Subcase 2b: si∗ = j′ and the strategy profile s′ is such that s′i∗ = k′, where

k′ 6= j ∈ G, and s′i = si, for all i ∈ N \ {i∗}.
First, notice that if CEAd

i∗(r, c,P(s)) = ci∗ , then i∗ has no incentive to

move from j′. Otherwise,

CEAd
i∗

(
r, c,P(s)

)
≥ r

g · |Nj′(s)|
. (41)

Second, by definition of s and s′,

|Nk′(s
′)| > |Nj′(s)|. (42)

Hence, by (26), we obtain that

Cj′(s′) =
∑

i∈Nj′ (s
′)

ci ≥ ĉ ·
(
|Nj′(s)| − 1

)
> ĉ ·

((n
g
− 1
)
− 1

)
>
r

g
.

43



From this last expression and since |Nj′(s
′)| < |Nk(s′)|, for all k ∈ G, it holds

that Ck(s′) > r
g
, for all k ∈ G. Thus,

CEAk

(
r, CP(s

′)
)

=
r

g
, for all k ∈ G. (43)

On the other hand, since |Nk′(s
′)| ≥ |Nk(s′)|, for all k ∈ G, and since

n =
∑

k∈G |Nk(s′)|, it holds that g · |Nk′(s
′)| > n. Hence, by (27), we obtain

that, for all i ∈ Nk′(s
′),

ci ≥ ĉ >
r

n
>

r

g · |Nk′(s′)|
. (44)

Finally, by (41), (42), (43) and (44), we have that

CEAd
i∗

(
r, c,P(s′)

)
= CEAi∗

(
CEAk′

(
r, CP(s

′)
)
, ck

′
(s′)
)

= CEAi∗

(r
g
, ck

′
(s′)
)

=
r

g · |Nk′(s′)|
<

r

g · |Nj′(s)|
≤ CEAd

i∗

(
r, c,P(s)

)
.

Therefore, we conclude that player i∗ has no incentive to move from the

distribution center and, thus, the proof of part a. is done.

Next, we prove part b. First, notice that, since no agent is marginal (see

(27)),

CEAi(r, c) =
r

n
, for all i ∈ N. (45)

Moreover, observe that

max
{ r

g ·
[
n
g

] − r

n
,
r

n
− r

g ·
([

n
g

]
+ 1
)} ≥ 0.

If |Nj(s)| = |Nj′(s)|, for all j, j′ ∈ G, then, since no player is marginal

(see (27)), we can apply Theorem 2, obtaining that CEAd
i (r, c,P(s)) −

CEAi(r, c) = 0, for all i ∈ N . Otherwise, there exist two distribution centers

j, j′ ∈ G such that |Nj(s)| − |Nj′(s)| = 1, and, thus, |Nj(s)| =
[
n
g

]
+ 1 and

|Nj′(s)| =
[
n
g

]
. Then, by (26), we have that, for all k ∈ G,

Ck(s) =
∑

i∈Nk(s)

ci ≥ ĉ · |Nk(s)| > ĉ ·
(n
g
− 2
)
>
r

g
,
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and thus, for all k ∈ G,

CEAk

(
r, CP(s)

)
=
r

g
. (46)

By using (27), we obtain that, for all i ∈ N ,

ci ≥ ĉ >
r

g ·
(
n
g
− 2
) > r

g ·
[
n
g

] > r

g ·
([

n
g

]
+ 1
) . (47)

Hence, by (46) and (47), we conclude that, for all k ∈ G and all i ∈ Nk,

CEAd
i

(
r, c,P(s)

)
= CEAi

(
CEAk

(
r, CP(s)

)
, ck(s)

)
= CEAi

(r
g
, ck(s)

)
=

r

g · |Nk(s)|
.

Therefore, by (45), if i ∈ Nk(s) is such that |Nk(s)| =
[
n
g

]
, then

CEAd
i (r, c,P(s))− CEAi(r, c) =

r

g ·
[
n
g

] − r

n
> 0.

Otherwise, if i ∈ Nk(s) is such that |Nk(s)| =
[
n
g

]
+ 1, then

CEAi(r, c)− CEAd
i (r, c,P(s)) =

r

n
− r

g ·
([

n
g

]
+ 1
) > 0.

This ends the proof of part b.

�

Proof of Proposition 7 Let us first prove part a. We denote ĉ = min
i∈N
{ci}.

Now, notice that, since n ≥ 2 and no player is marginal in losses, i.e.

ci ≥ ĉ >

∑
i∈N ci − r
n

, (48)

we have that
∑

i∈N ci− r < n · ĉ ≤
(
n+ (n− 2)

)
· ĉ = 2(n− 1) · ĉ. Hence, by

reordering the last expression, we obtain that

ĉ · (n− 1) >

∑
i∈N ci − r

2
. (49)

Now, consider a strategy profile s such that |Nj(s)| = n, for some j ∈ G
and |Nj′(s)| = 0, for all j′ ∈ G \ {j}. Next, take an arbitrary player i∗ ∈ N

45



and consider a strategy profile s′ ∈ S such that s′i∗ = j′ and s′i = si = j, for

all i ∈ N \ {i∗}.
At this point, notice that, since |Nj(s)| = n and by efficiency of the CEL

rule, we have that CELj

(
r, CP(s)

)
= r. Thus, by (48) and since cj(s) =

(ci)i∈Nj(s) = (ci)i∈N = c, we obtain that, for all i ∈ Nj(s) = N ,

CELd
i

(
r, c,P(s)

)
= CELi

(
CELj

(
r, CP(s)

)
, cj(s)

)
= CELi(r, c)

= ci −
∑

i∈N ci − r
n

.
(50)

Observe that s′ is such that Nj′(s
′) = {i∗} and Nj(s

′) = N \ {i∗}. Then,

we consider two cases:

Case 1: Cj′(s′) = ci∗ ≤
∑

i∈N ci−r
2

. Hence, by the exclusion18 property of the

CEL rule, it holds that CELj′
(
r, CP(s)

)
= 0. Thus, since Nj′(s

′) = {i∗},
by (48) and (50), we have that CELd

i∗

(
r, c,P(s′)

)
= CELj′

(
r, CP(s)

)
= 0 <

ci∗ −
∑

i∈N ci − r
n

= CELd
i∗

(
r, c,P(s)

)
. Therefore, player i∗ has no incentive

to move from distribution center j.

Case 2: Cj′(s′) = ci∗ >
∑

i∈N ci−r
2

. Notice that, since Nj(s
′) = N \ {i∗} and

by (49), we have that

Cj(s′) =
∑

i∈Nj(s′)

ci =
∑
i∈N

ci − ci∗ ≥ ĉ · (n− 1) >

∑
i∈N ci − r

2
.

Hence, CELj

(
r, CP(s

′)
)

= Cj(s′)−
∑

i∈N ci−r
2

and CELj′
(
r, CP(s

′)
)

= Cj′(s′)−∑
i∈N ci−r

2
. Then, since Nj′(s

′) = {i∗}, n ≥ 2 and by (50), we have that

CELd
i∗

(
r, c,P(s′)

)
= Cj′(s′)−

∑
i∈N ci − r

2
= ci∗ −

∑
i∈N ci − r

2

≤ ci∗ −
∑

i∈N ci − r
n

= CELd
i∗

(
r, c,P(s)

)
.

Therefore, player i∗ has no incentive to move from the distribution center j

and, thus, the proof of part a. is done.

18A centralized rationing rule F satisfies exclusion if for any problem (r, c), if ci ≤∑
i∈N ci−r
n , then Fi(r, c) = 0.
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Finally, notice that the proof of part b. follows directly from the definition

of the CELd rule.

�
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