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Abstract 

In the recent years, the awareness of the negative impact that economic activity has on the 

environment has increased enormously, and countries in the international community are realizing that 

such environmental degradation is an urgent issue that demands immediate and convincing solutions. 

However, despite a common interests in the environmental preservation, countries also face economic 

interests, and push international negotiations to be able to increase their production and, consequently, 

their emissions. In front of such challenge, academic research has tried to better understand the 

economic drivers hiding behind environmental degradation to provide international institutions with 

new solutions, and one special issue that has received much attention has been international trade. In 

particular, the present study delves into this question, addressing the particular relation that exists 

between trade and global emission of polluting gases. Based on the application of Input-Output 

Analysis and the use of Environmentally Extended World Input-Output Tables, this study provides a 

measure of the impact that actual trade has on emissions of greenhouse and local gases by considering 

the situation of total reduction in international trade (counterfactual). Finally, results rise important 

considerations in terms of economic and environmental efficiency, as well as some important policy 

implications. 
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1. Introduction 

The awareness of the negative impact that economic activities have on the environment has increased 

enormously in the recent years. Of the many forms of this negative impact, like the intensive waste of 

water or the massive deforestation, the emission of polluting gases is one of the main factors affecting 

the global ecosystem. In particular, it has been widely argued how the global emission of greenhouse 

gasses (GHG) is having a very significant impact on global warming. Other kind of gases, often called 

‘local gases’ because of their local range of impact, have been considered one of the main drivers, for 

example, of changes in the chemical composition of soils and seas, and the most explanatory factors of 

phenomenons like acid rain. In addition, more generally, it has been discussed how all these gases 

resulting from economic activities have contributed to the lowering of air quality, affecting all kind of 

living beings and bringing very bad consequences to human health. 

In the face of this conflict, governments and international organizations are trying to propose new 

solutions, not only to alleviate current negative conditions but especially to avoid future devastating 

consequences. Efforts devoted, for instance, in the 21st session of the United Nations Framework 

Convention on Climate Change (UNFCCC) Conference of the Parties, or COP 21, in Paris proved this 

awareness and this need of addressing the issue at a global level (C2ES 2015). However, members of 

the international community face conflicting interests. On the one hand, governments try to preserve 

or improve their economic situation, addressing to spur income per capita and protect domestic 

consumption patterns. For such reason, policies and international agreements are often directed to 

foster growth and employment, mainly through technological development, increased productivity and 

the fostering of a positive balance of trade through the specialization in those products in which 

countries have their highest competitive advantage. 

Nevertheless, on the other hand, the current environmental degradation presents an important 

challenge to such international negotiations, as pollution is a connatural result of production and it is 

only moderated by the existence of more or less polluting technologies. This environmental dilemma, 

moreover, is global; mainly for three reasons: first, because the generation of polluting gases crosses 

national borders and the warming of earth affects all countries in the world; second, because actual 

trade network implies the transaction of not only goods but also the environmental responsibility for 

their production; and finally, because there exists an asymmetry in disposable technology of countries, 

what can lead to a misallocation of global production in terms of environmental impact. 

In short, the environment is no other thing than a global public good, as countries, behaving on their 

self-interest, would increase their production and pollution at the expense of other countries reducing 

their emissions to refrain global environmental damage. As a global issue that cannot be addressed 
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individually but through collective agreement, environmental degradation presents nowadays a very 

deep concern for international institutions, just as it rises numerous concerns and questions in the 

academia not only to understand better its driving forces but also to suggest new efficient solutions. 

In particular, in response to this challenge, there has been a wide trend of research trying to analyze 

the different economic factors influencing gas emissions, and one crucial factor that has received a 

very special attention has been international trade (Jayadevappa and Chhatre 2000). Firstly, 

regarding this interrelation between international trade and emissions, many scholars have paid much 

attention to the volumes of pollutants generated to produce goods that later have been exported and 

imported, i.e. emissions involved or ‘embodied’ in traded goods (Wiebe el at. 2012). Furthermore, 

from this approach, many researchers have dealt with the issue of existing misbalances between 

emissions associated to imported and exported goods, and many considerations about the 

responsibility of those emissions have emerged in the academia (Munksgaard and Pedersen 2001). 

Nevertheless, all this body of literature has only addressed the question of how much pollution is 

generated or involved in import and exports, but it has not addressed the question of how such 

emissions would increase or decrease if countries decided to enlarge or diminish their amounts of 

imported or exported goods, nor the question of how large is the impact that actual international trade 

finally has on emissions. 

This study tries to address this particular question. More precisely, the applied procedure is based on 

the foundations of the Input-Output Analysis, and it makes use of the World Input-Output Tables and 

the ‘Environmental Accounts’ provided by the World Input-Output Database (WIOD). Moreover, the 

designed methodology is capable of analyzing how reductions in international trade for both 

intermediate goods and final goods could lead to different emission levels for the case of eight 

different types of pollutants. Furthermore, the evaluation of emissions that would be generated if 

overall trade was reduce serves as the counterfactual to estimate which is the impact that trade alone 

has on global emissions. 

The study is structured as follows. In the first place, Section 2 provides an extensive review of 

previous research addressing the relation between international trade and emissions, and pays special 

attention to those approaches grounded in the Input-Output Analysis. Secondly, Section 3 describes 

the methodology, from the fundamentals of the Input-Output Analysis to the particular procedure 

applied in this study. Later, Section 4 gives a wide explanation about the disposable data in the World 

Input-Output Database (WIOD) from which World Input-Output Tables and environmental data are 

obtained. Following, Section 5 shows and comments the most relevant results, and gives some 

interpretations. Finally, Section 6 presents some critical implications and Section 7 summarizes the 

main conclusions of the study. 
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2. Literature Review 

In front of the actual and dramatic worsening of natural conditions, there has been a wide trend of 

research trying to understand which economic factors hide behind gas emissions. For instance, 

scholars have accounted for increases in pollution driven by economic factors like population, 

consumption per capita, consumption patterns or technological structure (Arto and Dietzenbacher 

2014), and one crucial factor that has received much attention has been international trade 

(Jayadevappa and Chhatre 2000; Antweiler et al. 2001). On the one hand, from a historical 

perspective, it has been discussed how international trade sharply increased in the second half of the 

20th century and how this process largely lead to the recent economic development. However, on the 

other hand, it has been also argued how such process of globalization was greatly accompanied by an 

increasing environment degradation (Burnete and Choomta 2015). The interrelation of international 

trade, economic development and environmental degradation has been often in the center of the debate 

and the very diverse approaches that have tried to address this question have held conflicting results 

(Elbasha and Roe 1996; Kleemann and Abdulai 2013). Moreover, many scholars have tried to 

estimate how the increasing process of globalization has led not only to certain inequalities and 

misbalances across countries in terms of income, but also in terms of environmental preservation or 

degradation (Atici 2012; Le et al. 2016). 

In order to address this general issue, the first important body of literature has focused on the 

measurement of the emissions involved, directly or indirectly, in international flows of goods. In 

particular, the term used by scholars to describe the amount of emissions generated because of 

production set aside by countries for importing or exporting has been the term of ‘Embodied 

Emissions in Trade’ (EET). Such assessment of emissions involved in international trading, made 

possible thanks to the use of Input-Output Tables and the methodology of Input-Output Analysis, has 

raised many diverse and comprehensive results (Sato 2014). 

Within this literature, some studies have addressed the emissions embodied globally in international 

trade, like Wiebe el at. (2012) focused on the measurement of CO2 global emissions; while many 

studies have been concerned about the emissions embodied in trade of particular countries, like 

Machado et al. (2001) analyzing the energy and carbon embodied in Brazilian trade, or Liu et al. 

(2015) taking into account the emissions embodied in the value added by Chinese sectors. Other 

studies have addressed bilateral relationships between countries and their environmental implications. 

For instance, Wu et al. (2016) and Zhao et al. (2016) have been focused on emissions embodied in 

China-Japan trade, Jayanthakumaran and Liu (2016) and Tan et al. (2013) have been centered on 

the CO2 embodiment in China–Australia trade, and Mizgajski (2012) on the Poland-Germany case.  
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In addition, from a wider perspective, some other studies like Arto and Dietzenbacher (2014) have 

made use of the methodology of ‘structural decomposition analysis’ within the Input-Output 

framework and, together with trade, they have assessed the impact of other economic variables like 

consumption structure, population, or technology on local and global emissions. In particular, this last 

study showed, for instance, that factors like population, consumption per capita and trade structure had 

a positive effect on the increase of global emissions of greenhouse gases in the last decade, while 

factors like structure of consumption and technology helped to soften this overall increase in GHG 

emissions. Furthermore, this analytical procedure of structural decomposition, also based on the key 

notion of ‘embodied emissions in trade’, has been also used in studies like Xu and Dietzenbacher 

(2014) at an international and global level, accounting for international flows of intermediate and final 

goods and the key drivers of the increasing emission of CO2. On the other hand, other studies have 

applied this methodology in order to assess the case of certain countries, like Yamakawa and Peters 

(2011) and their analysis of the economy of Norway and greenhouse gases emissions, or Liu and 

Wang (2015) in their study of the Chinese emissions of SO2. Other studies, more concerned about the 

different characteristics of trade, have assessed, for example, how changes in trade structures can lead 

to different emissions embodied in trade (Dietzenbacher et al. 2012; Su et al. 2013; Weitzel 2014), 

or how differences in the usage of energy can rise important environmental comparisons within 

countries (Cosmo and Hyland 2013; Du et al. 2011). 

Also based on the approach of the emissions embodied in exports or imports of countries, another 

body of literature has been grounded both in terms of ‘environmental inequality’ and in terms of 

‘emission responsibility’. In the case of environmental inequality, most part of the research has 

focused on the assessment of misbalances in emissions embodied in trade of exports and imports of 

certain countries. For instance, Muradian et al. (2002), when comparing industrialized countries with 

the rest of the world economies, determined how emission embodied in imports of developed 

countries used to be higher than emissions embodied in exports; being this relation inverse for the case 

of developing countries. From this literature, some very relevant terms have emerged, like the 

‘environmental load displacement’, the ‘environmental terms of trade’ (ETT) or the ‘balance of 

embodied emissions in trade’ (BEET), all of them referring to this misbalances in emissions traded 

internationally.  

Such misbalance between countries and their emissions involved in trading has raised many concerns 

about the responsibility over emissions. From such debate, many scholars have focused on both the 

producers of goods and their consumers in order to find an appropriate view over the responsibility of 

emissions (Munksgaard and Pedersen 2001), and over the distinct ethical implications that arise 

(Hoekstra and Janssen 2006). In general, it has been argued how the producer-perspective on the 

responsibility over emissions might be insufficient in order to enforce countries and fulfill 

international emission objectives (Mozner 2013), and how the approach of the responsibility of the 
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consumer is also necessary. Within this trend in the literature, other important studies have emerged, 

for example, analyzing the different frameworks and methodologies to quantify responsibility for 

emission, like in Serrano and Dietzenbacher (2010); or other studies centered in the responsibility 

on emissions at lower spatial levels like cities or households (Choi 2015; Munksgaard et al. 2005). 

Moreover, one special issue has raised much interest about the interrelation of international trade and 

polluting emissions, and especially about the existing misbalances between developed and developing 

countries in terms of environmental quality. More precisely, the literature has devoted a lot of effort in 

understanding why countries have opted to import certain goods instead of fostering domestic 

production, and why, therefore, production and emissions have been displaced towards other regions 

in the world. In particular, two conflicting hypothesis have been presented (Azhar and Elliott 2007; 

Shen 2008; Aller et al. 2015). The first one corresponds to the ‘Pollution Haven Hypothesis’ (PHH), 

and it states that, besides other factors, production misallocation takes place mainly from developed to 

developing economies as a result of strong environmental regulations in developed countries 

(Marconi 2012). On the contrary, the ‘Factor Endowment Hypothesis’ (FEH), or the ‘Capital-Labor 

Hypothesis’ (KLH), suggests that countries should specialize in those activities in which they have an 

important competitive advantage. From this second perspective, as developed countries do have a 

higher disposability of capital, these countries should then specialize in the production of 

manufactured goods, which result being highly pollution-intensive (Aller et al. 2015). 

Many studies have address this particular question. For instance, some studies have focused on 

bilateral relations across countries with different income levels and different trade patterns. Such is the 

case, for instance, of Marconi (2012) focusing on the relation between Europe and China, and finding 

no evidence in support or the pollution haven hypothesis between these two regions; or the case of 

Azhar and Elliott (2007) focusing on trade patterns across North and South economies in the world. 

Additionally, other studies have centered the attention on the relation between particular economies 

(He 2006) and the rest of the world, and have provided strong evidence in support of the pollution 

haven hypothesis, like Al-Mulali et al. (2015) in relation to Vietnam, or Gokmenoglu and Taspinar 

(2015) regarding the case of Turkey. However, others, like Eskelanda and Harrison 2003 for the 

USA, have not provided conclusive evidence in support of such hypothesis. Finally, some scholars 

have addressed this question at a global level. For instance, Khan and Yoshino (2004) uses trade data 

over 17 years, 128 nations and 34 manufacturing industries, and finds support to the pollution haven 

hypothesis, as they show that increases in national income are generally followed by a lowering in 

exported dirty goods relative to exports of clean goods. 

In particular, this interrelation between income, displacement of production, and the subsequent 

environmental impact has also received much attention in this body of literature under the concept of 

the ‘Environmental Kuznets Curve’ (EKC). More precisely, the hypothesis of the environmental 
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Kuznets curve suggests that countries may increase their emissions as a result of increasing their 

income but only until they reach a certain technological level, after which emissions would be reduced 

because of an increase in the environmental efficiency of production. Such hypothesis, suggesting an 

inverted-U relation between income and emissions, has been investigated by many authors. For 

instance, Cole (2004) observes the existence of an EKC for the North and South regions of the world, 

but he observes that this relation inverted-U relation between income and emissions is mainly driven 

by the pollution haven hypothesis of the North regions displacing polluting production to the South. In 

the same line, Kearsley and Riddel (2010) shows that the existence of pollution havens explains 

much of the existence of EKC. Moreover, the study argues how the turning point in the relationship 

between income and emissions is hardly found in the data, suggesting that the EKC hypothesis of 

technology lowering emissions in the long run might be an overoptimistic perspective. 

In sum, the body of research that has addressed both issues of international trade and polluting 

emissions is very broad. However, it is crucial to mention that most research assessing the link 

between the two issues has been highly descriptive, as it has departed from the observation of actual 

levels of trade and the actual levels of emissions. For instance, on the one hand, many studies have 

applied econometrical models to estimate the relationship between international trade and overall 

country emissions, making use of panel data (Kleemann and Abdulai 2013; Kozul-Wright and 

Fortunato 2012; Le et al. 2016; Atici 2012). Such studies, however, have provided narrow 

confidence intervals, first, due to the small variations in overall trading activity in the world, and 

second, due to the lack of complete datasets encompassing enough time information. On the other 

hand, all literature related to the ‘emissions embodied in trade’ and the ‘responsibility’ or ‘imbalances’ 

over those emissions has made used of Input-Output analysis to calculate actual emissions involved in 

the exporting or importing of goods. In addition, this approach has been enriched with time-series 

analysis and the application of ‘structural decomposition’ in order to assess how the actual evolution 

of trade has altered the temporal evolution of emissions (Arto and Dietzenbacher 2014). 

Nevertheless, despite all contributions to the topic, a very important issue has remained unanswered in 

the literature. This is the evaluation and measurement of the real and absolute impact that actual 

international trade has on global emissions. In particular, such impact evaluation corresponds to the 

comparison of the actual and observable levels of global emissions and those levels of global 

emissions that would be generated in the case of a reduction in international trade (counterfactual of 

the impact evaluation). As previous research has paid much attention to the actual levels of emissions 

and not to the hypothetical situation in which trade was reduced, this measurement of the emission that 

take place nowadays due to international trade alone has been generally omitted in the academia. In 

sum, this precise evaluation, as well as a general assessment of how different trade structures can lead 

to different levels of pollution, are the main research questions and issues that this study addresses. 
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To conclude, then, this literature review, a final piece of research deserves some attention for both its 

research question and its methodological approach. In particular, this is the study Arto et al. (2014a), 

addressed to measure the ‘Net Emissions Avoided’ by trade (NEA) for the case of the Spanish 

economy in the years from 1995 to 2007. In particular, the term of NEA is very closed to the concept 

of impact measurement considered in this study, as the NEA of a certain country is exactly defined as 

‘the difference between the emissions that would take place in that country if it was closed to 

international trade (Emissions Without Trade, EWoT) and its actual emissions’ (Arto et al. 2014a). 

Therefore, this last study also establishes a comparison between observable emissions and the 

emission in a counterfactual situation, but for the particular case of a single country. However, the 

approach for a global and international assessment, although being similar from a theoretical 

perspective, does require a different methodological approach, the one that is explained in next 

section. 
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3. Methodology 

The present study takes as a baseline the methodology of Input-Output Analysis (IO). In particular, 

this methodology is grounded in the use of the so-called Input-Output Tables, numerical tables 

encompassing economic flows across industries and other economic agents. From the analysis of this 

information, the Input-Output Analysis is able to delve into the existing economic network within a 

particular economy. In other words, the methodology is able to explain how production (output) from 

a certain sector in the economy is translated into intermediate consumption (inputs) of one another at 

an inter-industry level, and how some production is consumed by economic agents as final goods at 

the end of the chain. Additionally, Input-Output Analysis is able to study how final output from 

sectors is inherently linked to certain resources, such as capital, employment, or the consumption of 

water or energy; as well as to the production of waste like polluting gases and other waste materials. 

Given this broad industry-based information, and through the appropriate matrix calculation, the 

Input-Output Analysis methodology is powerful enough to show, for instance, the levels of 

production, resources used and pollution generated due to the demand of very specific agents; or how 

certain changes in one particular economy could lead to very different economic, social or 

environmental outcomes. 

Addressing the interrelation between international trade and global emissions, this study makes use of 

the Environmentally Extended Multi-regional Input Output (EE-MRIO) model, which considers in the 

Input-Output framework all countries in the world and the generation of polluting gases by all existing 

sectors. The foundations of this particular model and the Input-Output Analysis in general are 

explained in Section 3.1. In addition, in order to evaluate the environmental impact that international 

trade has on the environment nowadays, this study applies its own particular procedure, in which three 

different scenarios are considered (besides the current and observable situation of the global economy 

that is considered to be Scenario 0). The first scenario, Scenario 1, is developed in Section 3.2, and it 

addresses only the generation of emissions coming from international trade of final goods. More 

precisely, this scenario considers a variation in this type of trade by taking into account a shift in the 

demand of final consumers towards more-domestic products, while the existing inter-sectorial trade 

network remains completely unchanged. Later, Scenario 2, presented in Section 3.3, does not 

consider any change in demand of final consumers, but it considers a change in the inter-sectorial 

network by encompassing a shift in the demand of industries for more-domestic intermediate inputs. 

In this way, this second scenario addresses a variation in international trade for intermediate goods, 

and captures the subsequent effect on the environment. Finally, Scenario 3, discussed in Section 3.4, 

considers a common variation in both types of international trade, or overall international trade, as 

both demand of consumers for intermediate goods and demand of industries for final goods are 
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altered. Arbitrarily, variations in international trade for both final and intermediate goods are 

considered as reductions (and not increases), this is, reductions in both the volume of exports and 

imports for all countries. Moreover, this reduction in trade is applied linearly to all countries and 

economic sectors in the same proportion. This way to consider changes in trade results useful in order 

to build a good counterfactual to estimate the actual impact that international trade has on the 

environment, as it is finally discussed in Section 3.5. In sum, all these considerations, the assumptions 

made and the most important implications of the procedure and each scenario are discussed in each 

subsection. 

 

3.1. Foundations of the Input-Output Analysis   

As previously mentioned, in order to address the question of how changes in international trade can 

lead to changes in polluting emissions, the required Input-Output framework of analysis is the EE-

MRIO model (Wiedmann 2009; Wiedmann et al. 2011), encompassing all the regions in the world 

and gathering the environmental information of gasses emitted by economic sectors and agents. The 

structure of an EE-MRIO table is shown in Figure 1 and explained next in detail. 

 

Figure 1. Representation of the EE-MRIO table 

 

Source: own elaboration 

 

The EE-MRIO is formed mainly by five elements. Firstly, the square matrix Z represents the flows of 

intermediate goods across sectors and regions in the entire world. In particular, this matrix can be 

expressed as  

Intermediate use Final use
Industry 

output

Intermediate 

use
Z F x

Value added v'

Industry output x'

Emissions G
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𝐙 = [

𝐙11 𝐙12 … 𝐙1𝑚

𝐙21 𝐙22 … 𝐙2𝑚

⋮ ⋮ ⋱ ⋮
𝐙𝑚1 𝐙𝑚2 … 𝐙𝑚𝑚

] = [

𝑧11 𝑧12 … 𝑧1(𝑚·𝑛)

𝑧21 𝑧22 … 𝑧2(𝑚·𝑛)

⋮ ⋮ ⋱ ⋮
𝑧(𝑚·𝑛)1 𝑧(𝑚·𝑛)2 … 𝑧(𝑚·𝑛)(𝑚·𝑛)

] , (1) 

where each submatrix 𝐙𝑟𝑠 contained in Z represents the economic flows from region r to region s, 

being m the total number of regions. At the same time, each submatrix 𝐙𝑟𝑠 has dimensions n per n, 

being n the total number of industries in each region. Moreover, as Expression 1 shows, matrix Z can 

also be expressed not in relation to regions but in relation to all existing industries. In this way, matrix 

Z can be represented as the matrix capturing each specific inter-industry flow 𝑧𝑖𝑗, this is, the economic 

flow from sector i to sector j if it is considered that there exist m·n industries in total in the world (as 

all m regions have n industries each), no matter the region to which sector i or j belongs. Finally, it is 

important to notice that, if one wants to distinguish both the index of the region and the index of the 

sector within that region, there exists an alternative to represent inter-industry flows 𝑧𝑖𝑗. In particular, 

it is just necessary to consider the indexes i and j as 𝑖 = (𝑟1 − 1) · 𝑛 + 𝑠1 and = (𝑟2 − 1) · 𝑛 + 𝑠2 , 

being 𝑟1 the region and 𝑠1 the sector (within the region 𝑟1) from which the flow departures, and 𝑟2 the 

region and 𝑠2 the sector (within the region 𝑟2) to which the flow arrives. 

Moreover, it is important to define vector z as the vector capturing the production of each sector that 

has been allocated only as intermediate goods in the economy, and not as final goods for consumption. 

In this way, vector z, with dimension m·n, can be obtained by the multiplication of matrix Z by the 

identity vector i and finally expressed as 

𝐳 = [

𝑧1

𝑧2

…
𝑧𝑚·𝑛 

] = 𝐙 · 𝐢 = [

𝑧11 + 𝑧12 + ⋯+ 𝑧1(𝑚·𝑑)

𝑧21 + 𝑧22 + ⋯ + 𝑧2(𝑚·𝑑)

⋮
𝑧(𝑚·𝑛)1 + 𝑧(𝑚·𝑛)2 + ⋯ + 𝑧(𝑚·𝑛)(𝑚·𝑑)

] . (2) 

Secondly, the following element in the EE-MRIO table is the non-square matrix F, which captures the 

economic flows that go from sectors to economic agents because of their demand, this is, the 

consumption of sectorial outputs as final goods. As before, matrix F can be decomposed as  

𝐅 = [

𝐅11 𝐅12 … 𝐅1𝑚

𝐅21 𝐅22 … 𝐅2𝑚

⋮ ⋮ ⋱ ⋮
𝐅𝑚1 𝐅𝑚2 … 𝐅𝑚𝑚

] =

[
 
 
 
 

𝑓11 𝑓12 … 𝑓1(𝑚·𝑑)

𝑓21 𝑓22 … 𝑓2(𝑚·𝑑)

⋮ ⋮ ⋱ ⋮
𝑓(𝑚·𝑛)1 𝑓(𝑚·𝑛)2 … 𝑓(𝑚·𝑛)(𝑚·𝑑)]

 
 
 
 

 , (3) 

where submatrices 𝐅𝑟𝑠 capture the demand for goods produced in region r from a certain region s, 

within a market composed by m countries. In particular, each of these 𝐅𝑟𝑠 matrices has dimensions n 

per d, being n again the total number of industries in each region and d the number of types of 

consumers or agents demanding final goods (e.g. households, governments and investors). Like 

before, matrix F can be expressed not in relation to regions but in relation to all existing industries and 
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all existing types of demand in the world. In this way, matrix F can be represented as the matrix 

capturing each specific industry-to-consumer flow 𝑓𝑖𝑘, this is, the economic flow from sector i to 

consumer k, considering the existence of m·n productive sectors and m·d different consumers. Finally, 

the flow 𝑓𝑖𝑘 can also be expressed considering 𝑖 = (𝑟1 − 1) · 𝑛 + 𝑠1 and 𝑘 = (𝑟2 − 1) · 𝑑 + 𝑎2, there 

is the need to specify the country of origin 𝑟1 and the sector of origin 𝑠1 of the good, as well as the 

country of destination 𝑟2 and the agent demanding the final good 𝑎2. 

In addition, it is possible to define the vector f as the one representing aggregate final consumption for 

all sectors in all countries in the world; this is, without the distinction of the type of consumer (e.g. 

household, government, and investor) that is having this demand. Consequently, vector f has 

dimension m·n and is computed as 

𝐟 =

[
 
 
 

𝑓1

𝑓2

…
𝑓𝑚·𝑛 ]

 
 
 
= 𝐅 · 𝐢 =

[
 
 
 
 

𝑓11 + 𝑓12 + ⋯+ 𝑓1(𝑚·𝑑)

𝑓21 + 𝑓22 + ⋯ + 𝑓2(𝑚·𝑑)

⋮
𝑓(𝑚·𝑛)1 + 𝑓(𝑚·𝑛)2 + ⋯ + 𝑓(𝑚·𝑛)(𝑚·𝑑)]

 
 
 
 

 . (4) 

Thirdly, vector v refers to the value added generated by each of the m·n industries existing in the world 

in the form 

𝐯 = [

𝑣1

𝑣2

…
𝑣𝑚·𝑛 

] , (5) 

being 𝑣𝑖 the value added by industry i; while vector x refers to the total output generated by each of 

the m·n industries in the form  

𝐱 = [

𝑥1

𝑥2

…
𝑥𝑚·𝑛 

] , (6) 

referring each term 𝑥𝑗  to the total output of industry j. 

Finally, the non-square matrix G captures the emissions generated by all m·n sectors in the world for 

all p types of polluting gases considered as  

𝐆 =

[
 
 
 
 
𝑔11 𝑔12 … 𝑔1(𝑚·𝑛)

𝑔21 𝑔22 … 𝑔2(𝑚·𝑛)

⋮ ⋮ ⋱ ⋮
𝑔𝑝1 𝑔𝑝2 … 𝑔𝑝(𝑚·𝑛)]

 
 
 
 

 , (7) 

where each value 𝑔𝑙𝑗 in the matrix expresses the level of emissions of one type of gas l generated by 

industry j. In addition, the vector g, computed as  
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𝐠 =

[
 
 
 
𝑔1

𝑔2

…
𝑔𝑝 ]

 
 
 
= 𝐆 · 𝐢 =

[
 
 
 
 
𝑔11 + 𝑔12 + ⋯+ 𝑔1(𝑚·𝑛)

𝑔21 + 𝑔22 + ⋯+ 𝑔2(𝑚·𝑛)

⋮
𝑔𝑝1 + 𝑔𝑝2 + ⋯+ 𝑔𝑝(𝑚·𝑛)]

 
 
 
 

 , (8) 

represents the global emissions for all p types of polluting gases in the entire world, being 𝑔𝑙 the 

global emissions of gas l. 

Once the matrices in the EE-MRIO have been defined, it is necessary to establish the mathematical 

relation between them. First,  

𝐱 = 𝐳 + 𝐟  (9) 

shows how the total production x generated by all m·n sectors in the world has to be equal to the sum 

of the production used as intermediate goods z and the production used as final goods by other 

economic agents f. 

Moreover, if matrix Z is transformed and each column in the matrix (each sector) is divided by the 

total output of the corresponding sector as it is possible to obtain the matrix of input coefficients A, 

𝐀 = 𝐙 · 𝐱̂−𝟏 , (10) 

where 𝐱̂−𝟏 represents the inverse of the diagonal matrix of the vector of total output x. Such matrix, if 

analyzed vertically in columns, captures the production function of each productive sector, this is, the 

necessary amount of each input (from another industry) to produce one unit of output.   

Thanks to this transformation, it is possible to transform Equation 9 into the linear expression  

𝐱 = 𝐀𝐱 + 𝐟 , (11) 

and resolve the linear system by expressing total production x as a function of final demand f in the 

form 

𝐱 = (𝐈 − 𝐀)−1 · 𝐟 = 𝐋 · 𝐟 , (12) 

where the term multiplying (𝐈 − 𝐀)−𝟏 is denoted by L and corresponds to the Leontief inverse matrix 

of the Input-Output table, the matrix capturing the direct and all indirect production necessary to 

satisfy such level of demand. 

As it is possible to observe, using the Leontief inverse matrix as in Equation 12, it is almost 

immediate to compute the total production required to satisfy both the intermediate consumption of the 

different industries in the world (intermediate goods) and the final demand of all sort of consumers or 

agents (final goods). 
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In addition, the process to calculate the emissions brought by this total production of goods is 

straightforward. As shown in the expression 

𝐄 = 𝐆 · 𝐱̂−𝟏 , (13) 

it is first necessary to compute the matrix of emission coefficients E, this is, the matrix containing, for 

each sector, the amount of gases emitted per unit of industry output. Computed the matrix of emission 

coefficients, it is possible to extract the emissions brought by a certain level of production x by 

applying 

𝐠 = 𝐄 · 𝐱  (14) 

and, assembling Equation 12 and Equation 14, it is immediate to calculate the emissions brought by 

a certain level of final demand f through 

𝐠 = 𝐄 · (𝐈 − 𝐀)−1 · 𝐟 . (15) 

In sum, mainly using Equation 12 and Equation 15, it is possible to compute the levels of production 

and emissions coming from a new structure in the demand of final consumers, a procedure that is used 

in next subsection to assess the environmental impact of international trade of final goods. 

 

3.2. Changes in International Trade of Final Goods   

The first step and scenario to analyze the environmental impact of international trade considers only 

trade of final goods. Within the Input-Output framework, final goods are no more than output from 

industries that arrives to other economic agents (e.g. households, governments, and investors) for their 

consumption. If such industries and such agents are placed in different countries, the goods produced 

will cross the borders of the country exporting and will arrive to country importing as traded final 

goods. 

Now, in order to consider a reduction in this form of international trade, it is only necessary to impose 

a new setting in which economic agents substitute their demand of foreign final goods for an 

equivalent amount of domestically produced final goods. In particular, such shift applied to each 

country would not alter the absolute amount of goods consumed by agents but only their geographic 

origin. Moreover, this shift would not affect the domestic-foreign structure of inputs of industries, nor 

the global inter-industry network for intermediate goods. Nevertheless, it is important to notice that the 

distribution of production across industries would change to satisfy the new distribution of the demand 

for final goods; and therefore international trade of intermediate goods would be affected but only in 

an indirect way. 
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In particular, to apply the described change in trade for final goods within the Input-Output 

framework, both the matrix of demands F shown in Expression 3 and the aggregate world demand f 

shown in Expression 4 should be modified. As shown in the expressions  

𝐅M(𝜆) =

[
 
 
 
 
 
 
𝐅11 + 𝜆 · ∑ 𝐅𝑖1𝑚

𝑖≠1  (1 − 𝜆) · 𝐅12 … (1 − 𝜆) · 𝐅1𝑚

(1 − 𝜆) · 𝐅21 𝐅22 + 𝜆 · ∑ 𝐅𝑖2𝑚
𝑖≠2  … (1 − 𝜆) · 𝐅2𝑚

⋮ ⋮ ⋱ ⋮

(1 − 𝜆) · 𝐅𝑚1 (1 − 𝜆) · 𝐅𝑚2 … 𝐅𝑚𝑚 + 𝜆 · ∑ 𝐅𝑖𝑚𝑚
𝑖≠𝑚  ]

 
 
 
 
 
 

 (16) 

𝐟M(𝜆) = 𝐅M(𝜆) · 𝐢 (17) 

corresponding to the modified versions of the world demand matrix 𝐅𝐌(𝜆) and the world aggregate 

demand vector 𝐟𝐌(𝜆) , the reduction of foreign demand could be applied linearly and be later 

compensated by an increase in the domestic demand. In particular, the reduction in international trade 

of final goods would be reduced, for all countries in the same proportion, by the real parameter 𝜆 ∈

(0,1). For example, for 𝜆 = 0 there would be no change in final demand, for 𝜆 = 0.5 foreign demand 

would have been reduced by 50%, and for 𝜆 = 1 all foreign demand for final goods would have been 

eliminated and later compensated by the corresponding increase in domestic demand. Although it is 

not carried out in this study for the sake of simplicity, note that this reduction in trade could have been 

applied in different proportions to different countries just by creating a  𝜆𝑟 specific for each country. 

Finally, with this new vector 𝐟𝐌 of the world total demand it is possible to compute both the global 

output required to satisfy this new demand and the subsequent emissions by the use of Equation 12 

and Equation 15 respectively in the form 

𝐱𝟏(𝜆) = (𝐈 − 𝐀)−1 · 𝐟𝐌(𝜆) (18) 

𝐠𝟏(𝜆) = 𝐄 · (𝐈 − 𝐀)−1 · 𝐟𝐌(𝜆) .  (19) 

Being 𝐱𝟎 and 𝐠𝟎 the observable levels of output and levels of emissions in the original EE-MRIO 

(Scenario 0), now 𝐱𝟏 and 𝐠𝟏 correspond to the new levels of output and levels of emissions for this 

Scenario 1. 

Nevertheless, it is important to note that the validity of the procedure here presented relies on two 

crucial assumptions. First, this procedure assumes that technology available in both scenarios so far 

considered is the same, and therefore changes in production and emissions come only from actual 

changes in international trade. Second, the procedure assumes a free disposal of domestic inputs in 

order to satisfy the new structure in the world final demand.  
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3.3. Changes in International Trade of Intermediate Goods   

The second step and scenario to analyze the interrelation between international trade and pollutant 

emission does not consider the previous shift in final demand, but only a change in the inter-industry 

network and trade for intermediate goods. In particular, as previously were consumers who shifted 

from foreign to domestic goods, now industries exert that change by substituting their foreign inputs 

by domestic inputs. Applying such condition, although not changing the global demand for final 

goods, the demand for intermediate goods varies considerably for two reasons. First, because of the 

industries shifting from foreign to domestic inputs, which would correspond to a change in the 

industry-specific ‘production function’ vector, as explained for matrix A in Expression 10. Second, 

once applied this ‘technological’ change, industries have to adjust their production to meet the levels 

of global demand; and such adjustment has an effect on the trade of intermediate goods. In particular, 

some industries are to produce more to satisfy an increased demand of their compatriot sectors, while 

other producers have to cut down production because of a reduction in exports of intermediate goods. 

To apply this change in international trade for intermediate goods within the framework of Input-

Output Analysis, it is necessary to modify first the inter-industry global network for intermediate 

inputs. In a similar fashion as in Section 3.2, now matrix Z as expressed in Expression 1, representing 

flows of intermediate goods across sectors in the world, needs to be modified to obtain the new matrix 

𝐙𝐌(𝜆) =

[
 
 
 
 
 
 
𝒁11 + 𝜆 · ∑ 𝒁𝑖1𝑚

𝑖≠1  (1 − 𝜆) · 𝒁12 … (1 − 𝜆) · 𝒁1𝑚

(1 − 𝜆) · 𝒁21 𝒁22 + 𝜆 · ∑ 𝒁𝑖2𝑚
𝑖≠2  … (1 − 𝜆) · 𝒁2𝑚

⋮ ⋮ ⋱ ⋮

(1 − 𝜆) · 𝒁𝑚1 (1 − 𝜆) · 𝒁𝑚2 … 𝒁𝑚𝑚 + 𝜆 · ∑ 𝒁𝑖𝑚𝑚
𝑖≠𝑚  ]

 
 
 
 
 
 

 , (20) 

where all economic sectors have reduced their consumption of foreign inputs by the real parameter 

𝜆 ∈ (0,1), and have compensated this decrease by increasing their consumption of domestic inputs. 

Once again, this procedure could account for different levels of trade reduction for each country if a 

specific 𝜆𝑟 was used for each. In this study, however, only a proportional reduction and common for 

all countries is considered. 

Nevertheless, it is important to notice that this last procedure, as explained so far, needs from a slight 

modification in order to guaranty accuracy and natural feasibility. In particular, such process of all 

sectors in the world shifting their demand for foreign inputs to the same amounts of domestic inputs 

would assume that all countries and regions in the world have enough natural resources to satisfy all 

demand of their industries. Of course, such situation might not be possible, as natural resources are 

limited by the endowments of each region. Consequently, the previous shift in the inputs’ origin 

should not by applied to all kind of industries, but only to manufacturing and service industries, 
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excluding therefore industries from the primary sector which directly extract the natural resources. In 

the end, to apply this change, 𝐙𝐌 should be slightly modified. In particular, rows corresponding to 

primary sectors would remain the same as in Z, and rows corresponding to manufacturing or service 

sectors would remain as those obtained by the Expression 20. 

Once the change in the matrix volumes of imports and exports of intermediate goods has been applied, 

it is finally possible to compute the new matrix of input coefficients or technology matrix 𝐀𝐌 through 

the expression  

𝐀𝐌 = 𝐙𝐌(𝜆) · 𝐱̂−𝟏   (21) 

where 𝐱̂−𝟏 represents once again the inverse of the diagonal matrix of the same vector of total output 

𝐱. This new technology matrix 𝐀𝐌, in the end, is the one capturing the change in the inter-industry 

trade network in terms of units of production. 

Finally, with the new technology matrix 𝐀𝐌 and with the old and observable demand f, it is possible to 

compute the new levels of production and the new level of emissions in such economy through the 

application of Equation 12 and Equation 15 in the form  

𝐱𝟐(𝜆) = [𝐈 − 𝐀𝐌(𝜆)]−1 · 𝐟 (22) 

𝐠𝟐(𝜆) = 𝐄 · [𝐈 − 𝐀𝐌(𝜆)]−1 · 𝐟 ,  (23) 

being 𝐱𝟐 and 𝐠𝟐 the new levels of output and levels of emissions respectively of Scenario 2.  

 

3.4. Changes in Overall International Trade 

The third scenario of the procedure aims to estimate the levels of production and emissions if 

reductions where applied to both international trade of intermediate goods and international trade of 

final goods. With that purpose, this third steps relies on the previous estimations of 𝐟𝐌, the demand in 

which consumers (partially or totally) move towards domestic final goods, and 𝐀𝐌 , in which 

industries (partially or totally) shift towards domestic intermediate inputs. In particular, the effect of 

both changes combined can be computed again by the application of Equation 12 and Equation 15 in 

the form 

𝐱𝟑(𝜆) = [𝐈 − 𝐀𝐌(𝜆)]−1 · 𝐟𝐌(𝜆) (24) 

𝐠𝟑(𝜆) = 𝐄 · [𝐈 − 𝐀𝐌(𝜆)]−1 · 𝐟𝐌(𝜆) ,  (25) 
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being 𝐱𝟑 and 𝐠𝟑 respectively the new levels of output and levels of emissions in Scenario 3, or the 

case of reductions in both types of international trade. 

In addition, it is worth mentioning that the simultaneous reductions in trade for final goods (in Section 

3.2) and trade for intermediate goods (in Section 3.3) have been applied in this section using a 

common parameter 𝜆 to refer to general reductions in international trade. Consequently, the case of 

𝜆 = 0 would correspond to the actual situation of final and intermediate demand; a reduction of 𝜆 =

0.5 would correspond to a 50% decrease of all type of imported goods and the corresponding increase 

of domestic production for domestic markets; and finally 𝜆 = 1 would correspond to a total reduction 

in international trade or a situation of autarky (at least for manufactured goods and services, as 

mentioned in Section 3.3). 

 

3.5. Estimation of the Environmental Impact of Trade 

In summary, Figure 2 shows the different measures for production x and emissions g in all the four 

cases considered in the procedure, whether changes in international trade have been applied only for 

final goods (Scenario 1), only for intermediate goods (Scenario 2) or for both types of goods 

(Scenario 3). 

 

Figure 2. Industry output and emissions coming from changes in international trade 

 

Source: own elaboration 

 

These measures, moreover, can be used to estimate the impact of international trade on each type of 

emissions just by using the appropriate counterfactual. As shown in Figure 3, the environmental 

impact of trade of final goods would correspond to the difference between the actual levels of 

Observable Reduced

Scenario 0 Scenario 1

Scenario 2 Scenario 3

Demand for 

intermediate 

goods

Demand for final goods

Observable

Reduced

𝐠𝟎 = 𝐄 · 𝐈 − 𝐀 −1 · 𝐟 𝐠𝟏(𝜆) = 𝐄 · 𝐈− 𝐀 −1 · 𝐟𝐌(𝜆)

𝐠𝟐(𝜆) = 𝐄 · 𝐈 − 𝐀𝐌(𝜆) −1 · 𝐟 𝐠𝟑(𝜆) = 𝐄 ·  − 𝐀𝐌(𝜆) −1 · 𝐟𝐌(𝜆) 

𝐱𝟎 = 𝐈− 𝐀 −1 · 𝐟 𝐱𝟏(𝜆) = 𝐈− 𝐀 −1 · 𝐟𝐌(𝜆)

𝐱𝟐(𝜆) = 𝐈 − 𝐀𝐌(𝜆) −1 · 𝐟 𝐱𝟑(𝜆) = 𝐈 − 𝐀𝐌(𝜆) −1 · 𝐟𝐌(𝜆)
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emissions 𝐠𝟎 and the counterfactual of a total reduction in international trade of final goods 𝐠𝟏(𝜆 =

1). Secondly, the impact of trade of intermediate goods would correspond to the difference between 

𝐠𝟎 and the counterfactual of a total reduction in international trade for intermediate goods 𝐠𝟐(𝜆 = 1). 

Finally, the last impact measure would correspond to the overall impact of international trade in 

emissions, and would be computed by the difference of 𝐠𝟎 and the emissions in the case of total 

autarky in the world 𝐠𝟑(𝜆 = 1). 

 

Figure 3. Measures of the impact of trade on emissions 

 

Source: own elaboration 

 

In the end, from the application of this methodology it is possible both to evaluate the impact that 

small changes in trade would have on emissions, and to evaluate the impact that current levels of 

international trade have on the environment. The results for both types of analysis, after the 

presentation of the dataset used in this study, are presented in detail in following sections. 

 

  

Trade of final goods
Trade of intermediate 

goods
Overall trade

Scenario 1 Scenario 2 Scenario 3

Impact of international trade on emissions

𝐠𝟎 − 𝐠𝟏(𝜆 = 1) 𝐠𝟎 − 𝐠𝟐(𝜆 = 1) 𝐠𝟎 − 𝐠𝟑(𝜆 = 1)
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4. Dataset 

In order to address the question about the interrelation between international trade and the emission of 

polluting gases, this study makes use of the data available in the World Input-Output Database 

(WIOD). The WIOD, officially launched for the first time in April 2012 (Dietzenbacher et al. 2013), 

mainly provides annual time-series of the so-called World Input-Output Tables (WIOTs), a group of 

Multiregional Input-Output Tables (MRIO) encompassing monetary flows across all the regions in the 

world and the different economic sectors or industries in each. In addition, the WIOD includes other 

information gathered in the ‘Socioeconomic accounts’ and the ‘Environmental accounts’, which 

include sector-specific information regarding socioeconomic variables like labor participation and 

productivity, or other environmental variables like consumption of resources and generation of waste 

material. Moreover, the information provided by the WIOD encompasses 41 countries or regions in 

the entire world, considering 35 sectors in each region, and it encompasses yearly data from 1995 to 

the year 2011. These considerations about the dataset and some important implications that directly 

relate to this study are discussed in detail in this section. 

 

4.1. Economic Information in the WIOD 

 

Figure 4. Structure of the World Input-Output Table (WIOT) 

 

Source: own elaboration 

 

The most relevant economic information available in the WIOD corresponds to the World Input-

Output Tables. As Figure 4 shows, a WIOT provides information of all transactions in the global 

economy. Firstly, the WIOT captures all economic (and monetary) flows across sectors within a 
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certain country, and cross-border sectorial trade (matrix Z in the WIOT). Second, the WIOT includes 

the information of final consumption for each industry and for all regions in the world, differentiating 

consumption of domestic final goods (produced by a domestic sector) and consumption of foreign and 

imported final products (matrix F in the WIOT). Third, the WIOT includes industry-based information 

on value added and other data referring to tax-subsidy adjustments on sectors and international 

transport margins (matrix V’ in the WIOT). Finally, the WIOT includes the information of the 

production of each sector (vector x in the WIOT) and, therefore, the total production of each economy 

and the production of the entire world. All economic flows in the WIOTs are expressed in monetary 

terms, at current and constant prices, and in million US dollars. 

First, if the information available in the WIOT is analyzed by columns, it is possible to observe the 

‘production process’ of each economic sector (Timmer et al. 2015). In this way, it is possible to 

observe (in matrix Z) the different inputs that a certain industry needs from other industries in the 

same or foreign regions, as well as the value added generated (matrix V’) in order to produce its total 

and gross output (vector x). 

On the other hand, if the information in the WIOT is analyzed by the rows of the table, the resulting 

information would correspond to the ‘distribution of the output’ produced by each industry (Timmer 

et al. 2015). In this way, the volume of production of a certain industry could be used as an 

intermediate input by a domestic or a foreign region (matrix Z), or it could be employed in domestic 

or foreign agents demanding such production as a final good for consumption (vector F). In the end, 

all the economic value distributed by a certain industry across other industries or economic agents 

(matrix x’) needs to equal the production generated by such industry (vector x). 

 

Table 1. Countries in the WIOD 

 

Source: WIOD 

 

The information provided in the WIOTs of the WIOD is very broad. First, as previously mentioned, 

the WIOD encompasses information for the entire world, and more precisely, for 40 countries and an 

EU members NAFTA Asia BRIIAT

Austria Germany Netherlands USA China Brazil

Belgium Greece Poland Canada Japan Russia

Bulgaria Hungary Portugal Mexico South Korea India

Cyprus Ireland Romania Taiwan Indonesia

Czech Republic Italy Slovakia Australia

Denmark Latvia Slovenia Turkey

Estonia Lithuania Spain

Finland Luxembourg Sweden

France Malta United Kingdom

Table 1: Countries in the WIOD
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extra region named ‘Rest of the World’ encompassing the information for the remaining countries. As 

shown in Table 1, these 40 countries include 27 European Union (EU) members (all EU members by 

January 2007, before the entrance of Croatia); the three countries belonging to the North American 

Free Trade Agreement (NAFTA); a group of Asian countries formed by China, Japan, South Korea 

and Taiwan; and the six countries of the BRIIAT group. All these 40 countries together represent a 

largest part of the global economy covering more than 85% of world gross domestic product (GDP) 

according to 2008 data at current exchange rates (Timmer et al. 2015). Therefore, the rest of 

economies left to the Rest of the World region represent a relatively small share of the global 

economy. 

 

Table 2. Economic sectors in the WIOD 

 

Source: WIOD 

ISIC Code WIOD Code Name of the industry
AtB c1 Agriculture, Hunting, Forestry and Fishing

C c2 Mining and Quarrying

D Manufacturing*

15t16 c3 Food, Beverages and Tobacco

17t18 c4 Textiles and Textile Products

19 c5 Leather, Leather and Footw ear

20 c6 Wood and Products of Wood and Cork

21t22 c7 Pulp, Paper, Paper , Printing and Publishing

23 c8 Coke, Refined Petroleum and Nuclear Fuel

24 c9 Chemicals and Chemical Products

25 c10 Rubber and Plastics

26 c11 Other Non-Metallic Mineral

27t28 c12 Basic Metals and Fabricated Metal

29 c13 Machinery, Nec

30t33 c14 Electrical and Optical Equipment

34t35 c15 Transport Equipment

36t37 c16 Manufacturing, Nec; Recycling

E c17 Electricity, Gas and Water Supply

F c18 Construction

G Wholesale and retail trade; repair of motor vehicles, motorcycles and personal and household goods*

50 c19 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel

51 c20 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles

52 c21 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods

H c22 Hotels and Restaurants

I Transport, storage and communications*

60 c23 Inland Transport

61 c24 Water Transport

62 c25 Air Transport

63 c26 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies

64 c27 Post and Telecommunications

J c28 Financial Intermediation

K Real estate, renting and business activities*

70 c29 Real Estate Activities

71t74 c30 Renting of M&Eq and Other Business Activities

L c31 Public Admin and Defence; Compulsory Social Security

M c32 Education

N c33 Health and Social Work

O c34 Other Community, Social and Personal Services

P c35 Private Households w ith Employed Persons

Table 2: Economic Sectors in the WIOD

* Sectors in the ISIC rev.3 disaggregated in the WIOD database
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Secondly, the WIOD and the WIOT tables provide information for 35 productive sectors or industries 

in each country or region, based on the 99-sector classification of the International Standard Industrial 

Classification of All Economic Activities (ISIC rev.3) of the United Nations. Sectors encompassed by 

the WIOD, enlisted in Table 2, cover primary sectors like Agriculture, Hunting, Forestry and Fishing, 

or Mining and Quarrying; manufacturing sectors like Food, Beverages and Tobacco; and service 

sectors like Transportation, Hotels and Restaurants, or Education. 

 

Table 3. Final consumption and investment in the WIOD 

 

Source: WIOD 

 

In addition, goods produced by industries can serve as intermediate goods for other domestic or 

foreign industries, but also as final goods if they are purchased or consumed by other economic agents. 

Based on this distinction, the WIOTs distinguish five types of final recipients of the goods produced 

by industries (matrix F in Figure 1). As shown in Table 3, there are three final consumers, 

households, non-profit organizations serving households and government; and two forms or channels 

of investment by firms, gross fixed capital formation and changes in inventories and valuables. 

Moreover, the WIOD is enriched by three other data packages. The first corresponds to the National 

Input-Output Tables (NIOTs) for all the 40 countries, which incorporate the same information as the 

WIOTs but only considering one particular country/region and taking into account all national imports 

and exports each one in one aggregated matrix. Such synthetized Input-Output tables, being very 

useful for the study of particular economies in a certain or several years, are in fact unsuitable for the 

study of trade across nations and its economic and environmental implications. 

 

4.2. Socioeconomic Information in the WIOD 

The second packages of data that the WIOD includes and that deserves some attention are the ‘Socio-

Economic Accounts’, which include, for all countries and in particular for each industry, data on 

employment, capital stocks, gross output and value added. The information on labor is very broad, 

distinguishing the number of workers involved in production, including employees, self-employed and 

WIOD Code Name of the industry
c37 Final consumption expenditure by households

c38 Final consumption expenditure by non-profit organisations serving households (NPISH)

c39 Final consumption expenditure by government

c41 Gross fixed capital formation

c42 Changes in inventories and valuables

Table 3: Final Consumption and Investment in the WIOD
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family workers; the labor skill type according to the International Standard Classification of Education 

(ISCED), including low-skilled workers, medium skilled and high-skilled; and the amount of time 

worked by each group. In addition, the Socio-Economic Accounts provide information on the capital 

income coming from each industry, which broadly represents the returns on physical capital, land, 

intangible capital and financial capital (Timmer et al. 2015). All this information, being very relevant 

for the analysis of the social impact of trade patterns, is still far from the strongest interest of this 

article, as it tries to center its attention only on the environmental implications of international trade. 

 

4.3. Environmental Information in the WIOD 

For the purpose of this study, the last package of information that deserves a special attention is the so-

called ‘Environmental Accounts’ included in the WIOD. These datasets, as in the previous Socio-

Economic Accounts, gather industry-based and country-specific information for five environmental 

dimensions: use of energy, use of mineral and fossil resources, land use, water use, and emission of 

main greenhouse gases and other main air pollutants (Genty et al. 2012). Such environmental 

measures are expressed in the WIOD in physical units, and not in monetary units as the WIOTs or the 

NIOTs, and all of them are accounted following the framework of National Accounting Matrices 

Including Environmental Accounts (NAMEA). As summarized in Table 4, all these five 

environmental dimensions gather information for a broad range of types of resources or waste 

products (Genty et al. 2012). 

 

Table 4. Environmental information in the WIOD 

 

Source: WIOD 

 

Energy Use * Land Use Materials Use ** Water Use Emissions to Air
Hard coal and derivatives Biogasoline  including hydrated ethanol Arable land Animal biomass Blue Water CO2 - Carbon dioxide ***

Lignite and derivatives Biodiesel Permanent crops Feed biomass Green Water CH4 - Methane

Coke Biogas Permanent meadow s Food biomass Grey Water N2O - Nitrous oxide

Crude oil, NGL and feedstocks Other combustible renew ables Productive forest area Forestry biomass NOx - Nitrogen oxides

Diesel oil for road transport Electricity Other biomass SOx - Sulphur oxides

Motor gasoline Heat Coal CO - Carbon monoxide

Jet fuel (kerosene and gasoline) Nuclear Natural gas NMVOC - Non-methane volatile

Light Fuel oil Hydroelectric Crude oil      organic compounds

Heavy fuel oil Geothermal Other fossil fuels NH3 - Ammonia

Naphtha Solar Non-metallic minerals

Other petroleum products Wind pow er Other non-metallic minerals

Natural gas Other sources Metals

Derived gas Distribution losses

Industrial and municipal w aste

*** The WIOD also provides disaggregated data about the CO2 emissions of each industry according to the type of energy used for its processes. 

* The WIOD distinguishes both the gross energy use , directly related to expenditures for energy inputs, and emission relevant energy use , the gross energy 

use excluding the non-energy use of energy commodities and the input of energy commodities for transformation.

** The WIOD distiguished both materials used , those which enters the economic system for further processing or direct consumption, and materials unused , 

those that do not enter the economic system but are left unusable. 

Table 4: Environmental Information in the WIOD
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In particular, the information from the WIOD’s Environmental Accounts that is used intensively in 

this study is the last one, referring to the emission of polluting gases. As Table 4 already shows, the 

WIOD gathers information for each country and sector (including both industries and final consumers 

like households or governments) of the emission of eight types of gases. The first three gases, the 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), are considered greenhouse gases and 

the main originators of climate change. Other greenhouse gases like SF6, CFCs and HFCs are not 

considered in the WIOD, although the impact these gases have on global warming is mainly small 

(Genty et al. 2012). On the other hand, the nitrogen oxides (NOx), sulphur oxides (SOx), carbon 

monoxide (CO), the non-methane volatile organic compounds (NMVOC) and ammonia (NH3) are 

often referred as ‘local gases’, as they to do not have such global impact as the greenhouse gases but 

do have negative effects at a more local level. These negative effects are very diverse, but mainly two 

are considered when analyzing the emission of these gases (Genty et al. 2012): ‘acidification’, the 

decrease in the pH of the water in oceans, in freshwater or in the soils with harmful results for living 

beings; and ‘tropospheric ozone formation’, which may foster the formation of toxic oxides. As 

provided in Genty et al. (2012), now Table 5 shows which gases contribute to each of these three 

forms of environmental negative impact. 

 

Table 5. Air pollutants and environmental negative impact 

 

Source: WIOD 

 

Finally, it is important to remark that, although the WIOD encompasses yearly economic information 

for all years between 1995 and 2011, the information about gas emissions only exists for all years 

between 1995 and 2009. 

 

 

 

Air pollutant Global warming Acidification Ozone formation
CO2 X

CH4 X X

N2O X

NOx X X

SOx X

CO X

NMVOC X

NH3 X

Table 5: Air pollutants and environmental negative impact
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4.4. Aggregate Measures for Gas Emissions 

As shown in Table 4, the Environmental Accounts of the WIOD provide information for eight 

different polluting gases, and all of them have been used to construct the EE-MRIO table used in this 

study. Consequently, the resulting information from the methodology described in Section 3.5 refers 

to 8 measures of emissions each, and to 32 measures in total considering the four existing scenarios. 

Then, to synthetize this information, three aggregate measures have been used, each related to a 

certain form of negative environmental impact. In this way, the emissions for the different types of 

gases are considered not only in absolute terms but also in relation to their contribution to a certain 

environmental issue, what also allows for the summation of emissions of very different types of gases. 

More precisely, as shown in Table 5, the three aggregate measures correspond to the issues of global 

warming (capturing the information of CO2, CH4 and N2O), acidification (formed by NOx, SOx and 

NH3) and tropospheric ozone formation (driven by CH4, NOx, CO, and NMVOC). 

First, being global emissions of CO2 the main driver of the greenhouse effect and, therefore, global 

warming, the aggregate measure for this environmental problem takes CO2 as a benchmark and it 

makes use of the so-called ‘CO2 equivalent units’. The other gases involved in global warming, 

therefore, are evaluated in terms of their negative contribution to this environmental issue in relation to 

that of CO2. This is also known as the Global Warming Potential (GWP) of a certain gas. In sum, the 

formula to compute the CO2 equivalent emissions for the combination of the three gases greenhouse 

considered in this study is 

ECO2 Eq. = ECO2 + 25 · ECH4 + 298 · ENO2 , (26) 

where 𝑬𝑖 refers to the level of emissions of gas i and each coefficient refers to the global warming 

potential of each type of gas, as considered in Environmental Protection Agency (2016). 

Second, the aggregate measure for the phenomenon of acid rain, or in general, the environmental issue 

of acidification, takes the gas of SO2 as a benchmark and it is expressed in ‘SO2 equivalent units’. In 

the same way as before, the different gases contributing to this phenomenon are evaluated in terms of 

their Acidification Potential (AP). In particular, taking the coefficients from Heijungs et al. (1992), 

the formula to compute the global emissions of equivalent SO2 is 

ESO2 Eq. = ESOx + 0.7 · ENOx + 1.88 · ENH3 . (27) 

Finally, the third aggregate measure corresponds to the environmental issue of tropospheric ozone 

formation, or the formation of atmospheric oxidants. In the case of this negative environmental 

phenomenon, the different types of gases are evaluated in terms of their Photochemical Ozone 

Creation potential (POCP), and the gas of reference is ethene (C2H4). The subsequent formula to 

evaluate this overall impact, taking the coefficients from Heijungs et al. (1992), is 
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EC2H4 Eq. = 0.007 · ECH4 + 0.04 · ECO + 0.416 · ENMVOC , (28) 

where the Photochemical Ozone Creation potential of NOx is considered to be sufficiently low not be 

considered in the aggregate measure. 
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5. Results  

The developed methodology has been applied to the economic and environmental information of the 

year 2008, as no more recent and accurate data was available in the WIOD. According to the main 

objective of this study, this section summarizes the results obtained for each of the three scenarios 

described in the procedure, giving not only information for the levels of emissions but also some 

insights about the economic implications of reductions in international trade. In addition, for each 

scenario, five degrees of reduction in trade have been considered: no reduction (corresponding to 𝜆 =

0), reduction of the 25% (𝜆 = 0.25), reduction of the 50% (𝜆 = 0.5), reduction 75% (𝜆 = 0.75), and 

no international trade (𝜆 = 1) for each specific good.  

 

5.1. International Trade of Final Goods   

The first scenario, or Scenario 1, corresponds to the reduction of international trade for final goods, 

this is, those goods demanded by domestic economic agents to foreign productive sectors as final 

products. Consequently, this first scenario is that in which changes in trade come only from the 

consumer’s decision to substitute foreign products by the same amount of domestic products, but not 

altering the amount nor the variety of their consumption basket. 

 

Table 6. Changes coming from reductions in trade of final goods 

 

Source: own elaboration 

 

Units 0% 25% 50% 75% 100%
% change of 

total reduction

Total value added billions of US$ 58,372 58,373 58,374 58,375 58,376 0.0%

Total production billions of US$ 122,789 122,618 122,446 122,274 122,102 -0.6%

Emissions of CO2 gigatonnes (Tg) 25,598 25,563 25,528 25,492 25,457 -0.5%

Emissions of CH4 kilotonnes (Gg) 284,017 282,337 280,657 278,977 277,304 -2.4%

Emissions of N2O kilotonnes (Gg) 11,096 11,026 10,956 10,885 10,815 -2.5%

Emissions of Eq. CO2 gigatonnes (Tg) 36,005 35,907 35,809 35,711 35,613 -1.1%

Emissions of NOX kilotonnes (Gg) 102,250 102,011 101,773 101,534 101,296 -0.9%

Emissions of SOX kilotonnes (Gg) 111,011 110,102 109,193 108,283 107,377 -3.3%

Emissions of CO kilotonnes (Gg) 414,682 413,598 412,514 411,430 410,351 -1.0%

Emissions of NMVOC kilotonnes (Gg) 114,857 114,228 113,599 112,971 112,345 -2.2%

Emissions of NH3 kilotonnes (Gg) 30,938 30,706 30,475 30,243 30,013 -3.0%

Emissions of Eq. SO2 kilotonnes (Gg) 240,750 239,238 237,726 236,214 234,709 -2.5%

Emissions of Eq. C2H4 kilotonnes (Gg) 66,356 66,039 65,722 65,406 65,090 -1.9%

Table 6: Valued added, production and global emissions coming from reductions in trade of final goods
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In particular, as shown in Table 6, this reduction in international trade for final goods seems first not 

to have any overall effect on the value added generated in the world. Without paying attention to 

changes in its cross-country distribution, the global value added remains constant at 58,372 billion 

US$. Production, on the other hand, is affected by this reduction in trade for final goods, as it goes 

from 122,789 to 122,102 billion US$, in a 0.6% decrease, when a total trade reduction is applied.  

With regard to emissions of pollutants, the total reduction in trade of final goods has a clear negative 

effect on the volume of emissions, and, therefore, a resulting positive effect in the environment. For 

instance, CO2 emissions are reduced by a moderate 0.5%, what corresponds to a reduction of 141 

gigatonnes of CO2. The reductions in emissions of the other GHG are higher, being reduced by 2.4% 

in the case of CH4 and 2.5% in the case of N2O. In the end, overall GHG gases are reduced by 1.1% 

percent, what means an avoidance of 392 gigatonnes of equivalent CO2. Regarding emission of local 

gases, reductions go from a 0.9% in the case of NOx to 3.3% in the case of SOx. In sum, reductions in 

emission of local gases lead to the avoidance of 6,041 kilotonnes of equivalent SO2 and 1,266 

kilotonnes of equivalent C2H4.  

This general decrease in both global levels of production and levels of emissions may show two 

simultaneous facts. Firstly, it is important to note that, as consumption levels and consumption 

distribution have not been changed, the decrease in global production cannot have been driven by any 

of these two factors. Consequently, this decrease in production, holding constant consumption 

patterns, may have induced an increase in the overall efficiency of productive sectors in the world. In 

particular, as this first scenario only has taken into account shifts in demand from foreign industries to 

local industries, this increase in the overall efficiency could have been driven by an increase in the 

demand to high-efficient sectors and/or a decrease in the demand to low-efficient sectors. Moreover, 

this reduction in levels of global production or this increase in overall efficiency explains much about 

the general reduction in emissions of GHG and local gases. However, reductions in emissions of 

equivalent CO2 (-1.1%), equivalent SO2 (-2.5%) and equivalent C2H4 (-1.9%) clearly overtake that of 

production (-0.6%). This fact could induce to think that not only an increased efficiency has fostered 

lower emission, but also a better distribution in production towards less polluting industries. In other 

words, this shift in emissions could have been triggered by demand shifting from low-eco-efficient 

industries to high-eco-efficient industries. From these results, moreover, it could be derived that the 

actual level of trade for final goods might be one driver of economic and environmental inefficiency, 

as reductions in this type of trade could lead to lower production and lower emissions without any 

changes in consumption patterns. 
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5.2. International Trade of Intermediate Goods   

The second scenario, or Scenario 2, corresponds to the reduction in trade for intermediate goods, this 

is, those goods that domestic sectors demand to foreign sectors to be used as intermediate inputs. In 

this scenario, therefore, final consumers do not change their consumption patterns, and this shift in 

international trade is only driven by sectors’ decision to shift from foreign inputs to the same amounts 

of domestic inputs. Consequently, the inter-sectorial network is altered in this situation, although final 

consumers do not realized about this shift because they do receive the same amounts of domestic and 

foreign products. The only difference between these products and the previous ones, nevertheless, is 

that these are more intensively produced within a domestic market. 

 

Table 7. Changes coming from reductions in trade of intermediate goods 

 

Source: own elaboration 

 

As shown in Table 7, the second scenario in which inter-sectorial and international trade is reduced 

leads to an overall increase of the global value added generated in the world but to a small reduction in 

the global production of goods. In particular, value added is softly increased by 40 billion US$, what 

means a 0.1% increase, when a total trade reduction is applied. On the other hand, total production is 

reduced by 190 billion US$, what means a reduction of the 0.2%.  

Results for emissions, as for production and value added, are diverse. For instance, emissions of CO2 

increase by 2.9% and 752 gigatonnes, but emissions of the other GHG gases of CH4 and N2O are 

reduced more moderately by 1.5% and 0.1% respectively. Being CO2 the main component of GHG 

emissions, the overall generation of equivalent CO2 raises in the end by 1.8% and by 640 gigatonnes 

of equivalent units. Regarding emission of local gases, results are also diverse, as some emissions of 

pollutants like SOx and NH3 are reduced, and those of others like NOS and NMVOC are increased. In 

Units 0% 25% 50% 75% 100%
% change of 

total reduction

Total value added billions of US$ 58,372 58,378 58,386 58,397 58,412 0.1%

Total production billions of US$ 122,789 122,757 122,718 122,668 122,599 -0.2%

Emissions of CO2 gigatonnes (Tg) 25,598 25,733 25,895 26,096 26,350 2.9%

Emissions of CH4 kilotonnes (Gg) 284,017 282,869 281,760 280,695 279,681 -1.5%

Emissions of N2O kilotonnes (Gg) 11,096 11,087 11,081 11,079 11,085 -0.1%

Emissions of Eq. CO2 gigatonnes (Tg) 36,005 36,108 36,241 36,415 36,645 1.8%

Emissions of NOX kilotonnes (Gg) 102,250 102,710 103,287 104,027 105,006 2.7%

Emissions of SOX kilotonnes (Gg) 111,011 110,940 110,870 110,805 110,752 -0.2%

Emissions of CO kilotonnes (Gg) 414,682 419,338 426,192 436,254 451,213 8.8%

Emissions of NMVOC kilotonnes (Gg) 114,857 115,479 116,562 118,326 121,143 5.5%

Emissions of NH3 kilotonnes (Gg) 30,938 30,911 30,885 30,863 30,846 -0.3%

Emissions of Eq. SO2 kilotonnes (Gg) 240,750 240,949 241,235 241,646 242,247 0.6%

Emissions of Eq. C2H4 kilotonnes (Gg) 66,356 66,793 67,510 68,639 70,402 6.1%

Table 7: Valued added, production and global emissions coming from reductions in trade of intermediate goods
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sum, changes in emissions of local gases lead to an increase of 1,497 kilotonnes of equivalent SO2, 

what corresponds to an increase of the 0.6%, and to a dramatic increase of 4,046 kilotonnes of 

equivalent C2H4, corresponding to an increase of the 6.1% in the gases affecting ozone formation.  

This second situation in which industries substitute domestic inputs for foreign ones leads a broader 

range of interpretations. First, in line with the discussion about the previous scenario, this reduction in 

total production, and the fact that final consumption has not changed during this procedure, can induce 

to think about an increase in the overall efficiency in productive sectors of the world. In a similar way 

as before, it seems that probably now are industries the ones that have shifted, in general terms, from 

(economically) low-efficient to high-efficient providers. Moreover, this shift seems to have happened 

also from industries with low generation of value added towards industries with a higher generation of 

value added per unit of output. On the other hand, it seems that this change in inter-sectorial trade has 

happened from high-eco-efficient industries to low-eco-efficient industries, as emissions of these 

aggregate measures have increased considerably (by 1.8%, 0.6% and 6.1% respectively) despite the 

general decrease in the global production. In contrast with Scenario 1, these results would induce to 

think that the exiting trade of intermediate goods could be imputed to be one driver of low economic 

efficiency but one driver of high environmental efficiency, as reductions in this type of trade would 

lead to lower production and higher emissions. 

 

5.3. Overall International Trade  

The last scenario to be discussed is Scenario 3, the one regarding reductions in overall international 

trade. The reductions in trade considered in this scenario relate to both the decisions of consumers, not 

changing their consumption basket but the origin of those products, and the decisions of industries, 

moving from foreign to domestic intermediate inputs. In other words, this third scenario considers the 

proportional reduction in imports from other countries, which are compensated by the equivalent 

domestic production. 

Results for this last scenario are displayed in Table 8, and they give no more than the combined 

information of the previous two considered situations. In particular, a total reduction in international 

trade (autarky) finally leads to an increase of 0.1% in value added and a big decrease in total 

production of 0.9%, which corresponds to a decrease of 56 billion US$ and 1,055 billion US$ 

respectively. 
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Table 8. Changes coming from reductions in overall international trade 

 

Source: own elaboration 

 

Moreover, in line with the discussion in the previous scenarios, results shown raise some important 

economic and environmental considerations. Firstly, the decrease in global production due to the total 

elimination of international trade shows that actual levels of international trade have in fact a positive 

effect on production, although they contribute negatively to the overall efficiency of productive sectors 

(as they produce more to finally provide the same final goods). In particular, the economic impact of 

international trade on the global production would be 1,055 billion US$, although the impact on the 

generation of value added would be negative and of 52 billion US$. Therefore, by the increase of 

international trade, production would be shifted, in average, towards a low-efficient industry network 

and industries with a lower generation of value added per unit of production. 

Regarding global emissions of pollutants, the combined effect of reductions in international trade for 

both types of goods finally leads to an increase of the 0.8% in the global emission of GHG gases, 

corresponding to 274 extra gigatonnes of equivalent CO2. In particular, being emission of CH4 and 

NH2 reduced by 4.1% and 2.8%, the increase of 657 gigatonnes of CO2, a 2.6% more, leads to that 

increase in the overall GHG emissions. With regard to local gases, however, results are diverse once 

again. For instance, emission of CO increase sharply by 9.8%, while other emissions of gases like SOx 

and NH3 decrease by 3.9% and 3.5% respectively. In sum, the aggregate measure for the phenomenon 

of acidification, finally decreases by 2.0%, thanks to a reduction of 4,829 kilotonnes of equivalent 

SO2. On the other hand, the aggregate measure for ozone formation, increases considerably by 5.6%, 

driven by an increase of 3,706 kilotonnes of equivalent C2H4. 

 

 

Units 0% 25% 50% 75% 100%
% change of 

total reduction

Total value added billions of US$ 58,372 58,379 58,390 58,405 58,428 0.1%

Total production billions of US$ 122,789 122,577 122,338 122,062 121,734 -0.9%

Emissions of CO2 gigatonnes (Tg) 25,598 25,698 25,829 26,007 26,255 2.6%

Emissions of CH4 kilotonnes (Gg) 284,017 281,157 278,260 275,323 272,350 -4.1%

Emissions of N2O kilotonnes (Gg) 11,096 11,016 10,936 10,859 10,788 -2.8%

Emissions of Eq. CO2 gigatonnes (Tg) 36,005 36,010 36,045 36,126 36,279 0.8%

Emissions of NOX kilotonnes (Gg) 102,250 102,483 102,865 103,473 104,435 2.1%

Emissions of SOX kilotonnes (Gg) 111,011 110,005 108,948 107,842 106,701 -3.9%

Emissions of CO kilotonnes (Gg) 414,682 418,558 425,439 436,856 455,474 9.8%

Emissions of NMVOC kilotonnes (Gg) 114,857 114,893 115,510 117,033 120,040 4.5%

Emissions of NH3 kilotonnes (Gg) 30,938 30,675 30,405 30,128 29,849 -3.5%

Emissions of Eq. SO2 kilotonnes (Gg) 240,750 239,412 238,115 236,915 235,921 -2.0%

Emissions of Eq. C2H4 kilotonnes (Gg) 66,356 66,506 67,017 68,087 70,062 5.6%

Table 8: Valued added, production and global emissions coming from reductions in overall international trade
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5.4. Impact Evaluation 

Finally, considered the case of total autarky and the subsequent volume of emissions generated, it is 

possible to estimate the impact that current trade activity has on the emission of pollutants. In 

particular, this impact is positive for some aggregate measures and negative for others. More 

previously, the environmental impact of overall international trade is of -274 gigatonnes of equivalent 

CO2, 4,829 kilotonnes of equivalent SO2, and -3,706 kilotonnes of equivalent C2H4. This situation 

leads to induce that current international trade has in fact a positive effect on the environment with 

regard to the issues of global warming and tropospheric ozone formation, as more eco-efficient 

industries in these emissions take over a higher share of the global production. However, it can also be 

induced the international trade has a negative impact on the environmental problem of acidification, as 

the current scheme in international trade shifts production, in general terms, towards regions les eco-

efficient with regard to this environmental issue. 

 

Figure 5. Global emissions of equivalent CO2 (in gigatonnes, or Tg) 

 

Source: own elaboration 

 

Figure 6. Global emissions of equivalent SO2 (in kilotonnes, or Gg) 

 

Source: own elaboration 
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Figure 7. Global emissions of equivalent C2H4 (in kilotonnes, or Gg) 

 

Source: own elaboration 

 

As Figures 5 to 7 illustrate, the effect of trade for final goods and the effect of trade for intermediate 

goods is opposite for the three aggregate measures of global emission of equivalent CO2, equivalent 

SO2 and equivalent C2H4. In particular, in all three cases, the effect of trade of intermediate goods is 

negative on the levels of emissions and, therefore, positive for the environment. In other words, any 

increase in inter-sectorial trade leads to lower emissions of equivalent CO2, equivalent SO2 and 

equivalent C2H4, although such effect for the case of equivalent SO2 is lower. On the contrary, the 

effect of trade for final goods is positive in all the three aggregate measures of emissions, and, 

therefore, the effect on the environment is negative. Consequently, any increase in trade of final goods 

would generate higher emissions of equivalent CO2, equivalent SO2 and equivalent C2H4, leading to 

worse environmental situation. Nevertheless, from this two contrary effects, the effect of trade for 

intermediate goods is higher in the aggregate measure of equivalent CO2 and equivalent C2H4, but the 

effect of trade for final goods is stronger in the case of emissions of equivalent C2H4. In sum, the 

overall effect of international trade in GHG emissions is negative, as increases in international trade 

finally lead to lower CO2 equivalent emissions. In the same way, emissions of gases fostering ozone 

formation are also lowered by general increases in international trade. On the contrary, the effect of 

trade on C2H4 equivalent emissions affecting acidification is positive, as any increase in overall trade 

sharply increases SO2 equivalent emissions. 

 

5.5. Cross-Country Differences 

Finally, in order to enrich previous results, some insights about the cross-regional differences in the 

world may contribute to the understanding of this interrelation between international trade and global 
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emissions. In particular, the five regions that have been considered to assess these cross-country 

differences correspond to those of Table 1, named as EU members, NAFTA members (Canada, 

United States, and Mexico), ASIA members (China, Japan, South Korea, and Taiwan), BRIIAT 

members (Brazil, Russia, India, Indonesia, Australia, and Turkey), and the rest of the world (or RoW).  

 

Figure 8. Changes in production driven by reductions in overall trade 

 

Source: own elaboration 

 

First, Figure 8 illustrates the changes in the production of the five big areas considered driven by 

reductions in overall international trade. As it was discussed in Section 5.3, the global production in 

the world was reduced by 1,055 billion US$ due to a 100% reduction of overall international trade. 

However, this decrease was not driven homogeneously by all regions in the same proportion. 

Moreover, this overall decrease in total production was in fact the results of some regions increasing 

their production but some others reducing a lot more their own. In numerical terms, considering the 

case of a 100% reduction of overall international trade, production would have been reduced by 1,869 

billion US$ in the European Union (a 5.3% less), and reduced by 3,746 billion US$ in the case of 

ASIA (a 13.9% less). On the contrary, production would have increased by 1,200 billion US$ (3.9%) 
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in the case of NAFTA, by 491 billion US$ (1.7%) in the case of BRIIAT, and by 2,867 billion US$ 

(17.2%) in the Rest of the World. 

 

Figure 9. Changes in value added driven by reductions in overall trade 

 

Source: own elaboration 

 

Secondly, Figure 9 illustrates the different changes in value added in the different regions in the world 

coming from reductions in overall international trade. As discussed in Section 5.3, a total reduction in 

overall trade would lead to a situation in which 56 billion US$ more were generated to the global 

value added. In particular, this increase would be mainly driven by 448 billion US$ in the NAFTA 

(increasing by 2.7%), 107 billion US$ in the BRIIAT (1.7%) and 1,211 billion US$ in the Rest of the 

World (14.6%), and it would be partially mitigated by the decreases in the European Union and in 

ASIA, in amounts of -646 billion US$ (-3.9%) and -1,064 billion US$ (-10.1%) respectively.  
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Figure 10. Emissions of equivalent CO2 (in gigatonnes, or Tg) by regions 

 

Source: own elaboration 

 

Thirdly, Figure 10 shows the effect of trade reductions on equivalent CO2 emissions for each case of 

the five big areas of the world considered. In particular, the aggregated information for these five 

regions corresponds to that displayed in Figure 5 for the entire world. As was discussed in Section 

5.3, the effects of trade of intermediate goods and the effect of trade of final goods on global CO2 

equivalent emissions had an opposite. However, being the negative effect of trade of intermediate 

inputs on emissions a bit higher in absolute terms, the resulting effect of overall trade on emissions 

was in the end negative; meaning the any increase in overall trade would in fact reduce equivalent CO2 

emissions. Nevertheless, as illustrated in Figure 10, this aggregate result comes from the combination 

of very diverse results regarding each of the areas of the world. First, it is worth mentioning that the 

effect of reductions in overall trade on equivalent CO2 emissions has not a common sign for all 

regions. In particular, reducing overall international trade would lead to a reduction in the emissions 

generated by the areas of the European Union, ASIA and BRIIAT, in amounts of 151 (3.6%), 1,338 

(13.4%) and 87 gigatonnes of equivalent CO2 (1.3%) respectively. On the contrary, this reduction 
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would increase emissions in NAFTA and in the Rest of the World, by amounts of 329 (4.9%) and 

1,521 gigatonnes of equivalent CO2 (18.3%). Secondly, the effect of reductions in trade for 

intermediate goods on emissions would be negative for the areas of European Union (-3.5%), ASIA (-

3.7%) and BRIIAT (-3.6%) and positive for the areas of NAFTA (1.5%) and Rest of the World 

(15.7%); just the same sign of the effect of overall trade. Thirdly, however, the effect of international 

trade for final goods would have no correlation with the same effect for intermediate goods. More 

precisely, the effect of reductions in trade for final goods on emissions would be positive for all 

regions in the world (with an increase of 0.5% for the European Union, 2.9% for NAFTA, 1.6% for 

BRIIAT and 0.1% for the Rest of the World) except for ASIA (-7.2%). In sum, as discussed in Section 

5.1 and Section 5.2, the combination of these effects would lead to an overall reduction of 392 

gigatonnes of equivalent CO2 in the case of a total reduction in trade for final goods and an increase of 

640 gigatonnes of equivalent CO2 in the case of a total reduction in trade for intermediate goods. As 

mentioned in Section 5.3, the final effect of the total reduction in overall trade would increase by 274 

gigatonnes global emissions of equivalent CO2. 
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6. Further implications 

In sum, the results of this study show that actual levels of international trade do in fact avoid 274 

gigatonnes of equivalent CO2 and 3,706 kilotonnes of equivalent SO2, although they foster the 

emission of 4,829 kilotonnes extra of equivalent SO2. These results, moreover, have taken into account 

the effect of international inter-sectorial trade and industry-to-consumer international trade, and 

disaggregated information has been considered to give a wider perspective on the issue of trade and 

emissions. Nevertheless, it is important to highlight in this section some considerations about the 

disposable data and the applied methodology that can affect the validity and significance of the 

obtained results. All these considerations, which go beyond the scope of this study, could in fact 

constitute points of departure for future research, as the deepening in all of them could enrich much 

the understanding of the interrelation between trade and the environment. 

First, due to availability of information in the WIOD, it is important to notice that this study does not 

consider a complete Environmentally Extended and Multiregional Input-Output Table (EE-MRIO) 

with disaggregated information for all countries in the world. In particular, as explained in Section 4, 

of the approximately 197 independent and recognized countries in the world, the WIOD only 

considers 40 countries. In order to include information for the remaining countries, the WIOD 

considers an extra territory named Rest of the World (RoW) that consists in the aggregation of data for 

all sectors of all remaining countries. Although most part of the largest economies in the world are 

considered independently (accounting then for more than 85% of world gross domestic product), the 

database misses a segregated information for 157 countries. These counties that are not included in 

disaggregated form include, for instance, some important economies like Switzerland, Saudi Arabia, 

Argentina, and Nigeria, ranking in the list of the world’s largest economies of 2015 in positions 19, 

20, 21, and 24 respectively. Consequently, this issue presents an important limitation for the study and 

its objective of analyzing reductions in overall international trade. All these 157 countries are 

considered, therefore, as a block, and the effect of trade across these countries on emissions is not 

considered in the study. On the other hand, the methodological approach of this study could be 

replicated in the future for updated and more disaggregated world datasets. 

Secondly, it is important to note that this study is based on the use of monetary Input-Output Tables, 

this is, tables capturing only monetary flows across sectors and regions and not physical Input-Output 

Tables capturing physical flows of goods. This distinction is crucial and presents an important 

limitation to the study. More precisely, as it was discussed in Section 3, the methodology defines the 

shifts in international trade as the substitution of certain foreign goods, final or intermediate, for the 

equivalent amount of domestically produced goods. However, this substitution is only carried out in 
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monetary terms and not in physical terms, and, consequently, the procedure does not take into account 

price differences across countries. Obviously, price differences could alter previous results 

considerably. For instance, considering developed areas as the European Union to have higher prices 

than the rest of the world, the mere shift of EU consumers and firms shifting from foreign goods to 

domestic goods could rise nominal EU production more if these price differences are considered that if 

they are not. Consequently, this sharp increase in nominal production (to which emissions in the 

WIOD are associated) would lead also to a higher level of emissions within the borders of the 

European Union. In sum, the present study could be enriched by taken into account price differences, 

probably by the deflation of imports and exports across counties in reference to the prices of a certain 

benchmark economy, as carried out in Arto et al. 2014a for the case of Spain. 

Additionally, one important element that this study does not include is the generation or the 

elimination of jobs as a consequence of changes in the international trade scheme, an issue that is very 

present in the debate about the pollution haven hypothesis. In particular, the methodology that has 

been developed and described in this study would easily incorporate such socioeconomic factor just by 

considering labor as an extra industry-specific output like pollution generated or overall production. 

Such incorporation of employment into the methodology of Input-Output Analysis was, for instance, 

carried out by Arto et al. 2014b, analyzing how a tradeoff exists between outsourcing production and 

pollution and retaining job positions. Nevertheless, it is important to mention that the approach of this 

last study on emissions is similar to that of ‘emissions embodied in trade’, although in this case, it 

would correspond to an analysis of the ‘jobs embodied in trade’. As mentioned previously for the case 

of emissions, such approach would not give response to the question about how big is the impact that 

international trade has on jobs nowadays, as a counterfactual in the case of autarky would still be 

missing. In addition, incorporating labor in the present study would allow having a general idea of 

how changes in international trade would lead to changes and imbalances in employment generation in 

the world and in specific regions. Furthermore, it could be studied if there could be a tradeoff between 

the improvement of the environmental situation and the generation of employment, both factors driven 

by shifts in international trade. 

Finally, the last consideration that deserves a special attention in this study is the environmental 

impact of transportation and the strong correlation between the economic activity in these sectors and 

the overall trading activity. More precisely, transportation has been considered so far in this study as 

one of the many productive industries within the sector of services. The WIOD considers, in fact, three 

industries of transportation within each region in the world, corresponding to ‘Inland Transportation’ 

(sector c23), ‘Water Transportation’ (sector c24), and ‘Air Transportation’ (c25), and there is data 

available on the levels of emissions generated by each of these industries. Nevertheless, this 

information only accounts for the overall emissions generated by transportation firms established in 

each country, and it does not provide any detail of how much their production and emissions are split 
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into intra-national or international transport. In this way, the procedure described in this study 

accounts for the general increases and decreases in the activity of this sectors, as it does with all the 

other existing industries considered when applying international trade reductions. However, the 

methodological approach here presented cannot take into account how reductions in trade and the 

subsequent increases in domestic production, could, on the one hand, reduce emission coming from 

international transportation and, on the other, increase those emissions coming from transportation 

within the same country. 

 

Table 9. Emission by overall transportation between 1995 and 2009 (in percentage of total emissions) 

 

Source: own elaboration 

 

In order to give just a brief overview on the importance of this topic, Table 9 summarizes the levels of 

emissions coming from overall transportation as a share in the total generation of emissions in the 

world. In addition, Appendix 1 provides this information more in detail, considering also 

disaggregated information for inland, water and air transportation. As it possible to see, emissions 

coming from transportation are not trivial at all. For instance, overall transportation accounts for a 

9.8% of global emissions of CO2, and a 3% and 0.9% for the global emissions of CH4 (totally driven 

by inland transport) and N2O respectively. In particular, within the generation of CO2, a 4.2% percent 

is driven by inland transportation, while a 2.7% is driven by water transportation and a 2.9% by air 

transportation. Moreover, overall transportation accounts for a big 24.5% in emissions of NOx (mainly 

driven by inland transportation), a 44.9% in global emissions of CO (mainly driven by water 

transportation), and a 32.5% in the generation of NMVOC (mainly driven by water transportation as 

well). 

 

 

 

1995 1997 1999 2001 2003 2005 2007 2009 Average

CO2 9.3% 9.6% 10.0% 9.8% 9.6% 10.0% 10.0% 9.8% 9.8%

CH4 3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 2.8% 2.5% 3.0%

NO2 0.8% 0.9% 1.0% 1.0% 1.0% 1.0% 0.9% 0.9% 0.9%

NOX 27.0% 26.5% 25.7% 26.9% 26.7% 19.9% 20.7% 23.2% 24.5%

SOX 3.5% 3.8% 3.8% 4.3% 4.2% 3.5% 2.9% 2.9% 3.7%

CO 44.6% 41.7% 74.2% 31.9% 21.9% 63.0% 58.1% 14.9% 44.9%

NMVOC 42.6% 40.2% 51.9% 23.0% 12.8% 42.2% 9.6% 4.6% 32.5%

NH3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 9:  Emissions generated by overall tranportation between 1995 - 2009 (in percentge of total emissions)



42 
 

Table 10. Emissions coming from reductions in trade and transport activity  

 

Source: own elaboration 

 

In short, the lack of disaggregated information concerning how transport activity and transport 

emissions are intrinsically related to international trade levels presents a considerable limitation to this 

study, as the final estimation of the impact of international trade on the environment deeply depends 

on how international transportation is affected by trade. Nevertheless, with the support of results in 

Section 5 and taking into account pollution generated by transport industries in Table 9, it is possible 

to compute a threshold in which the actual curve of emissions depending on trade reductions would 

take place. Appendix 2 shows this construction for the cases of equivalent CO2, SO2 and C2H4 

emissions, and such analysis is here synthetized in Table 10. As it is possible to see in the table, 

changes in emissions for all these aggregate measures of gases are very sensible to how the 

transportation sector would increase or reduce its activity as a result of changes in international trade. 

For instance, if transportation activity was not correlated with international trade activity, i.e. the 

sector was only devoted to intra-industry transportation, the increase in emissions coming from trade 

reduction would be of 0.8% for the case of equivalent CO2, -2.0% for the case of equivalent SO2, and 

5.6% for equivalent C2H4. However, on the other hand, if this reduction in international trade lead to a 

50% decrease in transport activity, global emissions of these aggregate measures of gases would 

change considerably. In fact, a reduction in trade would lead to a reduction in emissions for all of 

aggregate measures, corresponding respectively to reductions of 3.1%, 6.6% and 12.8%. 

  

Units 0% 25% 50% 75% 100%

Emissions of Eq. CO2 gigatonnes (Tg) 36,005 36,279 35,576 34,873 34,170 33,467

% change 0.8% -1.2% -3.1% -5.1% -7.0%

Emissions of Eq. SO2 kilotonnes (Gg) 240,750 235,921 230,450 224,980 219,510 214,040

% change -2.0% -4.3% -6.6% -8.8% -11.1%

Emissions of Eq. C2H4 kilotonnes (Gg) 66,356 70,062 63,952 57,841 51,731 45,620

% change 5.6% -3.6% -12.8% -22.0% -31.2%

Table 10.  Emissions coming from reduction in trade and transport activity 

No change 

in trade nor 

transport

100% reduction in overall trade and 

reduction in transport activity of
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7. Conclusions 

In response to the emerging awareness on the negative impact that current economic activity has on 

the environment, this study contributes to a better understanding of this issue by addressing the 

existing relationship between international trade and the emission of polluting gases. More precisely, 

the study considers how variations in international trade for final and intermediate goods can lead to 

very diverse changes in global emissions. Moreover, thanks to the methodological procedure that has 

been developed, the study gives an estimation of which is the real impact that international trade alone 

has on the emission of eight different types of gases, which altogether contribute to three dramatic 

environmental phenomena. 

In particular, the results that have been obtained rise broad and compelling considerations. In the first 

place, for the three aggregate measures of polluting emissions, international trade of intermediate 

goods seems to have a negative effect on emissions and, therefore, a positive effect on the 

environment, as any increase in inter-sectorial trade seems to decrease emission levels. On the 

contrary, international trade for final goods seems to have a positive effect on emissions and a 

negative effect on the environment, as increases in trade of final goods for consumption considerably 

increase emissions of polluting gases. The combination of these two effects, however, rises very 

diverse results, as the positive effect of trade for intermediate goods is stronger in the cases of 

equivalent CO2 and equivalent C2H4 emissions, but the negative effect of trade for final goods is 

stronger in the case of equivalent SO2 emissions. In the end, results indicate that overall international 

trade has a positive impact by avoiding 274 gigatonnes of equivalent CO2 and 3,706 kilotonnes of 

equivalent C2H4, but a negative impact on the environment by generating extra 4,829 kilotonnes of 

equivalent SO2. 

Furthermore, in the actual situation in which countries are facing constant negotiations to first foster 

production and commercial activity and later reduce global emissions, results obtained in this study 

suggest interesting and practical implications. International trade and the openness to the global 

market has been imputed to be one crucial trigger in the development of countries and, moreover, the 

present study suggests that international trade, at least for intermediate goods, has been one driver of 

environmental efficiency. However, on the other hand, results show that there exists an important 

misallocation of production for certain pollutants and certain types of products, as international trade 

shows to be also a driver of higher pollution in comparison with a situation of autarky for instance in 

the case of final goods. While technological differences across countries are well leveraged in the 

generation of certain pollutants, being mostly generated by the most environmentally efficient 
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countries, for some other pollutants such opportunity coming from technological and cross-country 

differences is not considered, as production is biased towards highly polluting industries. 

Finally, it is important to note that all these considerations could be useful in the design of policies to 

address both economic development and environmental improvement. Policymakers could take into 

account how trade of final goods and trade of intermediate goods has in fact a very different impact on 

emissions. If international trade for intermediate goods was fostered but trade for final goods was 

softly refrained, it could be expected to observe an important reduction in emissions. Such fact, for 

example, would lead regulators to treat differently both types of goods, fostering in consumers the 

purchase of final goods domestically produced, but moving businesses to use those foreign inputs that 

result more beneficial for the environment. In short, integrating these and previous considerations in 

realistic policies could foster both the preservation of the environment and economic growth. 
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Appendix 1: Emissions generated by transportation 

 

Summarized in Table 11, the historical emissions coming from the different types of transportation 

are considered. As it is possible to see, the sector of transportation represents a crucial polluting 

sectors for gases like CO2, NOx, CO and NMVOC; while its contribution to other pollutants like CH4, 

NO2, SOx and NH3 is moderated. Moreover, there exists a remarkable asymmetry regarding the three 

types of transportation as, for instance, CH4 is only generated by Inland Transport, and CO and 

NMVOC are mainly triggered by Water Transport. 

 

Table 11. Emissions by transportation between 1995 and 2009 (in percentage of total emissions) 

 

Source: own elaboration 

  

1995 1997 1999 2001 2003 2005 2007 2009 Average

CO2 Overall transport 9.3% 9.6% 10.0% 9.8% 9.6% 10.0% 10.0% 9.8% 9.8%

Inland transport 4.1% 4.1% 4.2% 4.2% 4.1% 4.2% 4.3% 4.3% 4.2%

Water transport 2.6% 2.7% 2.8% 2.7% 2.7% 2.8% 2.9% 2.7% 2.7%

Air transport 2.6% 2.9% 2.9% 3.0% 2.8% 3.0% 2.9% 2.8% 2.9%

CH4 Overall transport 3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 2.8% 2.5% 3.0%

Inland transport 3.0% 3.0% 3.1% 3.0% 3.1% 3.0% 2.8% 2.5% 3.0%

Water transport 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Air transport 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

NO2 Overall transport 0.8% 0.9% 1.0% 1.0% 1.0% 1.0% 0.9% 0.9% 0.9%

Inland transport 0.5% 0.5% 0.6% 0.6% 0.6% 0.6% 0.5% 0.5% 0.6%

Water transport 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

Air transport 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%

NOX Overall transport 27.0% 26.5% 25.7% 26.9% 26.7% 19.9% 20.7% 23.2% 24.5%

Inland transport 19.5% 17.9% 17.5% 17.1% 16.2% 11.0% 11.3% 13.0% 15.4%

Water transport 5.5% 6.1% 5.9% 6.6% 7.5% 6.7% 7.2% 7.5% 6.6%

Air transport 1.9% 2.5% 2.2% 3.1% 3.1% 2.2% 2.1% 2.7% 2.5%

SOX Overall transport 3.5% 3.8% 3.8% 4.3% 4.2% 3.5% 2.9% 2.9% 3.7%

Inland transport 1.2% 1.0% 0.8% 1.2% 0.8% 0.2% 0.2% 0.3% 0.7%

Water transport 2.2% 2.6% 2.8% 2.9% 3.3% 3.2% 2.6% 2.5% 2.8%

Air transport 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.2% 0.2%

CO Overall transport 44.6% 41.7% 74.2% 31.9% 21.9% 63.0% 58.1% 14.9% 44.9%

Inland transport 8.2% 8.1% 2.6% 8.6% 7.9% 4.2% 4.5% 8.8% 6.4%

Water transport 34.1% 31.5% 71.2% 20.9% 11.6% 57.0% 51.8% 3.0% 36.5%

Air transport 2.3% 2.1% 0.4% 2.5% 2.4% 1.8% 1.8% 3.1% 2.0%

NMVOC Overall transport 42.6% 40.2% 51.9% 23.0% 12.8% 42.2% 9.6% 4.6% 32.5%

Inland transport 4.9% 4.5% 2.7% 6.4% 5.5% 1.8% 2.4% 2.6% 3.8%

Water transport 37.0% 34.8% 48.8% 15.6% 6.4% 39.9% 6.6% 1.3% 27.9%

Air transport 0.7% 0.9% 0.4% 1.0% 0.9% 0.5% 0.6% 0.6% 0.7%

NH3 Overall transport 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Inland transport 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Water transport 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Air transport 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 11.  Emissions generated by tranportation between 1995 - 2009 (in percentge of total emissions)
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Appendix 2: Effect of transportation on global emissions 

 

Changes in emissions coming from both reductions in overall trade and reductions in transport activity 

are shown in Figure 11 for the particular case of equivalent CO2. The continuous line refers to the 

results obtained by the standard procedure in which transportation activity reduction is not taken into 

account because of overall transport reductions, the same information provided in Figure 5 of Section 

5.4. On the other hand, discontinuous lines in the figure assume that reductions in overall trade activity 

would lead to reductions in overall transport activity and, therefore, in overall transport emissions. For 

instance, the discontinuous line with the triangular marker called ‘50% reduction in transport 

emissions’ considers that every 2% reduction in overall international trade would lead to a 1% 

reduction in the emission coming from transportation. In sum, all five lines provide a threshold in 

which the actual level of emissions, depending on the reduction in overall international trade, would 

take place. 

 

Figure 11. Reduction in equivalent CO2 emissions coming from reductions in transport activity 

 

Source: own elaboration 

 

In a similar fashion, Figure 12 gathers this information for the case of equivalent SO2 emissions, 

while Figure 13 refers to the emissions of C2H4 equivalent. As all three figures show, the resulting and 
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final impact of international trade on emissions strongly depends on how transportation is affected by 

international trade. 

 

Figure 12. Reduction in equivalent SO2 emissions coming from reductions in transport activity 

 

Source: own elaboration 

 

Figure 13. Reduction in equivalent C2H4 emissions coming from reductions in transport activity 

 

Source: own elaboration 

 



53 
 

In particular, for the case of equivalent CO2 emissions, as shown in Figure 11, the current impact of 

international trade on the environment could range from the previously mentioned 274 gigatonnes of 

CO2 equivalent avoided to the positive generation of 2,538 gigatonnes of CO2 equivalent in the case of 

a 100% reduction in trade activity. Similarly, for the case of equivalent C2H4 emissions in Figure 13, 

the environmental impact of actual levels of international trade could be between the avoidance of 

3,706 kilotonnes of C2H4 equivalent and the generation of 20,736 kilotonnes of C2H4 equivalent. On 

the other hand, as illustrated in Figure 12, the impact of trade on emissions of equivalent SO2 would 

be in all cases positive, as any increase in overall international trade would lead to higher levels of this 

pollutant. In this case, however, this negative impact would range from the initial generation of 4,829 

kilotonnes of SO2 equivalent to the generation of 26,710 kilotonnes of SO2 equivalent in the case of 

total reduction in transportation activity. 


