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Abstract: We perform a reanalysis of the energy levels obtained in a recent lattice QCD

simulation, from where the existence of bound states of KD and KD∗ are induced and

identified with the narrow D∗

s0(2317) and D∗

s1(2460) resonances. The reanalysis is done in

terms of an auxiliary potential, employing a single-channel basis KD(∗), and a two-channel

basis KD(∗), ηD
(∗)
s . By means of an extended Lüscher method we determine poles of the

continuum t-matrix, bound by about 40 MeV with respect to the KD and KD∗ thresholds,

which we identify with the D∗

s0(2317) and D∗

s1(2460) resonances. Using a sum rule that

reformulates Weinberg compositeness condition we can determine that the state D∗

s0(2317)

contains a KD component in an amount of about 70%, while the state D∗

s1(2460) contains

a similar amount of KD∗. We argue that the present lattice simulation results do not still

allow us to determine which are the missing channels in the bound state wave functions

and we discuss the necessary information that can lead to answer this question.
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1 Introduction

The scalar D∗

s0(2317) and axial Ds1(2460) mesons were experimentally found slightly below

KD and KD∗ thresholds [1–4]. These are one of the few shallow bound states in the

meson sector, and therefore deserve special attention. The effect of thresholds was recently

considered using lattice QCD for the first time in this system in [5, 6], where interpolators

of KD and KD∗ type have been employed in addition to s̄c ones. The Nf =2+1 simulation

obtained three energy levels for mπ ≃ 156 MeV in the KD and KD∗ systems . The fact

that these levels appear clean with the KD and KD∗ interpolators, together with the

observation that the lowest one appears below and not far from the corresponding KD

or KD∗ threshold, hint to a possible molecular structure for this state. The scattering

length and the effective range were determined from the two lowest energy levels in [5, 6]

and, using the effective range formula, bound states were found at about 40 MeV below the

respective KD and KD∗ thresholds. These were identified with the scalar D∗

s0(2317) and

axial D∗

s1(2460) states respectively.

Actually, the two lower levels employed in the analysis of [5, 6] are separated by

130 MeV, which makes the use of the effective range formula a bit extreme, and the infor-

mation of the upper level was disregarded. In the present work we perform a reanalysis

of these lattice spectra which does not rely upon the effective range formula and takes

advantage of the information of the three levels. The analysis is done using the auxiliary

potential method [7], equivalent to the one of Lüscher [8, 9] in single or coupled channels,

but allowing also to obtain phase-shifts for arbitrary energies. The lattice simulations are

particularly suited for this kind of study because, for the same value of L, they produce
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several energy levels which provide information on the energy dependence of the potential

needed to interpret the spectra.

We first perform a single channel analysis, with KD or KD∗, which permits deter-

mining the two parameters of an energy dependent potential from a fit to the three energy

levels of the box. This potential is then used in the continuum, leading to poles of the KD

and KD∗ scattering amplitudes, which lie about 40 MeV below the respective thresholds.

A reformulation of the Weinberg compositeness condition [10, 11] is then used to determine

the amount of KD and KD∗ in the respective wave functions. A different method to learn

about the amount of meson component, or equivalently the amount of non-meson com-

ponent, Z, in the wave function, is from the dependence of the spectrum on the twisting

angle, imposing twisted boundary conditions on the fermion fields [12].

The compositeness condition was extended leading to a new sum rule in an arbitrary

number of coupled channels [13], which is reformulated in [14–18] for the case of energy

dependent potentials. The sum rule contains two terms (see eq. (133) in [17]), one involving

the derivative of the two-particle loop function, which is identified with the probability

of the state containing this particular two-particle component of the coupled channels.

The second term involves the derivative of the potential with respect to the energy, which

accounts for the probability of the state to be in other components not explicitly considered

in the approach, for example omitted two-meson channels or q̄q. An illustrative example

is given in [19], where one starts from a two channel problem with energy independent

potentials which generate dynamically a bound state. The problem is then reformulated in

terms of one channel and an effective potential, which however becomes energy dependent.

This allows one to see that the term in the sum rule involving the derivative of the loop

function accounts for the probability of the channel retained, while the term involving the

derivative of the potential accounts for the probability of the omitted channel.

Having this in mind, we repeat the analysis of the lattice results using a two chan-

nel basis, involving KD, ηDs for D∗

s0(2317) and KD∗, ηD∗

s for D∗

s1(2460). The choice of

channels relies on the results of coupled channels unitary approaches [20–29], which found

those channels to be the relevant ones (in what follows we will mainly refer to refs. [22, 23]

when we give details of the coupled-channel formulation). Alternative scenarios for a non

q̄q structure of these states have been also given [30–35]. With two channels and three

energy levels one is forced to treat the three components of the coupled-channel potential

(V11, V12, V22) as being energy independent. We observe that a fit to the energy levels

is not possible in this case, indicating that these levels carry no information on the ηDs

and ηD∗

s channels. This can be explained since no interpolators of this type were used

in [5], while it was also found there that the levels obtained were tied to the interpolators

used. Further lattice information will be needed in the future to make progress in this di-

rection and learn more about the components that build up the D∗

s0(2317) and D∗

s1(2460)

wav functions.

With the available limited lattice information, we can confirm that the bound states of

KD and KD∗ can be associated to the D∗

s0(2317) and D∗

s1(2460) states. We also confirm

that these bound states are mostly of KD or KD∗ nature, estimating about 70 % the

probability of these components in their respective wave function.
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The compositeness of the D∗

s0(2317) based on indirect lattice data was first discussed

in [26], but employing a different method. The scattering lengths of other scattering chan-

nels, free from disconnected diagrams, were obtained on the lattice and used to determine

the parameters of their effective field theory, which was subsequently used to indirectly de-

termine the scattering parameters of KD scattering and the pole position in this channel.

Similarly, the scattering lengths from the simulation of ref. [26] were employed in [28, 29]

to fix the low-energy constants of a covariant chiral unitary theory, which was then used to

also identify, as composite states, the heavy-quark spin and flavour symmetry counterparts

of the D∗

s0.

As mentioned above, additional lattice information could help us improve our knowl-

edge on the additional building blocks that these states might have. Indeed, preliminary

spectra for these channels obtained including KD, s̄c as well as ηDs interpolating fields

have been presented in [36]. Their plan is to perform a two-coupled channel analysis using

a parametrization of the scattering matrix on the energy. This strategy has recently lead

to the first results of the two-coupled channel system Kπ − Kη from lattice QCD; the

pole positions of the scattering matrix were subsequently found and related to the strange

mesons [37]. The approach presented here offers an alternative way to extract physical

information from the lattice spectra in the future.

2 Compositeness of states

We collect here the essential expressions relevant to interpret the nature of hadrons gen-

erated dynamically from a given meson-meson interaction. Let us take two mesons (K

and D for example) and an interacting potential V . The Lippmann-Schwinger equation

produces the scattering amplitude T

T = V + V GT, (2.1)

where G stands for the two meson propagator. We shall take relativistic propagators and

eq. (2.1) will be the Bethe-Salpeter equation. The on-shell factorization of V and T allows

one to convert eq. (2.1) into an algebraic equation with G given by

G = i

∫

d4q

(2π)4

1

q2 − m2
1 + iǫ

1

(P − q)2 − m2
2 + iǫ

, (2.2)

where P is the total two meson momentum. This factorization was justified in refs. [38, 39]

by using dispersion relations in which the smooth energy dependent contribution of the left-

hand-side cut was replaced by a constant in the region of interest. The energy dependence

was shown to be particularly weak in the case of the meson-baryon interaction [39] due to

the large baryon mass and, consequently, it will be even weaker in the present case due to

the larger mass of the D and D∗ mesons. The neglect of the left hand cut is also inherent

in the Lüscher formalism, as we shall see in section 3.2.

Upon integration of the q0 variable the loop function becomes

G =

∫

d3q

(2π)3
I(~q ), I(~q ) =

ω1(~q ) + ω2(~q )

2ω1(~q )ω2(~q ) [P 2 − (ω1(~q ) + ω2(~q ))2 + iǫ]
, (2.3)
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where ωi(~q ) is the meson on-shell energy. The loop function must be conveniently regular-

ized with a cut-off qmax, or employing dimensional regularization techniques.

Assume now the Bethe-Salpeter equation projected over S-wave and V an energy

independent potential in one channel (say KD). We then have

T (1 − V G) = V, T =
V

1 − V G
=

1

V −1 − G
. (2.4)

Let us now assume that the interaction V produces a bound state, which we will refer to

as a two meson composite state or a dynamically generated state. We shall see that the

energy independent potential can not lead to a genuine state, for example a q̄q state with a

weak coupling to two mesons. In the case of one channel, the coupling g of the bound state

is obtained by requiring that around the pole s = s0 (with s = P 2 being a Mandelstam

variable)

T ∼ g2

s − s0
, hence : g2 = lim

s→s0
(s − s0)T. (2.5)

Since V −1 − G = 0 at the bound state pole, we find in the case of an energy independent

potential using L’Hopital’s rule

g2 =
1

−∂G
∂s

, −g2 ∂G

∂s
= 1. (2.6)

The property of eq. (2.6) can be generalized to coupled channels and, in the case of an

energy independent potential (and two channels), one finds:

V =

(

V11 V12

V12 V22

)

, G =

(

G1 0

0 G2

)

, (2.7)

T = (1 − V G)−1V, (2.8)

gigj = lim
s→s0

(s − s0)Tij ,
∑

i

(

−g2
i

∂Gi

∂s

)

= 1 (2.9)

Equation (2.6) is a reformulation of the Weinberg compositeness condition [10], which

is usually applied to loosely bound states, meant to be used at higher binding energies,

while eq. (2.9) is the extension to many coupled channels [13]. By solving the Schrödinger

equation in momentum space in coupled channels and normalizing the wave function of

the bound state to unity, it was found [13]
∫

d3p | 〈p | Ψi〉 |2= g2
i

∂Gi

∂E
, (2.10)

with | Ψi〉 being the i component of the bound state in the ith channel, so that each term

of the sum in eq. (2.9) represents the probability to have this channel in the wave function

of the bound state:1

Pi = −g2
i

∂Gi

∂s
, (2.11)

1As discussed in [13] there is a different normalization of the amplitudes, and hence the couplings,

between [13] and field theoretical approach used here, which leaves the probability to be expressed here as

in eq. (2.11)
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and the sum of these probabilities saturates the wave function. Note that, by construction,

in the case we are discussing here all the components of the composite state are of meson-

meson type. We will elaborate more on these issues in section 5.

It is easy to visualize a genuine state that couples weakly to a meson-meson component

by using a meson-meson potential of the type:

V =
b

s − sR
, (2.12)

which we refer to as a CDD pole [41]. Now

T =
1

s − sR

b
− G

, g2 =
1

1

b
− ∂G

∂s

, (2.13)

and

P = −g2 ∂G

∂s
= 1 − g2 1

b
. (2.14)

In the limit of b → 0 (small coupling of the genuine state to meson-meson) we have g2 → 0

and the pole appears at s = sR. Then the amount of meson-meson component, −g2∂G/∂s,

goes to zero and we have a representation for a genuine state, or, in general, a state different

from the explicit two meson state considered. It is interesting to note a distinct feature in

the potential of eq. (2.12), namely its energy dependence.

These ideas are generalized in ref. [17], with the sum rule

−
∑

i

g2
i

∂Gi

∂s
−

∑

i,j

gigjGi
∂Vi,j

∂s
Gj = 1, (2.15)

evaluated at the pole. The first term in eq. (2.15) is associated in ref. [17] to the composite

part of the state (meson-meson in the present case) and the second term, involving the

derivative of the potential, to the genuine part of the state. Actually, this second part

accounts for the state components that have not been considered in the coupled channel

problem. This is easily shown in the case of two channels in ref. [19], where one channel

is eliminated and its effects are accounted for by means of an effective potential in the

remaining channel. Take V22 = 0, for simplicity, and consider Vij energy independent to

saturate the state with the two channels in eq. (2.7). It is then easy to obtain from eq. (2.8),

T11 =
V11 + V 2

12G2

1 − (V11 + V 2
12G2)G1

, (2.16)

making clear that solving a one-channel problem with the effective potential

Veff = V11 + V 2
12G2 , (2.17)

gives the same amplitude T11 obtained in the two channel case. The novelty is that now Veff

becomes energy dependent. Then, the term −g2
1∂G1/∂s, which accounts for the probability

of channel 1 in the state, is the same in both formulations and the second term in eq. (2.15)

is, by construction of Veff, the probability of the second channel that has been eliminated.

We are going to use these findings to analyze the lattice spectra of ref. [5].
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KD channel KD∗ channel

E1 (MeV) 2086 (34) 2232 (33)

E2 (MeV) 2218 (33) 2349 (34)

E3 (MeV) 2419 (36) 2528 (53)

Table 1. Energy levels for the scalar (KD) and axial (KD∗) channels found in the simulation

ref. [5]. The relative errors in the lattice spacing a and in a E have been added in quadrature. Only

the energy differences, for example Elat
n − m̄lat

Ds

with m̄lat
Ds

= 1

4
(mDs

+ 4mD∗

s

) = 1.8407(6) MeV, can

be compared to the experiment.

3 Analysis of the lattice spectra

The lattice simulation of ref. [5] obtained three energy levels in the scalar channel using

the KD and s̄c interpolators, and three2 levels in the axial channel using the KD∗ and

s̄c interpolators. Table 1 collects the levels of ensemble (2),3 with Nf = 2 + 1 and close-

to-physical pion mass mπ = 156 MeV. The lattice spacing is a = 0.0907 (13) fm and the

box size L = 2.90 fm. The kaon with mass mK = 504(1) MeV obeys the usual relativistic

dispersion relation EK(p) = (m2
K + p2)1/2.

The simulation [5, 6] treated the charm quark using the so-called Fermilab method,

where the leading discretization errors related to the charm quark cancel in the energy

differences (with respect to the reference mass of a meson containing the same number of

charm quarks). We employ the dispersion E(p) for D and D∗ mesons determined in the

simulation of ref. [5]

ED(D∗)(~p ) = M1 +
~p 2

2M2
− (~p 2)2

8M3
4

, mD(D∗) = M1 (3.1)

where M1, M2, M4 are given in table 2.

3.1 Analysis by means of the effective range formula

In ref. [5] the scattering length and effective range for KD and KD∗ scattering were

obtained using only the two lowest energy levels of the lattice simulation and employing

Lüscher’s approach to extract the infinite volume phase shifts. In this section we analyze

these results by means of an effective range formula to obtain the binding energy of the

state and check the fulfillment of the sum-rule of eq. (2.6).

2The second level in the axial channel of ref. [5] is attributed to the Ds1(2536) resonance in KD∗ d-wave

scattering and is therefore not used in the present paper which considers KD∗ scattering in s-wave. In

principle L = 0 and L = 2 can mix for J = 1, but using arguments of Heavy Quark Spin Symmetry [40],

the spin of the heavy quark ~SQ is conserved, and so is ~J , and hence ~J − ~SQ, which can be constructed from
~L and the spin 1/2 of the light quark of the D∗. For L = 0, ~J − ~SQ only has modulus 1/2, and for L = 2,

it can have the values 3/2 and 5/2. Thus, L = 0 and L = 2 do not mix at leading order in the O(1/mQ)

expansion.
3Results of set 2 in [5] are used in the axial channel.
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D meson D∗ meson

M1 (MeV) 1639 1788

M2 (MeV) 1801 1969

M4 (MeV) 1936 2132

Table 2. Mi from the dispersion relation E(p) (3.1) for D and D∗ mesons. The rest energies,

i.e. the masses M1, can be compared to experiment via the difference M lat
1 − m̄lat

D
with m̄lat

D
=

1

4
(mD + 4mD∗) = 1.751(3) MeV [5].

Channel a0 [fm] r0 [fm] B [MeV] |g| [GeV] −g2∂G/∂s

KD −1.33(20) 0.27(17) 38(9) 12.6(1.5) 1.14(0.15)

KD∗ −1.11(0.11) 0.10(0.10) 44(6) 12.6(0.7) 0.96(0.06)

Table 3. Binding energy B, meson-meson coupling |g| and sum-rule [eq. (2.6)], for the bound states

obtained in the lattice QCD simulation of ref. [5], analyzed using an effective range formula.

The effective range approximation reads

p cot δ =
1

a0
+

1

2
r0p2, T = − 8πE

p cot δ − ip
. (3.2)

Below threshold, one writes p = ip̃, and a pole of the T matrix is obtained for cot δ = i.

Therefore, the pole appears for the value of p̃ that satisfies

1

2
r0p̃2 − p̃ − 1

a0
= 0. (3.3)

Taking random a0 and r0 values within the range determined by the lattice simulation [5],

quoted in table 3, we obtain a series of values for the bound momentum p̃ and the corre-

sponding binding energy

B = − p̃2

2µ
, µ =

mKmD/D∗

mK + mD/D∗

. (3.4)

The average value of the binding energy for the KD state, which is associated to the

D∗

s0(2317), is then found to be 38(9) MeV. We note that the unitary coupled-channel

approach of [22] generates such a state from the interaction of the KD and ηDs channels

mostly. Had we used the central values of a0 and r0 directly, we would have obtained

B = 35.8 MeV, which obviously lies within the error bar of the results quoted in table 3.

We note that this value is 0.8 MeV smaller than the one given in [5], essentially because

in the present analysis we have used the (isospin averaged) physical masses of the mesons

instead of the lattice ones. Employing the same procedure, we find a KD∗ state with a

binding energy of 44(6) MeV, which we associate to the D∗

s1(2460). In the unitary coupled-

channel approach this state is mainly built from KD∗ and ηD∗

s components [23].

It is interesting to test the sum rule of eq. (2.6) for the states obtained. The g2 at the

pole can be expressed as

g2 =
16πsp̃

µ(1 − r0p̃)
, (3.5)
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and listed in table 3. Since ∂G/∂s is convergent, we obtain the sum rules quoted in the

last column, which, within errors, are all compatible with unity. The coupling to the

KD channel is gKD = 12.6 GeV, which is of the order of the one obtained in the chiral

unitary approach in ref. [22], gKD = 10.21 GeV. Note, however, that this smaller value

would provide a probability for the KD channel of about 60 − 70%, leaving room for

the other channels considered in the unitary coupled-channel approach. Similarly, in the

KD∗ channel, we find a coupling gKD∗ = 12.6 GeV, compared to the value of around

10 GeV quoted in ref. [23], also leaving room for the additional meson-meson components

considered in that work.

Although the results obtained with the effective range formula are qualitatively rea-

sonable, and the existence of the bound state emerges as a solid statement, one can see

that the approximation has its limitations when one looks at other magnitudes like the

probability P (KD), which comes out larger than one (although compatible within errors).

There is also the fact that the first two levels are separated by 132 MeV, which makes this

approximation a bit extreme. Furthermore, the information of the third level is not used,

and, as shown in ref. [5], this level cannot be accounted for by means of the effective range

formula. All these reasons advise a new reanalysis which we offer in the next subsection.

3.2 Analysis of lattice spectra by means of an auxiliary potential

First, we are going to make the analysis with only one channel. Anticipating that the ηDs

and ηD∗

s channels also play a role in the D∗

s0(2317) and Ds1(2460) resonances, as found in

refs. [22] and [23], we shall leave room for these and possible q̄q components, by using an

energy dependent potential. As a first step we take a potential linear in s,

V = α + β(s − sth), (3.6)

with sth = (MD(∗) + MK)2, since only the derivative of the potential is needed to obtain

the sum rule. Later on we shall also use another type of potential.

In the finite box, the T matrix of eqs. (2.1) and (2.4) is replaced by

T̃ =
1

V −1 − G̃
, (3.7)

where G̃ is the two meson loop function in the box given by [42]

G̃ = G + lim
qmax→∞

[

1

L3

qmax
∑

qi

I(~qi) −
∫

q<qmax

d3q

(2π)3
I(~q )

]

; ~qi =
2π

L
~ni, ~ni ∈ Z

3 . (3.8)

The G in the continuum, eq. (2.3), can be regularized with a cut-off q′

max or employing

dimensional regularization. The latter choice, followed in ref. [42], cannot be applied here

because we employ the dispersion relation of eq. (3.1). For this reason we adopt the cut-off

method, with a cut-off value that gives equivalent results to those of the chiral unitary

approach of refs. [22, 23]. Any value of q′

max can, in principle, be taken since changes in G

can be accommodated by changes in V −1 when we require that T̃ has poles at the energies

of the lattice spectra by demanding that V −1 − G̃ = 0. Note, in addition, that we are
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interested finally in results for the continuum. Hence, at the energies of the lattice spectra

we have V −1 = G̃, and then the continuum T matrix is

T =
1

V −1 − G
=

1

G̃ − G
=

1

lim
qmax→∞

[

1

L3

qmax
∑

qi

I(~qi) −
∫

q<qmax

d3q

(2π)3
I(~q )

]
, (3.9)

which is then independent of the cut-off q′

max employed to regularize G. However, in the

transfer of strength from G to V −1 one will be introducing some energy dependence in

V −1 that would change the probability Z of not having the main meson-meson component

considered. We shall come back to this issue in section 5 where systematic uncertainties

are studied.

Equation (3.9) is the formulation employed in the approach of ref. [7], where it is

shown that Lüscher formula is recovered if some terms of I(~q ), which are exponentially

suppressed, are eliminated. These terms can be relevant in the case of relativistic particles

and small volumes [43, 44], which is not the case here. However, we cannot use the standard

Lüscher approach either, based on the relativistic relationship ω(q) = (m2 + q2)1/2, since

we are forced to employ the dispersion relation of eq. (3.1). In this case, eq. (3.9) gives the

appropriate extension of the Lüscher formalism.

There is another approximation inherent in our approach (or the one of Lüscher) when

we assume that the potential is volume independent. Within the framework of the chiral

unitary approach such effects were investigated in [45, 46] in the ππ scattering in the scalar

sector and the ρ sector and it was concluded that for values of Lmπ > 1.5 they could be

safely neglected. In the present case, given the large masses involved, loops in the t-channel,

which originate this volume dependence, are even less relevant.

With the formalism exposed above, a best fit is carried to the three lattice levels

obtained in [5], demanding that the T̃ derived from eq. (3.7) using the potential of eq. (3.6)

has poles at the three energies. In order to find the desired magnitudes and associated

statistical errors, we perform a series of fits to different sets of three energies, generated

with a Gaussian weight within the errors of the lattice levels. With the parameters obtained

in each fit we evaluate the different magnitudes. From the results obtained in the different

fits, we then determine the central values and statistical errors of these magnitudes.

We show in figures 1 and 2 the results obtained from the fits to the levels for the KD

and KD∗ systems, respectively. The procedure outlined above gives us a pole for the KD

system with binding energy

B(KD) = mD + mK − EB(KD) = 46 ± 21 MeV , (3.10)

to be compared to the value 36.6(16.6)(0.5) MeV obtained with the effective range formula

in [5, 6] and to the 45 MeV binding in the physical case. For the KD∗ system we get the

binding energy

B(KD∗) = mD∗ + mK − EB(KD∗) = 52 ± 22 MeV . (3.11)
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Figure 1. Fits to the lattice data of ref. [5] for the KD system using the potential of eq. (3.6).

Figure 2. Fits to the lattice data of ref. [5] for the KD∗ system using the potential of eq. (3.6).

The probabilities for the KD, KD∗ components, obtained from eqs. (2.11), (2.5), are:

P (KD) = (76 ± 12) %, for the D∗

s0(2317) , (3.12)

P (KD∗) = (53 ± 17) %, for the Ds1(2460) . (3.13)

This means that there is a large amount of KD and KD∗ components in the corresponding

bound states.

3.3 Fit with a CDD pole

One near-threshold level was found in [5, 6] when only s̄c interpolators were used,4 and

one wonders what is the s̄c component in the meson states at hand. We therefore explore

4Its energy however changes when D(∗)K interpolators were used in addition to s̄c ones.
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whether there could be an admixture of some genuine component in the bound state by

refitting the lattice levels adding a CDD pole to the potential of eq. (3.6):

V = α + β(s − sth) +
γ2

s − M2
CDD

, (3.14)

which, as seen in section 2, is suited to accommodate a genuine state. This has been shown

to be the proper way to account for genuine components in different works [19, 38, 47, 48]

in the continuum. An analysis of “synthetic” lattice spectra in terms of this potential was

done in [42]. It was also recently employed to analyze lattice spectra with the πK and ηK

channels in [37].

Since we have four parameters (α, β, γ and MCDD) and three energy levels, we can

obtain solutions with many sets of parameters which are, obviously, correlated. However,

the values of the parameters do not have a particular significance and what matters is

the value of the magnitudes derived from the different fits. The statistics of the obtained

fits shows a clear preference for solutions with a MCDD value that lies far away (more

than 300 MeV) from the KD, KD∗ thresholds, such that it effectively provides a linear

dependence in (s − sth) at the energies where the poles are found. This is an indication

that the lattice energies do not favour a CDD component, or at least not a significant one.

Obviously, future lattice results with more accuracy and different volumes will allow one

to be more precise on this issue.

With the potential of eq. (3.14) we obtain the following binding energies

B(KD) = 29 ± 15 MeV , (3.15)

B(KD∗) = 37 ± 23 MeV , (3.16)

and probabilities

P (KD) = (67 ± 14) %, for the D∗

s0(2317) , (3.17)

P (KD∗) = (61 ± 26) %, for the Ds1(2460) , (3.18)

which are compatible within errors with those of eqs. (3.10)–(3.13), obtained with the linear

potential.

3.4 Two channel analysis

After this exercise we perform a two channel analysis including the ηDs channel for the

D∗

s0(2317) state and the ηD∗

s channel for the Ds1(2460), which were found also relevant in

refs. [22, 23].

Since we only have three energy levels we use an energy independent potential, eq. (2.7),

which has three parameters, V11, V12, V22. By doing so, we would force the states to saturate

with the KD(∗), ηD
(∗)
s components. The comparison of the two procedures would allow us

to make statements about the amount of each channel in the respective states.

We thus fit the Vij parameters using

T̃ = (1 − V G̃)−1V, (3.19)
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in two channels, looking for the poles of T̃ and associating the first three levels to those of

the lattice simulation.

We do not find any suitable fit to the data, which is an enlightening result. One could

interpret it as an evidence that the energy levels obtained in [5] do not contain information

on the ηDs or ηD∗

s channels. This seems to be the case because the three energies obtained

there were tied to the use of qq̄ and meson-meson interpolators of KD or KD∗ type.

No interpolator was used containing information on the ηDs and ηD∗

s channels, and no

energy level was found which would be tied to these channels. It is indeed a common

experience of lattice practitioners that a given two-hadron eigenstate is most often not

seen unless explicitly implemented in the basis of interpolating fields. Although all states

with a given quantum number are in principle expected in a dynamical simulation, a poor

basis of interpolating fields is insufficient to render them in practice. The reason is that

one would have to wait much time till these components show up in the time evolution of

the state and this could happen in the region where the ratio of noise to signal is large,

preventing any signal to be seen [49]. This also gives us some idea on how to proceed in the

future if one wishes to make progress on determining the components of the D∗

s0(2317) and

Ds1(2460) wave functions. The relevant fraction of the wave function that went to the ηDs

and ηD∗

s channels in chiral unitary studies [22, 23], of the order of 20%, makes it advisable

to include interpolators for the ηDs and ηD∗

s channels in future lattice simulations. Such a

simulation is underway and preliminary spectra have been presented in [36]. . In any case,

it is worth stressing that, as shown in previous sections, the present lattice information

allows to conclude that there are extra components to the dominant KD in the D∗

s0(2317)

wave function, although one cannot state which ones.

4 Scattering length and effective range

We can also obtain the scattering length and the effective range in each of the cases ex-

plored. For this we use eq. (3.2), finding

p cot δ = Re

{

− 8πE

T

}

≃ 1

a0
+

1

2
r0p2 . (4.1)

Relating E to p via the dispersion relation of eq. (3.1)

E =
√

m2
K + p2 + ED(D∗)(p) , (4.2)

we obtain

a0 = −1.2 ± 0.6 fm, r0 = 0.04 ± 0.16 fm for KD, (4.3)

a0 = −0.9 ± 0.3 fm, r0 = −0.3 ± 0.4 fm for KD∗ (4.4)

in the case the lattice data is analyzed using a single channel potential (3.6).

When we use the CDD potential of eq. (3.14) we find

a0 = −1.4 ± 0.4 fm, r0 = −0.2 ± 0.4 fm for KD, (4.5)

a0 = −1.3 ± 0.6 fm, r0 = −0.1 ± 0.2 fm for KD∗ (4.6)
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The values for the scattering length and effective range obtained with the different methods

are remarkably similar.

The values obtained also agree qualitatively with those obtained in ref. [5]. Yet, as we

have discussed, we do not use the effective range formula to correlate the results. Indeed,

instead of eq. (4.1) we have

p cot δ = −8πE(V −1 − Re{G}) (4.7)

and the G function depends on the cut off. If V is energy independent we have two degrees

of freedom in the approach to accommodate the values of a0 and r0, but p cot δ develops

terms in p4 which are tied to the values of a0 and r0. If we allow V to be energy dependent,

as in eq. (3.6), we have more freedom to accommodate the p4 terms in the expansion of

p cot δ. However, the main problem in the use of eq. (4.1) is that it blows up at large

energies, where the series expansion does not converge. Our method, which does not make

a series expansion of p cot δ, has a good behavior at higher energies from the analytical

behavior of Re{G}, which contains the log terms of the intermediate particle propagators.

This allows us to cover a wider span of energies and we can make use of the three energy

levels obtained in [5], while only the information of the lowest two could be accommodated

in the analysis of [5] based on eq. (4.1).

5 Evaluation of systematic uncertainties

In [26] the lowest lattice level obtained for the channels DK̄(I = 1), DK̄(I = 0), DsK,

Dπ(I = 3/2), Dsπ, free from disconnected diagrams, were employed to obtain, via the

Lüscher formalism [10], the phase shifts in the continuum at the eigenenergies of the lattice

box. The scattering length was then derived from the relationship p cot δ(p) = 1/a0,

disregarding the effective range term. The low energy constants of a chiral lagrangian were

fitted to the scattering lengths of those channels employing a unitary approach. With these

values of the coefficients, the coupled KD, ηDs channels system was studied, from where

the existence of a bound state associated to the D∗

s0(2317) was established and the KD

scattering length was obtained. A KD probability, 1 − Z, in the D∗

s0(2317) wave function

of around 70% was found, where the value of Z was determined from the scattering length

via the relation [10, 11]

a0 = −2
(1 − Z)

(2 − Z)

1√
2µǫ

[

1 + O
(

√

2µǫ/β
)]

, (5.1)

with µ and ǫ being the reduced mass and binding energy, respectively, and 1/β accounting

basically for the range of the interaction (1/qmax in our approach). The term O(
√

2µǫ/β),

negligible for small binding energies, is often discussed as uncertainty. In the present case√
2µǫ/β is of the order of 0.22 if we take β = qmax = MV = 780 MeV, and the correcting

terms can be relevant.

Indeed, let us comment on the sensitivity of eq. (5.1) in obtaining Z from the value of a0.

Note that if −2/
√

2µǫ < a0 < −1/
√

2µǫ, the resulting Z would have unphysical negative

values. This condition would obviously not be a problem for sufficiently small binding
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energies where eq. (5.1) is applicable but, for the KD state analyzed here, the value of the

factor −1/
√

2µǫ is −1.12 fm, close to the typical values found for the scattering lengths, and

this can lead to large uncertainties in the extraction of Z from a0 using eq. (5.1). Note that

ref. [26] obtained a0 ∼ −0.85 fm, from which, using eq. (5.1), a probability PKD ∼ 70% was

extracted, similar to the result obtained here in spite of the fact that we have a different

value of the scattering length.

Incidentally, one could have evaluated P = 1 − Z directly from the coupling also in

the Weinberg approach using eq. (24) from ref. [10], which is equivalent to eq. (2.11) used

here but neglecting the O(
√

2µǫ/qmax) terms in (∂G/∂s) and in the determination of g2
i .

It is instructive to see the correcting terms in (∂G/∂s) due to the range of the interaction.

Using, for simplicity, the nonrelativistic approach of [13] (see eqs. (27), (29) there) one finds

∂G

∂E
=

1

γ
8πµ2

[

arctan

(

qmax

γ

)

− γqmax

γ2 + q2
max

]

(5.2)

=
1

γ
8πµ2

[

π

2
− 2

(

γ

qmax

)

+
4

3

(

γ

qmax

)3

+ . . .

]

(5.3)

=
1

γ
4π2µ2

[

1 − 4

π

(

γ

qmax

)

+
8

3π

(

γ

qmax

)3

+ . . .

]

. (5.4)

Hence, in the nonrelativistic expression

1 − Z = g2 ∂G

∂E
, (5.5)

analogous to eq. (2.11), the correcting factor to the Weinberg formula from range effects

in ∂G/∂E is:5

F =

[

1 − 4

π

(

γ

qmax

)

+
8

3π

(

γ

qmax

)3

+ . . .

]

. (5.6)

to which one would have to add the correcting terms to the expression of g2 in ref. [10]. The

deviation from unity of eq. (5.6) in the problem analyzed here amounts to 28%. Although

one would also have correcting terms from g2, this exercise gives us an idea of the order

of magnitude of the corrections due to finite range effects in the determination of 1 − Z.

The exercise also serves us another purpose, which is to note that employing eq. (24) from

ref. [10] can give reasonable numbers for 1 − Z in the present case, within uncertainties,

while applying eq. (5.1) is not possible for a value a0 ∼ −1.3 fm. Actually, in ref. [50],

following the work of [26], the value of a0 ∼ −1.33 fm from the lattice work of [6] is used

as input to further constrain the parameters of the chiral theory, but eq. (5.1) is no longer

used. In our case we do not use eq. (5.1), nor eq. (24) from ref. [10], in order to determine

1 − Z, but eq. (2.11) in which explicit range effects will appear in g2 and ∂Gi/∂s from our

formulation of the problem using eq. (2.4) for the scattering of the particles. This is our

prescription to take into account range effects and we discuss next the sensitivity of the

results to the changes of the range parameter qmax, also within our approach.

5The normalizations for g in [12] and here are different. In [12], or in the Weinberg notation, ∂G/∂E is

used instead of ∂G/∂s, but the range correcting factor, F , is the same.
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qmax (MeV) 770 875 1075 1275 Average

B(MeV) 34.2 36.6 35.5 35.5 35.5 ± 0.8

| g | (GeV) 10.85 10.60 10.37 10.41 10.6 ± 0.20

P (%) 86.68 82.15 84.09 87.16 85 ± 2

a0 (fm) −1.32 −1.24 −1.25 −1.25 −1.27 ± 0.03

r0 (fm) 0.30 0.22 0.19 0.19 0.23 ± 0.05

Table 4. Dependence of the properties of the KD bound state on qmax.

qmax (MeV) 770 875 1075 1275 Average

B (MeV) 45.8 45.6 44.9 44.2 45.0 ± 0.7

| g | (GeV) 10.67 10.15 10.32 10.31 10.4 ± 0.2

P (%) 60.30 57.42 63.33 66.10 62 ± 3

a0 (fm) −1.010 −0.967 −0.980 −0.986 −0.99 ± 0.02

r0 (fm) 0.07 −0.03 −0.04 −0.06 −0.02 ± 0.05

Table 5. Dependence of the properties of the KD∗ bound state on qmax.

We estimate the uncertainties inherent to the method for not too small binding en-

ergies, like in the present case, by performing fits to the lattice energies employing four

different values of qmax, 770 MeV, 875 MeV, 1075 MeV, 1275 MeV, and the auxiliary po-

tential linear in s of eq. (3.6). This will inform us on the size of systematic uncertainties

coming from this source. In order not to be confused by the statistical uncertainties, the

fit for each value of qmax will be done to the central values of the lattice energies. Our

results, shown in table 4 for the KD system and in table 5 for the KD∗ one, confirm

that the systematic uncertainties tied to the range are small and well within the statistical

uncertainties. The binding energy of the KD∗ system shows a stronger sensitivity to the

heavy meson mass employed than that of all other magnitudes, the changes of which fall

well within the statistical errors.

We also have to face uncertainties tied to the meson masses employed in our analysis.

Unlike in [26], the lattice spectrum used here is calculated with a pion mass of mπ =

156 MeV, already very close to the physical value of 140 MeV. Moreover, since in the present

case, only the kaon and D, D∗ masses appear in the propagators and the potential is fitted

to the lattice energy levels, there is no explicit dependence on mπ in the analysis. We

also assume that something similar occurs for the lattice energy levels and the changes

between using 156 MeV or 140 MeV would be insignificant. This is actually the case for the

chiral extrapolation of the K̄D and KD scatttering lengths in [26]. However, the D and

D∗ masses of the lattice simulation are smaller than the physical ones, which is related to

the Fermilab method employed (see M1 in table 2). This is the reason why we did not

quote absolute values of the energies obtained, but the binding energies with respect to

the thresholds. We can attempt to do an extrapolation of the results to physical masses.
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M1 (MeV) 1631 1867

Ref. [5] Physical

B(MeV) 35.5 31.9

| g | (GeV) 10.4 11.3

P (%) 87.2 88.3

a0 (fm) −1.25 −1.33

r0 (fm) 0.19 0.14

Table 6. Extrapolation of the bound state properties to the physical mass of the D meson, using

qmax = 1275 MeV.

M1 (MeV) 1788 2008

Ref. [5] Physical

B(MeV) 44 96

| g | (GeV) 10.3 14.2

P (%) 66.1 60.6

a0 (fm) −0.99 −0.72

r0 (fm) −0.060 −0.002

Table 7. Extrapolation of the bound state properties to the physical mass of the D∗ meson, using

qmax = 1275 MeV.

For this purpose we assume that the potential obtained can also be considered in absolute

terms. Then we use this potential with the realistic masses in the loop function G and

obtain the results shown in tables 6 and 7.

A third source of systematic uncertainties comes from the use of one type or another of

the potentials, eqs. (3.6) or (3.14), that we have already discussed in sections 3.2 and 3.3,

respectively. Comparing the values given in eqs. (3.10)–(3.13) with those of eqs. (3.15)–

(3.18), we find that the systematic errors associated to the use of different potentials are:

δB(KD) = 8.5 MeV ,

δB(KD∗) = 7.5 MeV ,

δP (KD) = 4.5 % ,

δP (KD∗) = 4.0 % ,

δa(KD) = 0.1 fm ,

δa(KD∗) = 0.2 fm ,

δr0(KD) = 0.1 fm ,

δr0(KD∗) = 0.1 fm .

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
1
5
3

Altogether, summing these systematic errors in quadrature to those of tables 4–7, we

finally obtain the results:

B(KD) = 38 ± 18 ± 9 MeV ,

B(KD∗) = 44 ± 22 ± 26 MeV ,

P (KD) = 72 ± 13 ± 5 % ,

P (KD∗) = 57 ± 21 ± 6 % ,

a(KD) = −1.3 ± 0.5 ± 0.1 fm ,

a(KD∗) = −1.1 ± 0.5 ± 0.2 fm ,

r0(KD) = −0.1 ± 0.3 ± 0.1 fm ,

r0(KD∗) = −0.2 ± 0.3 ± 0.1 fm ,

where the first error is statistical and the second systematic, which should also add in

quadrature.

6 Conclusions

In this work we have done a reanalysis of the lattice spectra obtained in [5, 6] for s-wave

scattering channels KD and KD∗, where bound states were identified with the D∗

s0(2317)

and D∗

s1(2460) states. The analysis of [5, 6] derived the scattering length and the effective

range from two of the energy levels. The information of the third level was not used. Here

we have done a reanalysis of the lattice spectra that takes into account the information of

the three levels. The essence of the new method was the use of an auxiliary potential which

was allowed to be energy dependent in the case of considering only one channel. This is

demanded to take into account the fact that the single channels will most probably not

saturate the states. We found a bound state for both KD and KD∗ scattering, which we

associated to the D∗

s0(2317) and D∗

s1(2460) states.

In order to find out the most likely missing channels we were guided by the results of

the chiral unitary approach which determines the ηDs, and ηD∗

s channels as the additional

most important ones to saturate the wave function. However, the limited information from

the lattice spectra drove us to use an energy independent potential with the consequence

that the two channels chosen would saturate the wave function. With this restriction we

found no solution, indicating that the lattice spectra does not contain information on the

ηDs, and ηD∗

s channels. This seems to be the case since the levels found in [5] are largely

tied to the interpolators used, and no interpolators accounting for ηDs and ηD∗

s states

were included.

We analyzed the lattice spectra considering only one channel and two energy depen-

dent potentials. One potential is taken linear in s and another one contains a CDD pole

accounting for possible genuine c̄s components. The results with both methods were com-

patible within errors. We also studied systematic uncertainties from other sources, which

were found, in all cases but one, reasonably smaller than the statistical errors. Our analysis
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confirmed the existence of bound states for the KD and KD∗ channels with a binding of

the order of 40 MeV, which we associated to the D∗

s0(2317) and D∗

s1(2460) states. We could

also determine the scattering length and effective range for KD and KD∗ scattering, im-

proving on the previous results of [5] based on the information of the lowest two levels only

and relying upon the effective range formula. Finally, we could determine within errors

that the states found are mostly of meson-meson nature and, using a sum rule which refor-

mulates the test of compositeness condition of Weinberg, we established the probability to

find KD and KD∗ in those states in an amount of about (72±13±5) % and (57±21±6) %,

respectively. We discussed that, in order to be more precise on these numbers and obtain

information on the channels that fill the rest of the probability, one must improve on the

precision of the energy spectra and must include further interpolators that allow one to

include the ηDs and ηD∗

s channels in the analysis.

The exercise done shows the power of the method and the valuable information con-

tained in the lattice spectra. The errors obtained here can be improved by having extra

accuracy in the lattice spectra, additional levels, or more easy perhaps, spectra calculated

for other lattice sizes. In any case, it has become clear that the information provided by

the lattice spectra, and the flexibility to use different box sizes to obtain a rich spectrum of

energies, is most useful when it comes to determine the energy dependence of the auxiliary

potentials, which is essential to determine probabilities of meson meson components (or

hadron hadron components in general) via the generalized sum rule.
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