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1. SUMMARY

Coinable (Cu, Ni, Ag, Au) and Pt-group metals (Pt, Pd, Ir, Rh) are face centered cubic (fcc)
transition metals used in catalysis as active phases, usually in the form of nanoparticles. These
nanoparticles mostly expose most stable surfaces, which are the main responsible of the
interaction with reagents.

Here we studied, by Density Functional Theory (DFT) calculations using slab models, the
surface stability, in terms of surface energy, relaxation, degree of compression, and coordination
number. The most stable surfaces studied are those with higher degree of compression and
lowest Miller index, such as (111), (011), and (001) surfaces, which a priori are the most stable
ones. Results were obtained, comparing and commenting two levels of computation, either using
the Perdew-Burke-Ernzerhof (PBE) or the Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-
correlation functionals.

The results suggest that the surface energy shows the typically parabolic dependence on the
d band occupation in transition metals. It is also found that (111) surface is the most stable one
because of its higher degree of compression, lower energy relaxation and surface energy.
Furthermore, TPSS functional gives better surface energies with higher accuracies yet the data
are more difficult to obtain. In contrast, semi-empirical methods can only be used for qualitative
studies as they are just good giving trends of surface energy.

Keywords: Surface energy, fcc transition metals, stability, slab model, density functional theory
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2. RESUM

Els metalls encunyables (Cu, Ni, Ag, Au) i els metalls del grup del Pt (Pt, Pd, Ir, Rh) sdn
metalls de transicié fcc emprats en catalisi com a fases actives, normalment en forma de
nanoparticules. Aquestes nanoparticules exposen principalment les superficies més estables,
que sbn les responsables de la interaccié amb reactius.

En aquest treball de fi de grau s’ha estudiat la estabilitat de les superficies amb index de
Miller més baixos — (001), (011), i (111) —, que son les més compactes, i per tant, a priori, les
més estables. L’estabilitat és mesurada en funcié de la energia superficial, el grau de
compactacié de la superficie, el nombre de veins i la relaxacio superficial. Aquestes dades s’han
obtingut realitzant calculs computacionals basats en la teoria del funcional de la densitat (Density
Functional Theory — DFT) i emprant un paquet de calcul amb condicions periodiques de — Viena
Ab Initio Simulation Package — VASP — i model de llesca (slab). S’han comparat dos funcionals
adients en la descripcié del interior (bulk) dels metalls de transicié, el de Perdew-Burke- Ernzerhof
(PBE), i el de Tao-Perdew-Staroverov-Scuseria (TPSS).

Els resultats suggereixen que I'energia superficial segueix un dependéncia parabdlica amb
la ocupacié dels orbitals d dels metalls de transicié. També s’ha corroborat que la superficie més
estable és la (111) ja que és la més compacte i amb la que s’obtenen menors energies de
relaxacié. A més, s’ha trobat que emprant funcional TPSS les energies superficials calculades
amb regressié lineal sén les que tenen més precisid, tot i el seu elevat cost computacional,
comparant amb el funcional PBE. Per altre banda, els métodes semi-empirics només es poden
emprar per estudis qualitatius degut que només sén correctes definint les tendéncies de I'energia
superficial.

Paraules clau: Energia superficial, metalls de transicié fcc, estabilitat, model de slab, teoria del
funcional de la densitat
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3. INTRODUCTION

Metals have such interesting properties that make them ideal materials for a diverse range of
applications, and so they are widely used in industry, electronics, catalytic converters,
thermocouples, fuel cells, in petroleum refining, and numerous laboratory equipments.

The metal properties raise from the metallic bond and the crystallographic structure. The
metallic bond is to date fully understood by molecular orbital and band theories and the properties
raise as a result of the electron delocalization in the metallic bonding where an electron cloud
surrounds the atoms.! Concerning the atomic position, most of transition metal atoms arrange in
one of the following crystallographic structures; the body-centred cubic (bcc), the face-centred
cubic (fcc), or the hexagonal close-packed (hcp) structures; see Fig. 1.

Figure 1. The bec (left), fec (middle), and hep (right) crystallographic structures. Coloured spheres

denote metal atoms.

Both fcc and hep are close-packed structures, and the main difference between them is the
layer stacking, hcp has an ABA stacking whereas fcc has an ABC stacking, see Fig. 2.
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Figure 2. The hep (left) and fec (right) stacking along fec [111] low Miller indices direction.

Here we focus on fcc transitional metals, which are actually the so-known coinage metals Cu,
Ni, Ag, and Au, and the Pt-group Pt, Pd, Ir, and Rh metals. They are used not only for coins or
jewellery, but also most used in heterogeneous catalysis as active phases, typically in the form
nanoparticles supported on an inert oxide with high surface area, yet other supports, such as
carbides, are becoming appealing.2 These nanoparticles tend to mostly expose those surfaces
with highest stability, which are then the main responsible of the interaction of the catalyst with
reagents, intermediates, and products.

The exposure of one or another surface is determined by the surface stability, ruled by the

so-called surface energy, i.e. the energy necessary to create the flat surface. Surface energies
are fundamental in understanding a wide range of surface phenomena including growth rate,
crystallite processes, grain boundaries formation, sintering processes, the catalytic performance,
atomic or molecular adsorption/desorption, surface segregation, passivation, corrosion,
relaxation, and reconstruction processes. 3

The experimental determination of surface energies is very challenging; high temperatures
are needed to measure surface tension changes at the metal melting temperature and values
extrapolated to lower temperatures.* Moreover, experimental determination of a specific surface
plane is extremely rare. However, the surface energy effects, like predominance of certain planes,
are easily observed with microscopy techniques, and oftentimes macroscopically featured in
mineral crystallites. However, surface energy can be relatively easily calculated with theoretical
methods, Density Functional Theory (DFT) being the working horse, and thus, an effective mean
to get reasonable estimates, at least for trends, which help at rationalizing the above-mentioned

phenomena.
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The most interesting surfaces to explore are those with the lowest energy,® which tend to be
the close-packed surfaces with low Miller indices, such as the (111), (011), or (001) surfaces for
fcc metals, the ones here studied. We assess different ways of estimating surface energies at two
levels of computation within DFT; either using the Perdew-Burke-Ernzerhof (PBE) or the Tao-
Perdew-Statoverov-Scuseria (TPSS) exchange-correlation functionals, thus comparing their
suitability. The stability is studied as a function of bulk cohesion, surface compactness, and
degree of saturation, accounting as well the surface relaxation and the relaxation energy once

the surface is created. Semi-empirical methods are also studied to size their accuracy.
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4. OBJECTIVES

The overall aim of this project is to study the energetic stability and structure of the possible low

Miller indices surfaces of fcc transition metals. The specific objectives are:

To model most stable (001), (011), and (111) surfaces of fcc metals with slab models of
variable width.

To compare and calculate the surface energies at two levels of computation within DFT;
using either the PBE or the TPSS exchange-correlation functionals, assessing their
suitability comparing to available experimental data.

To estimate de degree of surface relaxation, comparing PBE and TPSS structural data
with experimental values.

To estimate surface energy dependence on the surface compactness, saturation,
relaxation energy, and bulk cohesive energy.

To assess various semi-empirical models to estimate surface energies, either using
Stephan equation or the broken-bond model.

To unravel the fcc transition metal surfaces stability obtaining trends along groups and
series, and the implication in nanoparticle catalysts.
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5. METHODS

5.1. SCHRODINGER EQUATION AND HARTREE-FOCK

Quantum chemistry methods are based on the resolution of the Schrédinger equation to obtain a
system energy (E) using a Hamiltonian operator (H), which includes the kinetic contribution of
the electrons (T,,..) and the atomic nuclei (T,,,.), the potential interaction between them
(Votec—nuc), @nd between electrons (V,;.c_erec) and nuclei (V,,c—nuc)- 2 This Hamiltonian can
be written in one simple line;

AY = EY (Eq. 1).
Within the Born-Oppenheimer approximation the equation becomes:
Hepee ¥ = (Terec + Vetec—ectec + Vetec—nuc)¥ = E¥ (Eq.2).
Thus the Born-Oppenheimer approximation lies in decoupling electronic and nuclear
movements, knowing that the relative mass of nuclei is much higher than the electron ones. As a
result, the kinetic energy of electrons does not depend on the nuclei movements, the kinetic

energy of nuclei is assumed zero, and the interaction between nuclei is a constant determined
given a nuclear configuration. Then one only needs to solve the electronic Hamiltonian, H,;,..

A simple method to obtain an approximation of the energy for a polielectronic system is the
Hartree-Fock (HF). This variational method uses just one Slater determinant, made of
monoelectronic spinorbitals. Although HF method does not introduce the electronic correlation
between electrons with different spin, it is a good first approximation and it opens the door to other
methods with more precision, which account for correlation energies, known as post-HF methods.

The main disadvantage of HF and post-HF methods is that they cannot be used to study large

and complex systems due to its high computational cost. Nevertheless, the revolution of
computational chemistry of recent years has been DFT, which is detailed next.
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5.2. DENSITY FUNCTIONAL THEORY

Methods based on electronic density functionals,? also known as DFT, are an alternative to ab
initio traditional methods, which are based on wavefunctions. DFT is the most popular theoretical
approach nowadays available for solving the electronic structures of solids and their surfaces in
general, and so for metal surfaces.

The main advantage of DFT methods is that they are much more economic from the
computational point of view, because the electronic density function has only three variables (four
counting spin), whereas wave function depends on 3N variables for an N electrons system.
Moreover, DFT permits to introduce correlation and exchange energies, although many
approximations are needed for so, and so different DFT methods have been developed with
increasing precision.

The electronic density function describes the number of electrons found in a differential
volume dr with arbitrary spin. Then, the total space integral of p(r) gives the total number of
electrons of the system, where electronic density is zero at infinite distance for an isolated non-
periodic system.

[p(r)dr=N (Eq.9)
p(r > ) =0 (Eq. 4).

Hohenberg and Kohn established the ground of DFT basis, which was later finalized with the

Kohn-Sham method, see next.

5.2.1. Hohenberg-Kohn theorems

5.2.1.1. First Hohenberg-Kohn theorem

The first Hohenberg-Kohn (HK) theorem shows that two electronic systems with external
potentials that differ by more than a constant cannot have ground states with the same electron
density. 2 In other words, the electronic density of a system is specific to a given external potential,
and vice versa.

P) = Vet 1) 5 Vere (1) = p(r) (Eq. 5).
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5.2.1.2. Second Hohenberg-Kohn theorem

The second HK theorem states that there cannot be two different systems with the same
electronic density in its fundamental state. The energy is a universal functional of the electronic
density, then

E=E[p(r)] 2 E, = Elp,(r)] (Eq. 6).

5.2.2. Kohn-Sham method

The last decisive step to develop DFT was the Kohn-Sham (KS) so-known formalism.28 The
authors pointed that a polielectonic system described with a density p(r) can be related to another
system made of non-interacting electrons with the same density p(r) called the Jellium model, and
in this way p(r) can be expressed as que sum of squared monoelectronic N spinorbitals ¢;, called
KS orbitals. At practice ¢; of Jellium are similar to monoelectronic orbitals, and can be as well
expressed as a function of other functions basis-set.

p(r) = prs() = X1 19 (P)|? (Eq.7).

5.2.3. Exchange and correlation functionals

Within KS method, all different contributions to the system energy are known, but the exchange
and correlation energy.2 5 The exchange and correlation functional is the key for the correct
application of DFT. Within the Born-Oppenheimer approximation, the theory is exact. However,
the precise form of Ex[p] is unknown, yet can be divided into two terms; the electron exchange
and the electronic correlation.

Exclp] = Ex[p] + E¢[p] (Eq. 8).

The electron exchange emerges because a many-body wavefunction must be antisymmetric
under the exchange of any two electrons with same spin. This antisymmetry of the wavefunction
is simply a general expression of the Pauli exclusion principle, but reduces the Coulomb energy
of the electronic system by increasing the spatial separation between electrons of same spin. The
electron correlation further reduces the Coulomb energy between electrons of different spin
because the motion of each individual electron is correlated with the motion of all others, helping
also to keep electrons of odd spin spatially separated. Next some well-known approximations for
the exchange and correlation functional are detailed.
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5.2.3.1. Local density approximation

The Local Density Approximation (LDA) is the simplest approximation to get the exchange and
correlation functional and it is based on the assumption that the electron density does not change
much with the position, and so depends only on the position. Then, the exchange-correlation
density can be taken as that of a uniform electron gas of same density. 2 5

Modern LDA functionals tend to be exceedingly similar, differing only in how their correlation
contributions have been fitted to a many-body free electron gas data. The Perdew-Zunger (PZ),
Perdew-Wang (PW), Ceprley-Alder (CA), and Vosko-Wilk-Nusair (VWN) functionals are all
common LDA functionals. Despite its simplicity, LDA can give good results for systems with slow
varying densities such as atoms, molecules, solids, and surprisingly, good results for metal
surfaces.

5.2.3.2. Generalized gradient approximation

To improve LDA approximation density gradients are included in the exchange-correlation
functional. This is the so-known Generalized Gradient Approximation (GGA). The most widely
used GGAs in solid state physics are Perdew-Wang (PW91), and PBE. PBE actually got several
offspring; rev-PBE, RPBE, PBE-WC, and PBEsol. The so-called meta-GGA consider density
gradients and laplacians in their formulas being, either TPSS and revTPSS are examples. In this
work PBE and TPSS exchange correlation functionals are the ones contemplated. 25

5.2.3.3. Hybrid functionals

Hybrid functionals use a part of the exchange energy from HF method, plus part of exchange and
the full correlation from LDA or GGA methods. Becke-Lee-Yang-Parr (B3LYP) functional is
probably the most common hybrid functional used in the quantum chemistry community, given its
great performance on molecular thermochemistry.
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5.3. PERIODIC SOLIDS

Crystalline solids have, by definition, periodicity. This periodicity introduces important elements of
simplicity when representing solids to obtain important information of their chemical and physical
behaviour, for either chemical, physical, or catalytic applications. The Schrédinger equation or
electron density can be solved for just a small unit cell with periodic boundary conditions and so
avoiding to do so for the whole solid structure. Bloch theorem states that the wavefunction cannot
be affected when it is moved to an equivalent point of a replicated cell, and so all its properties
are then intrinsically periodic. 2

5.3.1. Crystalline structures

The perfect arrangement and periodic structure of the atoms of a crystalline solid at 0 K is the key
to reproduce the totality of the solid. The part of the solid which is transitionally repeated is called
the unit cell and it is used to study the properties of the bulk. Depending on the lattice vectors and
positions of the atoms inside the unit cell we can have different arrangements. The fcc structure
is the one studied in this work. It is considered a close-packed structure with a coordination
number in the bulk of twelve, and four atoms per cell, see Fig. 3.

/|°f°/
o P
o %0

/S @ @ |

Figure 3. The fcc coordination number. Light blue spheres denote the 12 atoms surrounding the red atom.
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5.3.2. Reciprocal space and k-points

The essential characteristic of metallic bond is that the valence electrons are delocalized among
a lattice of metal atoms. Delocalization is the consequence of a heavy overlap between the
individual valence wavefunctions resulting in the valence electrons being shared by all the atoms
in the metal. Then, atoms can be perceived as atomic nuclei immersed in a sea of electrons. This
electron sea leads to a bonding that is generally not directional, resulting in close-packed crystal
structures being often favoured. Because of the strong overlap of the orbitals the resulting
electronic wavefunction or bands of a metal will thus exhibit a strong dispersion in reciprocal
space, also called k-space or first Brillouin zone.

Reciprocal space is an alternative space of the real space in the Bravais lattice, which is
useful for studying solids. It can be defined for its lattice vectors b;, which are related with the real
lattice vectors a; of the cell as seen in Eq. 9 and exemplified in Fig. 4.

anak

bi = Zﬂm Vl-‘]-_kE {1,2,3} (Eq 9)
2']'[/a2
T al

Figure 4. Reciprocal and real space vectors.

To simplify the study of the reciprocal space, we can take advantage of symmetry elements.
Therefore, one just needs to study a discrete number of lattice vectors k, also called k-points. In
practice, a Monkhorst-Pack grid of k-points is used and a thinner grid is used when convergence
of an observable, such as energy, is reached. Finally, note that the reciprocal space volume
reduces as the real space increases. A big grid is needed for small unit cells and only a k-point
for cells with a large volume.
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5.3.3. Pseudopotentials

Pseudopotentials are used because of the high computational cost of systems with many
electrons, such as transition metals. The idea is that the core electrons of an atom result
unaffected when there is a chemical change in the surroundings of the atom. This way, the effect
of core electrons can be joined to an effective potential assuming that the core electrons do not
change at all. This results in decreasing the number of plane-wave functions because core
electrons are not explicitly described, so valence electrons, which are the main responsible of the
chemical processes, are the only ones studied.

The Projector Augmented Wave (PAW) method was developed by Blochl” in 1994 and
permits to describe with precision core electrons, resembling an all-electron calculation. PAW
method pretends to solve the problem by dividing the wavefunctions in to two regions, one soft
reacting region and another for core electrons. In this work, PAW pseudopotencials are used.

5.3.4. Slab model

Bloch theorem can be applied for surfaces, allowing the electronic structure problem for infinite
3D solids to be used in 2D simulations. This is done by introducing a vacuum region along the
studied surface normal direction, see examples in Fig. 5.

10A

Figure 5. Six-layer slab stacking along [001] Miller index direction (left), [011] (middle), and [111] (right) for

an fcc transition metal with 10 A of vacuum. Black spheres denote metal atom positions.
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The periodic boundary conditions ensure these slabs to be infinite along surface plane, but
also normal to it, where the 10 A vacuum repeats infinitely. The slab model implies studying
different number of layers to obtain the correct description of electronic properties of a metallic
surface. Therefore, in the present work, thickness as of 4, 5, and 6 layers have been studied to
obtain convergence of surface energy of fcc metals cut perpendicular to [001], [011], and [111]
Miller indices directions.

5.4. SURFACE ENERGY

Surface energy is probably the main energetic feature of surfaces and it is one of the basic
quantities to understand the surface structure, reconstruction, roughening, and relaxation.
Cleavage energy can be defined as the energy required to split an infinite crystal into two parts,
given per surface area. When two identical surfaces are created, the cleavage energy equals two
equivalent surface energies.

Despite its importance, the experimental value of surface energy is difficult to determine. Most
of the experiments are performed at high temperatures where the surface tension of the liquid is
measured, which is then extrapolated to 0 K. Moreover, these experiments contain certain
uncertainties such as that surface energy values belong to an isotropic crystal. Therefore, a
theoretical determination discerning different surface endings is of vital importance. Recently
surface energy of metals has been calculated using ab initio techniques with unprecedented
accuracy. Surface energy is calculated in this work in four different ways, two ab initio, and two
using semi-empirical equations; the Stephan equation or the broken-bond model.38

The first ab initio method is to calculate surface energy by knowing that it can be defined as
the energy, per unit area, required to form two equivalent surfaces by splitting a bulk crystal into
two parts, and it can be written as:

Vretax =~ rbulk (Eq. 1)

where E,;, and E,,;, are the total energies of the slab and the crystal bulk, respectively, N is
the number of atoms composing the slab unit cell, and A is the surface area of each of two
equivalent exposed surfaces.
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Another method is derived from a readjustment of Eq. 11 and a linear regression of Eg;4;
versus N obtaining the surface energy at the equation intercept:

Esiap = N Epuik + 2Vreiax4 (Eq. 12).

Within this methodology, a set of slabs with different thickness, from 4 to 6 layers, has been
considered to perform a linear regression of E,, as a function on N. Note that slope should be
Epuire

When using Stephan semi-empirical equation® some parameters are needed, which are the
vaporisation enthalpy 4H®,,,), the molar mass (M), the density of the metal (p), and the

coordination numbers of the slab (Z) and bulk (2):

_ AH®%qp p?/3 Zs
=B NP 7

(Eq. 13).

On the other side, the traditional semi-empirical broken-bond model'® 1112 is used as well to
estimate surface energy values at T = 0 K for the transition metals with different facets. Since the
bond strength becomes larger for an atom with a smaller coordination number, this coordination
number bond strength relation can be quantified using the tight-binding approximation. Knowing
that the total crystalline energy is a sum of contributions of all bonds of an atom, surface energy
can be estimated as the energy per bond assumed to scale with squared coordination number
leading to the next equation:

VZ -z
=B g, (Ea. 14).

Note that both semi-empirical methods assume a dependence with Z,, but to a different

extent, and, in adidition a direct proportionality to the metal cohesion quantified as 4H?,,,,, and
Eon, respectively.
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6. COMPUTATIONAL DETAILS

The DFT calculations have been performed using the Vienna Ab Initio Simulation Package
(VASP) and PAW pseudopotentials. The electronic exchange-correlation was described by PBE
GGA and TPSS metaGGA functionals. Valence electron density was expanded in a plane-wave
basis set with a 415 eV cutoff energy for the kinetic energy. A standard slab structure was used
to model the surface systems, containing 4, 5, or 6 layers for (001), (011), and (111) surface
orientations. All atoms were allowed to relax during optimizations. These optimizations have been
carried out using the tetrahedron smearing method with an energy width of 0.2 eV to speed up
convergence, yet final energies are extrapolated to 0K (no smearing).

The electronic structure calculations were non spin-polarized, with the exception of the
isolated metal atoms and Ni systems. An optimal Morkharst-Pack grid of 7x7x7 special k-points
dimensions was found to be sufficient for accurate bulk total energy calculations in most stringent
metals —shortest cell parameters—, and so used for all bulk calculations.

When computing atoms in vacuum, a broken symmetry cell of 9x10x11 A dimensions was
employed to ensure proper occupancy of degenerate orbitals. These atomic optimizations have
been carried out using a Gaussian smearing with an energy width of 0.001 eV in order to have
the correct population in each orbital. Given the isolated character of atoms, calculations were
carried out at I'-point.

In the case of slab calculations, a 7x7x1 Morkharst-Pack grid was used to sample the
reciprocal space. Bulk and slab optimizations were stopped when atomic forces acting on atoms
were below 0.02 eV A, and an electronic convergence criterion of 106 eV was used.
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7. RESULTS

7.1. BuLK

Bulk calculations were done to ascertain whether bulk has been described with a sufficiently
correct degree of accuracy. For these calculations, cohesive energy and the shortest interatomic
distances (0) were obtained and compared with previous PBE and TPSS calculations and

experimental data. Cohesive energy of fcc metals was calculated as the difference between the

energy per atom in bulk (EI’NL”‘) and the energy of an isolated atom, E ., see Eq. 15.
Econ = Eq¢ — Eb;;lk (Eq. 15).

Comparing calculated values with experimental ones, there is very good agreement with PBE
functional but TPSS only captures trends, see Table 1. The poorer accuracies of TPSS

calculations are due to its difficulty in describing isolated atoms.

exp. a PBE b PBE TPSS b TPSS
Metal Ecoh Ecoh Ecoh Ecoh Ecoh

Ni 4.48 4.87 4.84 540 6.12
Cu 3.51 348 348 3.73 4.45
Rh 5.76 5.62 5.61 6.22 6.73
Pd 3.93 3.7 3.70 4.01 4.00
Ag 2.96 249 248 2.73 3.29
Ir 6.96 7.32 7.35 7.1 1.73
Pt 5.87 5.50 5.49 5.79 543

Au 3.83 2.99 2.98 3.28 3.30
(a) Ref. 13, (b) Ref. 14.

Table 1. Cohesive energy calculated within PBE and TPSS functionals and experimental values. All data is

given in eV/atom.
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A way to quantify the accuracy of these methods is by calculating the Mean Error (ME) and
the Mean Average Error (MAE). Then, one can see that TPSS overestimates the cohesive energy
values and that PBE is better suited, see Table 2 below.

PBE TPSS
Exp. PBE Exp. TPSS

ME 017 -0.01 047 0.27
MAE 036 001 071 037

Error

Table 2. ME and MAE of cohesive calculations.

Although TPSS values of cohesive energies are not as good as PBE ones, TPSS functional
give results with similar accuracy for the calculated shortest interatomic distances in bulk, see
Figure 6. For Niand Cu bulk calculations, however, there is slight deviations to experimental ones.
The shortest interatomic distance within a crystal cell, 8, depends on the lattice parameter q,
which in the fcc structure, it equals a/\2.

3.0 P
s )
28 1
26 -
— N o
=< »
s 24
o)
®PBE
22
TPSS
20 4= :
20 25 3.0
6exp [A]

Figure 6. Calculated 8, Ocalc, versus experimental values, dexp. Dotted line would represent perfect

agreement.
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7.2. SURFACE RELAXATION

The surface relaxation (atomic movement in the surface normal direction) observed in the
calculations is based on the fact that atoms at the surface of a crystal have less neighbours than
they do in the bulk, and so they are then under-coordinated, as the electronic readjustment makes
that they do not remain at their precise bulk truncated positions. Rather, the few atoms from the
top layers of the metal are likely to move, retaining their periodicity, in response to their new
environment. So, when a crystal is cut to form a surface, atoms rearrange in order to reduce the
charge-density corrugations. This leads to a motion of the atoms left on top of the surface atoms
resulting in a displaced position towards the rest of the crystal. This is schematically illustrated in
Fig. 7 (where d12 = dssand d12 < d23 as a result of symmetric layer relaxation).

2 4B & & <

dy

dys

dy

66
00O

i

diy

0 6 6
0 6 6
00 6 6

Figure 7. Schematic side view of a relaxed surface of 5 layers.

The results obtained show that there is a contraction of the slab in average of all metals for
the (001) and (011) surfaces yet there is an expansion of all metals for (111) surface, see Table
3. The degree of relaxation is consistent with the surface energy calculations in the sense that
the more stable the surface is, the less contraction of the layers. This makes perfect sense in an
instability-driven relaxation. Some Low-Energy Electron-Diffraction (LEED) analysis confirmed
the prediction of multilayer relaxation.5 See Table 4, 5, and 6 below. We calculated the relaxation
energy from the difference between fixed surface energy and relaxed surface energy, which is a
way to determine surface relaxation; see Table 3 to observe that the most stable surfaces have
also less relaxation energy. Fixed surface energy has been obtained using Eq. 11 but the Esias at
bulk truncated positions.
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Surface Functional ¥rix [J/m?] Contraction [%] Ere [J/m?]
(001) PBE 1.75 9 -0.03
TPSS 214 16 -0.07
(011) PBE 1.84 21 -0.08
TPSS 217 9 -0.14
(111) PBE 1.34 -16 -0.03
TPSS 1.55 -13 -0.04

Table 3. Average percentage of contraction, fixed surface energy and relaxation energy for (001), (011),

and (111) surfaces. For TPSS calculations on Ni and Cu not all values are not included as were not

converged. Negative values of contraction denote expansion of the slab.

Method  Ni Cu Rh Pd Ag Ir Pt Au

Adz  PBE 0.17 0.82 -0.20 1.36 1.10 0.24 245 244
TPSS - 4.05 -0.01 1.78 0.49 -0.01 -0.01 222
LEED 07405 -12+06° 1.3+1.3a -0.5+0.3¢ 02+1.1b 0.6 +8.1¢
LEED 0.3+1.02 24+£09 1.0£0.12

Ad;s  PBE 1.43 1.96 1.73 1.18 1.43 1.64 1.14 1.69
TPSS - -4.46 141 0.13 -0.08 1.73 -1.46 1.64
LEED 0.7+£07¢ 1313 1.02 -1.0£1.10 -0.64 £1.7¢
LEED 0.7+0.9° 0.4+£0.4¢

Adx  PBE 1.69 1.76 1.63 1.49 1.47 2.08 2.03 1.52
TPSS - -1.50 1.33 0.04 6.63 1.85 -0.63 1.52
LEED 04110 22+130 0.0+0.44 024220 11£17e
LEED 0.7+18

(a) Ref. 5, (b) Ref. 15, (c) Ref. 16, (d) Ref. 17, (e) Ref. 18.

Table 4. Percentage interlayer relaxation, Adj, for several close-packed fcc metal surfaces, as obtained

from DFT (PBE and TPSS) calculations of (111) surface and LEED analyses. Positive values denote

expansion while negative ones denote contraction.
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Method Ni_ Cu Rh _Pd Ag I Pt Au
Ad. PBE  -970 -1021 -1014 955 925 -11.47 -1425 -13.92
TPSS  -248 -1045 -768 -767 -570 -1057 -1185 -11.06
Adx PBE 150 448 043 369 418 222 907  9.07
TPSS  -687 1162 -049 328 212 112 708 695
Ady PBE 016 222 156 094 259 -191 408 617
TPSS 060 1072 324 -089 378 034 236 422

Table 5. Percentage interlayer relaxation, Adj, for several close-packed fcc metal surfaces, as obtained

from DFT (PBE and TPSS) calculations of (011) surface and LEED analyses. Positive values denote

expansion while negative ones denote contraction.

Method Ni Cu Rh Pd Ag___Ir Pt Au

Ad;  PBE 337 -2.36 -4.00 416 A4 551 279 107
PSS 1.77 -3.80 0.27 143 451 218 542
LEED -10£10: -11+040 05+100  30%15

Ads  PBE 111 0.45 0.17 0.16 001 082 070 035
PSS 2.22 0.08 1.21 018 051 050 -393
LEED 0015  -10+15

Adw  PBE 049 0.33 0.89 004 046 000 -026 0.5
TPSS -3.01 0.19 141 067 041 021 371

(@) Ref. 19, (b) Ref. 20.

Table 6. Percentage interlayer relaxation, Adj, for several close-packed fcc metal surfaces, as obtained

from DFT (PBE and TPSS) calculations of (001) surface and LEED analyses. Positive values denote

expansion while negative ones denote contraction.



30 Ruvireta Jurado, Judit

For two of these surfaces (Pd and Pt) there is an excellent agreement between theory and
experiment suggesting that the expansion effect is real. However, for Cu(111) and most of the
other surfaces, experiment and theory disagree, and the question of how exactly the topmost
layer relaxes is still somewhat unclear.5 Accuracies obtained from experimental values of
interlayer distances are not very good, so clear comparisons between experimental and
calculated values are hindered. See also in Fig. 8 that the results from PBE or TPSS are also
really different between them but see how in many cases calculated values fall within the
experimental uncertainties.

3
Au; PBE
2.5 | O—P-PBE+ e
) ———0—At-TFPSS
P TPSS
1o Ag: PBE = e
' n—c& Pd; PBE
] ’ ®CuPBE i
3 05 —P|
Rh;TPss A9 TPSS..
0 f—o “——o—PLTRSS
_‘_'
05 Rh; PBE
1
15
15 05 05 15 25

Figure 8. Calculated interlayer distance, Ad12@c, versus averaged experimental values, Ad122%°. Dotted line

would represent perfect agreement.

7.3. SURFACE ENERGETICS
7.3.1. Ab initio methods

The surface energies were calculated ab initio, with the goal of connecting the surface chemical
activity with a degree the bulk description, see Eq. 11. The other computational calculation to
obtain surface energy is using Eq. 12 to plot Eg,;, in front of N. Therefore, E,,,;; obtained from
linear regression can be compared with previous ones to quantify the accuracy them.
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See Fig. 9 values for Ag along (011) direction using TPSS functional as a representative

example of regression for all the studied fcc metals. Then from the slope of the linear regression

a surface energy of 1.70 J/m2 is obtained. Note that the data is perfectly fitted to the regression

line, obtaining a coefficient of determination (R?) equal to 1. This example has been chosen as

representative as all the linear regressions done give the same error, even if there are five or

three types of slab.
0 0.5

1.5

25

0
-2E-16
-4E-16 -
7 -6E-16

-8E-16 -
AE-15

slab [‘J]

R?=1

y = -4E-16x + 4E-19

N

Figure 9. Linear regression of E,j, in front of N for Ag (011) at TPSS.

The surface energies obtained are encompassed in Table 7. At a first glimpse, all calculations

agree with the experiment yet surface calculations obtained from linear regression (Ir) are more

accurate than direct calculations (dc). This fact is due to the dragged error of bulk calculations

that in linear regression calculations is not contemplated.

Surface Method Ni Cu Rh Pd Ag Ir Pt Au
Experimental2 245 183 27 205 125 300 248 150

(001) PBE ® - 215 301 215 127 349 247 136
PBE (dc) 217 147 227 150 080 279 190 0.86

PBE (Ir) 233 146 257 153 082 310 178 0.86

TPSS(dc) 472 - 280 161 117 302 216 1.19

TPSS (Ir) - - - 183 125 334 203 115

(011) PBE ® - 219 308 223 135 353 250 1.41
PBE (dc) 226 151 229 154 083 279 195 086

PBE (Ir) 235 159 332 167 091 300 18 093

TPSS (dc) 414 385 281 153 142 304 227 1.16

TPSS (Ir) - 268 328 232 170 343 210 123
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(111) PBE® 192 130 198 127 074 227 146 0.73
PBE (dc) 172 133 179 114 082 205 126 0.64

PBE (Ir) 185 114 183 111 067 208 127 0.68

TPSS (dc) - 39 217 119 098 230 151 087

TPSS (Ir) - - 222 126 087 228 150 0.88
(a) Ref. 3, (b) Ref. 13.

Table 7. Surface energy of fcc metals at different planes calculated within direct calculation (dc) of a 6-

layers surface and linear regression method (Ir) using 4 to 6 layered surfaces. All data in J/m2.

Sutace EMOr g boF . PBE Exp.-  Exp.
(001) ME 044 062 -035 054 0.8 014
MAE 044 062 038 054 051 027
(011) ME 040 -065 -021 044 037 028
MAE 040 065 037 051 064 046
(111) ME 081 -012 083 013 026 0.66
MAE 081 014 083 013 087 066

Table 8. ME and MAE values of surface energies calculated within direct calculation (dc) and linear

regression (Ir) compared to experimental and previous calculation.

Note that within PBE all surface energies obtained are lower than the experimental® ones,
and so, the underestimation is evident. On the other hand, with TPSS functional the surface
energy values are sometimes overestimated, this is the case for Cu. Note as well that when
calculating surface energy with linear regression a slightly better agreement is achieved.
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Figure 10. Accuracy of calculated surface energies of 6-layers slab. Dotted line would represent perfect

agreement.

Surface energy can explain some physical properties of metals such as malleability. Note that
for Cu, Ag, and Au, which are the most malleable fcc metals, surface energies are lower. This is
also accords to its lower cohesive energy. See Table 9 where the averaged surface energy from
the surfaces (001), (011), and (111) have been calculated because experimental surface energy

is for an isotropic crystal, which does not have orientations, so a fairer comparison is on averaged
relaxed surface energies.

Ni_ Cu Rh Pd Ag Ir Pt Au
Yexp® 245 183 270 205 125 3.00 248 150

7rel 207 143 218 140 077 257 168 0.79
7ress - - 232 152 117 282 196 1.08
(a) Ref. 3.
Table 9. Experimental and averaged relaxed surface energy of fcc metals obtained by direct calculation.
All data in J/m?2.

When calculating ME and MAE for the averaged surface energy, one can clearly see that
TPSS functional has better accuracy than PBE one. We could also predict that the face exposed

of the fcc metals is a mixture of the most stable surfaces (001), (011), and (111) because of its
lower deviation from experimental data.
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Type of error s

yp Exp. Exp.
ME 055 -0.35
MAE 055 035

Table 10. ME and MAE of averaged surface energies calculated for all fcc metals except Ni and Cu.

The variation of surface energy with the type of crystal facet exposed, as seen, is known as
surface energy anisotropy. Generally, the surface energy of a metal is proportional to the number
of broken bonds at the surface. Thus, more open surfaces with more broken bonds are less stable
than the close-packed ones. This effect is qualitatively seen in the equilibrium crystal shapes of
metal particles when expose close-packed surfaces. Then, clearly, for each metal the surface
energy increases along with the surface under-coordination, being lowest for the (111) surfaces

and highest for the (011) surfaces. See in Table 11 values for Ag as a representative example for
all the studied fcc metals.

Surface y(J/im?) Zs Z Broken Bonds

o11) 142 7 12 5
001) 117 8 12 4
111) 098 9 12 3

Table 11. Surface energies of (111), (011), and (001) Ag surfaces within TPSS functional.

Although the variation of surface energy with the exposed crystal facet is a real fact, note that
there is really a small variation with the number of layers of the slab. See in Fig. 11 how
calculations with 2 layers showed an interaction between the top and the bottom layers, but this
stabilizes for the widths used in the present work.
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Figure 11. Variation of surface energy with the number of layers of the slab for Ag (011) at PBE.

7.3.2. Semi-empirical methods

When using Stephan equation, see Eq. 13, the obtained y can be compared with experimental
values, 3 see Fig. 12. There it is evident that trends are captured but with a great overestimation
and strong deviations because slopes should be 1 and the interception with the origin zero;
accordingly, the degree of precision is ~0.07 J/m2. So, Stephan equation can be safely used for
qualitative analysis, but for quantitative arguments.

14
v } -
P y=3543x-0.062| o (001) surface
10 - Py R2=0.995
— rs m
E 81 O -
s 8 o y=3.100x-0.055|  w(011) surface
>~ 6 iy R2=0.995
4 9 . y = 3986)( - 0070 (1 1 1) Surface
R2=0.990
2 .
04— : :
0 1 2 3 4
Yexp /M7

Figure 12. Lineal dependence and regression of surface energy by semi-empirical methods within Stephan

equation in front of experimental surface energy of fcc metals. All data in J/m2,
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Surface Method Ni Cu Rh Pd Ag Ir Pt Au
Experimentalz 245 183 27 205 125 3.00 248 150

(001) PBE (bbm) 115 077 112 070 042 144 1.02 050
TPSS (bbm) 163 120 137 075 060 153 100 0.56

(se) 849 640 956 7.01 426 1063 878 554

(011) PBE (bbm) 209 141 204 127 077 262 186 0.92
TPSS (bbm) 297 209 249 137 1.02 279 183 1.05

(se) 743 540 836 613 373 930 768 484
(111) PBE (bbm) 191 129 18 116 070 239 170 0.84
TPSS (bbm) - 197 227 126 100 255 167 0.9
(se) 955 720 1075 7.89 479 1195 988 6.23
(a) Ref. 3.

Table 12. Surface energy of fcc metals at different planes calculated within Stephan equation (se) or
broken-bond model (bbm). All data in J/m2.

Then when using the broken bond rule, see Eq. 14, also just trends were captured but
accuracy is better than using Stephan equation. See Fig. 13 and 14 that show the linear
correlation with experimental data,® where underestimation is obvious for PBE values and also
TPSS values, but within slight overestimation in a couple of cases. Also note that the degree of
precision is of ~0.6 J/m2 for PBE, whereas for TPSS is slightly better, ~0.32 J/m2.

PBE
3 1 y= 0.561x - 0.320 . (001) surface
R2=0.945
E2] =1.022x - 0582
S y
= RZ = (0.945 m (011) surface
&
" = 0.930x - 0,524
! R2=0.944 (111) surface
0 £ . .
0 1 2 3

Verp WM
Figure 13. Linear dependence and regression of surface energy by semi-empirical methods within broken-
bond rule in front of experimental surface energy of fcc metals. Cohesive energy in this case is calculated

within PBE functional. Dotted line would represent perfect agreement.
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Figure 14. Linear dependence and regression of surface energy by semi-empirical methods within broken-

bond rule in front of experimental surface energy of fcc metals. Cohesive energy in this case is calculated

within TPSS functional. Dotted line would represent perfect agreement.

Another way to determine the accuracy of this semi-empirical method is by plotting the

cohesive energy used in front of surface energy. Then, within the obtained slope of the linear

regression, one can make comparisons with the theoretical slope that should have been obtained.
Calculations using the cohesive energy from PBE functionals are slightly more accurate than
TPSS ones. As commented before, this fact is due to the poorer accuracies of TPSS functional

when describing isolated atoms, see Table 13.

Surface Method Theoretica

I slope Obtained slope

(001)  PBE 0.18
TPSS 0.18
(011)  PBE 0.24
TPSS 0.24
(111)  PBE 0.13
TPSS 0.13

0.21
0.23
0.38
0.42
0.34
0.34

Table 13. Slopes obtained within broken bond method.
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7.3.3. Surface energy versus cohesive energy

Relaxed surface energy of a metal can also be related with its cohesive energy. As seen in Fig.
16 and 17, as higher is the cohesive energy, the surface energy is higher too. This is due to the
metallic bonding of different metals. Also note the degree of precision is of ~0.12 eV/atom for PBE

and similar for TPSS, ~0.16 eV/atom. In addition, see that the trend for (001) and (011) surface
is similar yet (111) is slightly different.

4
y=0411x-0.124
31 R2=0.920 @ (001) surface
a ,-"‘
£, @B 1 [y=0408x-0080
‘—'E ' R2=0.904 (01 1) surface
1 4
y=0.279x+0.070 | 4 (111) surface
R2=(.783
0 s T T T T T

01 2 3 456 7 8 9
E.., [eV/atom]
Figure 15. Lineal dependence and regression of surface energy in front of cohesive energy of fcc metals

using PBE functional

Knowing that the cohesive energies of Ni and Cu obtained with TPSS functional are not as
good as expected. The following regression in Fig. 16 has been done without these two elements.

4
y = 0.425x - 0.165

3 A R?=(.989 @ (001) surface
= : -
% 2 i y —F({JZ.4=13X9-784062 (011) surface
N =

- y=0.322x-0.130 (111) surface

R2=0978
0 ""I‘ T T T

01 2 3 4 5 6 7 8 9
E.., [eV/atom]
Figure 16. Lineal dependence and regression of surface energy in front of cohesive energy of fcc metals in

(011) surface using TPSS functional. Ni and Cu results are not included as were not converged.



Coinage and Pt-Group Metal Surfaces Stability

39

In order to know if the deviations of linearity come from relaxations, fixed surface energy has

been plot in front of cohesive energy. One can see in the error obtained that, as predicted, the

deviation is slightly lower. See Table 14. Then is to assume that relaxation energy is not a high

issue in surface energy for these particular metals.

Surface Method Linear regression equation R?

(001)  PBE y = 0.433x - 0.194
TPSS y = 0.426x - 0.116
(011)  PBE y=0.439x-0.138
TPSS y = 0.422x +0.035
(111)  PBE y = 0.284x + 0.079
TPSS y = 0.324x - 0.097

0.928
0.994
0.925
0.974
0.798
0.969

Table 14. Parameters obtained from plotting fixed surface energy against cohesive energy.

With the obtained data one can see that cohesive energy can explain the high melting point

(Tm) of these metals and also the direct relation with surface energy. The higher the cohesive

energy, the higher melting temperature of the metal due to its strong interaction. 21222324

= 87 y = 0.003x - 0.900 81 y=0003«-002 .
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Figure 17. Dependence and regression of cohesive energy in front of the melting point of fcc metals within
PBE functional (left) and TPSS functional (right).
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Finally, the variation of the surface energy of fcc metals along the periodic table can also be
away to relate cohesive energy and surface energy. Surface energy shows the typically parabolic
dependence on the d band occupation in transition metals, which is already well known from the
cohesive energy.!! In the case of the fcc metals studied, the surface energy decreases along the
period because the bonding band has been already completed and now the trend is reserved
when antibonding band is being filled. Thus, the bonding interaction decreases and as a
consequence cohesive energies and surface energies too, see Fig. 18.
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Figure 18. Variation of surface energy in the periodic table.
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8. CONCLUSIONS

All the objectives of the work were carried out, obtaining the following conclusions:

Slab models of 6 layers are ratter accurate to obtain surface energies, but linear regression
method is better.

The most stable surface of fcc metals is the (111) surface, as initially thought, because of
its higher degree of compression.

With PBE functional it is easier to calculate surface energies than with TPSS, but PBE
accuracies are slightly worse than using TPSS functional. In the case of isolated atom
calculations, TPSS functional gave worse results due to the poorer accuracies of the
functional when describing isolated atoms.

The most stable surfaces have also less relaxation energy. Comparing both functionals
studied, TPSS delivers lager relaxation energies because surface relaxations are more
acute.

The surface energy has a direct dependence with bulk cohesive energy and relaxation
energy but an indirect dependence with surface compacting and saturation.
Semi-empirical methods are useful for studying trends of surface energies in fcc metals. But
they can only be used for qualitative studies.

Surface energies and cohesive energies show the typically parabolic dependence on the d
band occupation.
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