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1. SUMMARY 

Coinable (Cu, Ni, Ag, Au) and Pt-group metals (Pt, Pd, Ir, Rh) are face centered cubic (fcc) 

transition metals used in catalysis as active phases, usually in the form of nanoparticles. These 

nanoparticles mostly expose most stable surfaces, which are the main responsible of the 

interaction with reagents.  

Here we studied, by Density Functional Theory (DFT) calculations using slab models, the 

surface stability, in terms of surface energy, relaxation, degree of compression, and coordination 

number. The most stable surfaces studied are those with higher degree of compression and 

lowest Miller index, such as (111), (011), and (001) surfaces, which a priori are the most stable 

ones. Results were obtained, comparing and commenting two levels of computation, either using 

the Perdew-Burke-Ernzerhof (PBE) or the Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-

correlation functionals. 

The results suggest that the surface energy shows the typically parabolic dependence on the 

d band occupation in transition metals. It is also found that (111) surface is the most stable one 

because of its higher degree of compression, lower energy relaxation and surface energy. 

Furthermore, TPSS functional gives better surface energies with higher accuracies yet the data 

are more difficult to obtain. In contrast, semi-empirical methods can only be used for qualitative 

studies as they are just good giving trends of surface energy. 

Keywords: Surface energy, fcc transition metals, stability, slab model, density functional theory 
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2. RESUM 

Els metalls encunyables (Cu, Ni, Ag, Au) i els metalls del grup del Pt (Pt, Pd, Ir, Rh) són 

metalls de transició fcc emprats en catàlisi com a fases actives, normalment en forma de 

nanopartícules. Aquestes nanopartícules exposen principalment les superfícies més estables, 

que són les responsables de la interacció amb reactius. 

En aquest treball de fi de grau s’ha estudiat la estabilitat de les superfícies amb Índex de 

Miller més baixos – (001), (011), i (111) –, que son les més compactes, i per tant, a priori, les 

més estables. L’estabilitat és mesurada en funció de la energia superficial, el grau de 

compactació de la superfície, el nombre de veïns i la relaxació superficial. Aquestes dades s’han 

obtingut realitzant càlculs computacionals basats en la teoria del funcional de la densitat (Density 

Functional Theory – DFT) i emprant un paquet de càlcul amb condicions periòdiques de — Viena 

Ab Initio Simulation Package – VASP — i model de llesca (slab). S’han comparat dos funcionals 

adients en la descripció del interior (bulk) dels metalls de transició, el de Perdew-Burke- Ernzerhof 

(PBE), i el de Tao-Perdew-Staroverov-Scuseria (TPSS). 

Els resultats suggereixen que l’energia superficial segueix un dependència parabòlica amb 

la ocupació dels orbitals d dels metalls de transició. També s’ha corroborat que la superfície més 

estable és la (111) ja que és la més compacte i amb la que s’obtenen menors energies de 

relaxació. A més, s’ha trobat que emprant funcional TPSS les energies superficials calculades 

amb regressió lineal són les que tenen més precisió, tot i el seu elevat cost computacional, 

comparant amb el funcional PBE. Per altre banda, els mètodes semi-empírics només es poden 

emprar per estudis qualitatius degut que només són correctes definint les tendències de l’energia 

superficial. 

Paraules clau: Energia superficial, metalls de transició fcc, estabilitat, model de slab, teoria del 

funcional de la densitat 
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3. INTRODUCTION 

Metals have such interesting properties that make them ideal materials for a diverse range of 

applications, and so they are widely used in industry, electronics, catalytic converters, 

thermocouples, fuel cells, in petroleum refining, and numerous laboratory equipments. 

The metal properties raise from the metallic bond and the crystallographic structure. The 

metallic bond is to date fully understood by molecular orbital and band theories and the properties 

raise as a result of the electron delocalization in the metallic bonding where an electron cloud 

surrounds the atoms.1 Concerning the atomic position, most of transition metal atoms arrange in 

one of the following crystallographic structures; the body-centred cubic (bcc), the face-centred 

cubic (fcc), or the hexagonal close-packed (hcp) structures; see Fig. 1. 

 

 

 

 

 

Figure 1. The bcc (left), fcc (middle), and hcp (right) crystallographic structures. Coloured spheres 

denote metal atoms. 

Both fcc and hcp are close-packed structures, and the main difference between them is the 

layer stacking, hcp has an ABA stacking whereas fcc has an ABC stacking, see Fig. 2.  

 

 

 

 

 



8 Ruvireta Jurado, Judit 

 

 

 

 

 

 

 

Figure 2. The hcp (left) and fcc (right) stacking along fcc [111] low Miller indices direction. 

Here we focus on fcc transitional metals, which are actually the so-known coinage metals Cu, 

Ni, Ag, and Au, and the Pt-group Pt, Pd, Ir, and Rh metals. They are used not only for coins or 

jewellery, but also most used in heterogeneous catalysis as active phases, typically in the form 

nanoparticles supported on an inert oxide with high surface area, yet other supports, such as 

carbides, are becoming appealing.2 These nanoparticles tend to mostly expose those surfaces 

with highest stability, which are then the main responsible of the interaction of the catalyst with 

reagents, intermediates, and products. 

The exposure of one or another surface is determined by the surface stability, ruled by the 

so-called surface energy, i.e. the energy necessary to create the flat surface. Surface energies 

are fundamental in understanding a wide range of surface phenomena including growth rate, 

crystallite processes, grain boundaries formation, sintering processes, the catalytic performance, 

atomic or molecular adsorption/desorption, surface segregation, passivation, corrosion, 

relaxation, and reconstruction processes. 3 

The experimental determination of surface energies is very challenging; high temperatures 

are needed to measure surface tension changes at the metal melting temperature and values 

extrapolated to lower temperatures.4 Moreover, experimental determination of a specific surface 

plane is extremely rare. However, the surface energy effects, like predominance of certain planes, 

are easily observed with microscopy techniques, and oftentimes macroscopically featured in 

mineral crystallites. However, surface energy can be relatively easily calculated with theoretical 

methods, Density Functional Theory (DFT) being the working horse, and thus, an effective mean 

to get reasonable estimates, at least for trends, which help at rationalizing the above-mentioned 

phenomena.  
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The most interesting surfaces to explore are those with the lowest energy,5 which tend to be 

the close-packed surfaces with low Miller indices, such as the (111), (011), or (001) surfaces for 

fcc metals, the ones here studied. We assess different ways of estimating surface energies at two 

levels of computation within DFT; either using the Perdew-Burke-Ernzerhof (PBE) or the Tao-

Perdew-Statoverov-Scuseria (TPSS) exchange-correlation functionals, thus comparing their 

suitability. The stability is studied as a function of bulk cohesion, surface compactness, and 

degree of saturation, accounting as well the surface relaxation and the relaxation energy once 

the surface is created. Semi-empirical methods are also studied to size their accuracy. 
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4. OBJECTIVES  

The overall aim of this project is to study the energetic stability and structure of the possible low 

Miller indices surfaces of fcc transition metals. The specific objectives are: 

 To model most stable (001), (011), and (111) surfaces of fcc metals with slab models of 

variable width. 

 To compare and calculate the surface energies at two levels of computation within DFT; 

using either the PBE or the TPSS exchange-correlation functionals, assessing their 

suitability comparing to available experimental data. 

 To estimate de degree of surface relaxation, comparing PBE and TPSS structural data 

with experimental values. 

 To estimate surface energy dependence on the surface compactness, saturation, 

relaxation energy, and bulk cohesive energy. 

 To assess various semi-empirical models to estimate surface energies, either using 

Stephan equation or the broken-bond model. 

 To unravel the fcc transition metal surfaces stability obtaining trends along groups and 

series, and the implication in nanoparticle catalysts.  
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5. METHODS 

5.1. SCHRÖDINGER EQUATION AND HARTREE-FOCK  

Quantum chemistry methods are based on the resolution of the Schrödinger equation to obtain a 

system energy (𝐸) using a Hamiltonian operator (𝐻̂), which includes the kinetic contribution of 

the electrons ( 𝑇̂𝑒𝑙𝑒𝑐 ) and the atomic nuclei ( 𝑇̂𝑛𝑢𝑐 ), the potential interaction between them 

(𝑉̂𝑒𝑙𝑒𝑐−𝑛𝑢𝑐), and between electrons (𝑉̂𝑒𝑙𝑒𝑐−𝑒𝑙𝑒𝑐) and nuclei (𝑉̂𝑛𝑢𝑐−𝑛𝑢𝑐). 2 This Hamiltonian can 

be written in one simple line: 

                                                              𝐻̂𝛹 = 𝐸𝛹   (Eq. 1). 

Within the Born-Oppenheimer approximation the equation becomes: 

                             𝐻̂𝑒𝑙𝑒𝑐𝛹 = (𝑇̂𝑒𝑙𝑒𝑐 + 𝑉̂𝑒𝑙𝑒𝑐−𝑒𝑙𝑒𝑐 + 𝑉̂𝑒𝑙𝑒𝑐−𝑛𝑢𝑐)𝛹 ≈ 𝐸𝛹  (Eq. 2). 

Thus the Born-Oppenheimer approximation lies in decoupling electronic and nuclear 

movements, knowing that the relative mass of nuclei is much higher than the electron ones. As a 

result, the kinetic energy of electrons does not depend on the nuclei movements, the kinetic 

energy of nuclei is assumed zero, and the interaction between nuclei is a constant determined 

given a nuclear configuration. Then one only needs to solve the electronic Hamiltonian, 𝐻̂𝑒𝑙𝑒𝑐 . 

A simple method to obtain an approximation of the energy for a polielectronic system is the 

Hartree-Fock (HF). This variational method uses just one Slater determinant, made of 

monoelectronic spinorbitals. Although HF method does not introduce the electronic correlation 

between electrons with different spin, it is a good first approximation and it opens the door to other 

methods with more precision, which account for correlation energies, known as post-HF methods. 

The main disadvantage of HF and post-HF methods is that they cannot be used to study large 

and complex systems due to its high computational cost. Nevertheless, the revolution of 

computational chemistry of recent years has been DFT, which is detailed next. 
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5.2. DENSITY FUNCTIONAL THEORY  

Methods based on electronic density functionals,2 also known as DFT, are an alternative to ab 

initio traditional methods, which are based on wavefunctions. DFT is the most popular theoretical 

approach nowadays available for solving the electronic structures of solids and their surfaces in 

general, and so for metal surfaces. 

The main advantage of DFT methods is that they are much more economic from the 

computational point of view, because the electronic density function has only three variables (four 

counting spin), whereas wave function depends on 3N variables for an N electrons system. 

Moreover, DFT permits to introduce correlation and exchange energies, although many 

approximations are needed for so, and so different DFT methods have been developed with 

increasing precision. 

The electronic density function describes the number of electrons found in a differential 

volume dr with arbitrary spin. Then, the total space integral of 𝜌(𝑟) gives the total number of 

electrons of the system, where electronic density is zero at infinite distance for an isolated non-

periodic system. 

                                                         ∫ 𝜌(𝑟) 𝑑𝑟 = 𝑁 (Eq. 3) 

                                                        𝜌(𝑟 → ∞) = 0  (Eq. 4). 

Hohenberg and Kohn established the ground of DFT basis, which was later finalized with the 

Kohn-Sham method, see next. 

 

5.2.1. Hohenberg-Kohn theorems  

5.2.1.1. First Hohenberg-Kohn theorem 

The first Hohenberg-Kohn (HK) theorem shows that two electronic systems with external 

potentials that differ by more than a constant cannot have ground states with the same electron 

density. 2 In other words, the electronic density of a system is specific to a given external potential, 

and vice versa. 

                                       𝜌(𝑟) → 𝑉𝑒𝑥𝑡(𝑟)    ;    𝑉𝑒𝑥𝑡(𝑟) → 𝜌(𝑟)  (Eq. 5). 
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5.2.1.2. Second Hohenberg-Kohn theorem 

The second HK theorem states that there cannot be two different systems with the same 

electronic density in its fundamental state. The energy is a universal functional of the electronic 

density, then 

                                               𝐸 = 𝐸[𝜌(𝑟)]   ≥  𝐸0 = 𝐸[𝜌0(𝑟)]   (Eq. 6). 

5.2.2. Kohn-Sham method  

The last decisive step to develop DFT was the Kohn-Sham (KS) so-known formalism.2 6 The 

authors pointed that a polielectonic system described with a density ρ(r) can be related to another 

system made of non-interacting electrons with the same density ρ(r) called the Jellium model, and 

in this way ρ(r) can be expressed as que sum of squared monoelectronic N spinorbitals 𝜙𝑖, called 

KS orbitals. At practice 𝜙𝑖 of Jellium are similar to monoelectronic orbitals, and can be as well 

expressed as a function of other functions basis-set. 

                                                𝜌(𝑟) = 𝜌𝐾𝑆(𝑟) = ∑ |𝜙𝑖(𝑟)|2𝑁
𝑖=1   (Eq. 7). 

5.2.3. Exchange and correlation functionals  

Within KS method, all different contributions to the system energy are known, but the exchange 

and correlation energy.2 5 The exchange and correlation functional is the key for the correct 

application of DFT. Within the Born-Oppenheimer approximation, the theory is exact. However, 

the precise form of 𝐸𝑋𝐶[𝜌] is unknown, yet can be divided into two terms; the electron exchange 

and the electronic correlation. 

                                                 𝐸𝑋𝐶[𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌]  (Eq. 8). 

The electron exchange emerges because a many-body wavefunction must be antisymmetric 

under the exchange of any two electrons with same spin. This antisymmetry of the wavefunction 

is simply a general expression of the Pauli exclusion principle, but reduces the Coulomb energy 

of the electronic system by increasing the spatial separation between electrons of same spin. The 

electron correlation further reduces the Coulomb energy between electrons of different spin 

because the motion of each individual electron is correlated with the motion of all others, helping 

also to keep electrons of odd spin spatially separated. Next some well-known approximations for 

the exchange and correlation functional are detailed. 



16 Ruvireta Jurado, Judit 

 

5.2.3.1. Local density approximation  

The Local Density Approximation (LDA) is the simplest approximation to get the exchange and 

correlation functional and it is based on the assumption that the electron density does not change 

much with the position, and so depends only on the position. Then, the exchange-correlation 

density can be taken as that of a uniform electron gas of same density. 2  5   

Modern LDA functionals tend to be exceedingly similar, differing only in how their correlation 

contributions have been fitted to a many-body free electron gas data. The Perdew-Zunger (PZ), 

Perdew-Wang (PW), Ceprley-Alder (CA), and Vosko-Wilk-Nusair (VWN) functionals are all 

common LDA functionals. Despite its simplicity, LDA can give good results for systems with slow 

varying densities such as atoms, molecules, solids, and surprisingly, good results for metal 

surfaces. 

5.2.3.2. Generalized gradient approximation  

To improve LDA approximation density gradients are included in the exchange-correlation 

functional. This is the so-known Generalized Gradient Approximation (GGA). The most widely 

used GGAs in solid state physics are Perdew-Wang (PW91), and PBE. PBE actually got several 

offspring; rev-PBE, RPBE, PBE-WC, and PBEsol. The so-called meta-GGA consider density 

gradients and laplacians in their formulas being, either TPSS and revTPSS are examples. In this 

work PBE and TPSS exchange correlation functionals are the ones contemplated. 2 5 

5.2.3.3. Hybrid functionals 

Hybrid functionals use a part of the exchange energy from HF method, plus part of exchange and 

the full correlation from LDA or GGA methods. Becke-Lee-Yang-Parr (B3LYP) functional is 

probably the most common hybrid functional used in the quantum chemistry community, given its 

great performance on molecular thermochemistry.  
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5.3. PERIODIC SOLIDS 

Crystalline solids have, by definition, periodicity. This periodicity introduces important elements of 

simplicity when representing solids to obtain important information of their chemical and physical 

behaviour, for either chemical, physical, or catalytic applications. The Schrödinger equation or 

electron density can be solved for just a small unit cell with periodic boundary conditions and so 

avoiding to do so for the whole solid structure. Bloch theorem states that the wavefunction cannot 

be affected when it is moved to an equivalent point of a replicated cell, and so all its properties 

are then intrinsically periodic. 2  

5.3.1. Crystalline structures 

The perfect arrangement and periodic structure of the atoms of a crystalline solid at 0 K is the key 

to reproduce the totality of the solid. The part of the solid which is transitionally repeated is called 

the unit cell and it is used to study the properties of the bulk. Depending on the lattice vectors and 

positions of the atoms inside the unit cell we can have different arrangements. The fcc structure 

is the one studied in this work. It is considered a close-packed structure with a coordination 

number in the bulk of twelve, and four atoms per cell, see Fig. 3. 

 

 

 

 

 

 

 

 

Figure 3. The fcc coordination number. Light blue spheres denote the 12 atoms surrounding the red atom. 
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5.3.2. Reciprocal space and k-points  

The essential characteristic of metallic bond is that the valence electrons are delocalized among 

a lattice of metal atoms. Delocalization is the consequence of a heavy overlap between the 

individual valence wavefunctions resulting in the valence electrons being shared by all the atoms 

in the metal. Then, atoms can be perceived as atomic nuclei immersed in a sea of electrons. This 

electron sea leads to a bonding that is generally not directional, resulting in close-packed crystal 

structures being often favoured. Because of the strong overlap of the orbitals the resulting 

electronic wavefunction or bands of a metal will thus exhibit a strong dispersion in reciprocal 

space, also called k-space or first Brillouin zone. 

Reciprocal space is an alternative space of the real space in the Bravais lattice, which is 

useful for studying solids. It can be defined for its lattice vectors 𝑏𝑖, which are related with the real 

lattice vectors 𝑎𝑖 of the cell as seen in Eq. 9 and exemplified in Fig. 4. 

                                   𝑏𝑖 = 2𝜋
𝑎𝑗×𝑎𝑘

𝑎𝑖·(𝑎𝑗×𝑎𝑘)
    ∀𝑖,𝑗,𝑘∈ {1,2,3}   (Eq. 9). 

                                                      𝑎𝑖 · 𝑏𝑗 = 2𝜋𝛿𝑖𝑗   (Eq. 10). 

 

 

 

 

 

Figure 4. Reciprocal and real space vectors. 

To simplify the study of the reciprocal space, we can take advantage of symmetry elements. 

Therefore, one just needs to study a discrete number of lattice vectors k, also called k-points. In 

practice, a Monkhorst-Pack grid of k-points is used and a thinner grid is used when convergence 

of an observable, such as energy, is reached. Finally, note that the reciprocal space volume 

reduces as the real space increases. A big grid is needed for small unit cells and only a k-point 

for cells with a large volume. 

 

2π/𝑎1 

𝑏1 𝑎2 
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5.3.3. Pseudopotentials 

Pseudopotentials are used because of the high computational cost of systems with many 

electrons, such as transition metals. The idea is that the core electrons of an atom result 

unaffected when there is a chemical change in the surroundings of the atom. This way, the effect 

of core electrons can be joined to an effective potential assuming that the core electrons do not 

change at all. This results in decreasing the number of plane-wave functions because core 

electrons are not explicitly described, so valence electrons, which are the main responsible of the 

chemical processes, are the only ones studied. 

The Projector Augmented Wave (PAW) method was developed by Blöchl7  in 1994 and 

permits to describe with precision core electrons, resembling an all-electron calculation. PAW 

method pretends to solve the problem by dividing the wavefunctions in to two regions, one soft 

reacting region and another for core electrons. In this work, PAW pseudopotencials are used. 

5.3.4. Slab model  

Bloch theorem can be applied for surfaces, allowing the electronic structure problem for infinite 

3D solids to be used in 2D simulations. This is done by introducing a vacuum region along the 

studied surface normal direction, see examples in Fig. 5.  

 

 

 

 

 

 

                                                  

Figure 5. Six-layer slab stacking along [001] Miller index direction (left), [011] (middle), and [111] (right) for 

an fcc transition metal with 10 Å of vacuum. Black spheres denote metal atom positions. 

 

     10 Å 
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The periodic boundary conditions ensure these slabs to be infinite along surface plane, but 

also normal to it, where the 10 Å vacuum repeats infinitely. The slab model implies studying 

different number of layers to obtain the correct description of electronic properties of a metallic 

surface. Therefore, in the present work, thickness as of 4, 5, and 6 layers have been studied to 

obtain convergence of surface energy of fcc metals cut perpendicular to [001], [011], and [111] 

Miller indices directions. 

5.4. SURFACE ENERGY 

Surface energy is probably the main energetic feature of surfaces and it is one of the basic 

quantities to understand the surface structure, reconstruction, roughening, and relaxation. 

Cleavage energy can be defined as the energy required to split an infinite crystal into two parts, 

given per surface area. When two identical surfaces are created, the cleavage energy equals two 

equivalent surface energies.  

Despite its importance, the experimental value of surface energy is difficult to determine. Most 

of the experiments are performed at high temperatures where the surface tension of the liquid is 

measured, which is then extrapolated to 0 K. Moreover, these experiments contain certain 

uncertainties such as that surface energy values belong to an isotropic crystal. Therefore, a 

theoretical determination discerning different surface endings is of vital importance. Recently 

surface energy of metals has been calculated using ab initio techniques with unprecedented 

accuracy. Surface energy is calculated in this work in four different ways, two ab initio, and two 

using semi-empirical equations; the Stephan equation or the broken-bond model.3 8 

The first ab initio method is to calculate surface energy by knowing that it can be defined as 

the energy, per unit area, required to form two equivalent surfaces by splitting a bulk crystal into 

two parts, and it can be written as: 

 

                                                                  𝛾𝑟𝑒𝑙𝑎𝑥 =
𝐸𝑠𝑙𝑎𝑏−𝑁 𝐸𝑏𝑢𝑙𝑘

2 𝐴
  (Eq. 11) 

 

where 𝐸𝑠𝑙𝑎𝑏 and 𝐸𝑏𝑢𝑙𝑘 are the total energies of the slab and the crystal bulk, respectively, N is 

the number of atoms composing the slab unit cell, and A is the surface area of each of two 

equivalent exposed surfaces. 
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Another method is derived from a readjustment of Eq. 11 and a linear regression of 𝐸𝑠𝑙𝑎𝑏  

versus 𝑁 obtaining the surface energy at the equation intercept: 

                                                           𝐸𝑠𝑙𝑎𝑏 = 𝑁 𝐸𝑏𝑢𝑙𝑘 + 2𝛾𝑟𝑒𝑙𝑎𝑥𝐴  (Eq. 12). 

Within this methodology, a set of slabs with different thickness, from 4 to 6 layers, has been 

considered to perform a linear regression of 𝐸𝑠𝑙𝑎𝑏 as a function on N. Note that slope should be 

𝐸𝑏𝑢𝑙𝑘. 

When using Stephan semi-empirical equation9 some parameters are needed, which are the 

vaporisation enthalpy 𝛥𝐻º𝑣𝑎𝑝 ), the molar mass (𝑀), the density of the metal (𝜌), and the 

coordination numbers of the slab (𝑍𝑠) and bulk (𝑍):  

                                                               𝛾 =
𝛥𝐻º𝑣𝑎𝑝  𝜌2/3

𝑀2/3   𝑁𝐴
1/3   

𝑍𝑠

𝑍
  (Eq. 13). 

On the other side, the traditional semi-empirical broken-bond model10 11 12 is used as well to 

estimate surface energy values at T = 0 K for the transition metals with different facets. Since the 

bond strength becomes larger for an atom with a smaller coordination number, this coordination 

number bond strength relation can be quantified using the tight-binding approximation. Knowing 

that the total crystalline energy is a sum of contributions of all bonds of an atom, surface energy 

can be estimated as the energy per bond assumed to scale with squared coordination number 

leading to the next equation:  

                                                                  𝛾 =
√𝑍 −√𝑍𝑠 

√𝑍  
  𝐸𝑐𝑜ℎ   (Eq. 14). 

Note that both semi-empirical methods assume a dependence with 𝑍𝑠 , but to a different 

extent, and, in adidition a direct proportionality to the metal cohesion quantified as 𝛥𝐻º𝑣𝑎𝑝 and 

𝐸𝑐𝑜ℎ , respectively. 
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6. COMPUTATIONAL DETAILS 

The DFT calculations have been performed using the Vienna Ab Initio Simulation Package 

(VASP) and PAW pseudopotentials. The electronic exchange-correlation was described by PBE 

GGA and TPSS metaGGA functionals. Valence electron density was expanded in a plane-wave 

basis set with a 415 eV cutoff energy for the kinetic energy. A standard slab structure was used 

to model the surface systems, containing 4, 5, or 6 layers for (001), (011), and (111) surface 

orientations. All atoms were allowed to relax during optimizations. These optimizations have been 

carried out using the tetrahedron smearing method with an energy width of 0.2 eV to speed up 

convergence, yet final energies are extrapolated to 0K (no smearing). 

The electronic structure calculations were non spin-polarized, with the exception of the 

isolated metal atoms and Ni systems. An optimal Morkharst-Pack grid of 7×7×7 special k-points 

dimensions was found to be sufficient for accurate bulk total energy calculations in most stringent 

metals —shortest cell parameters—, and so used for all bulk calculations. 

When computing atoms in vacuum, a broken symmetry cell of 9×10×11 Å dimensions was 

employed to ensure proper occupancy of degenerate orbitals. These atomic optimizations have 

been carried out using a Gaussian smearing with an energy width of 0.001 eV in order to have 

the correct population in each orbital. Given the isolated character of atoms, calculations were 

carried out at Γ-point. 

In the case of slab calculations, a 7×7×1 Morkharst-Pack grid was used to sample the 

reciprocal space. Bulk and slab optimizations were stopped when atomic forces acting on atoms 

were below 0.02 eV Å-1, and an electronic convergence criterion of 10-6 eV was used.  
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7. RESULTS 

7.1. BULK 

Bulk calculations were done to ascertain whether bulk has been described with a sufficiently 

correct degree of accuracy. For these calculations, cohesive energy and the shortest interatomic 

distances (δ) were obtained and compared with previous PBE and TPSS calculations and 

experimental data. Cohesive energy of fcc metals was calculated as the difference between the 

energy per atom in bulk (
𝐸𝑏𝑢𝑙𝑘

𝑁
) and the energy of an isolated atom, 𝐸𝑎𝑡 , see Eq. 15. 

                                                          𝐸𝑐𝑜ℎ =  𝐸𝑎𝑡 −  
𝐸𝑏𝑢𝑙𝑘

𝑁
  (Eq. 15). 

Comparing calculated values with experimental ones, there is very good agreement with PBE 

functional but TPSS only captures trends, see Table 1. The poorer accuracies of TPSS 

calculations are due to its difficulty in describing isolated atoms. 

Metal 𝐄𝐜𝐨𝐡
𝐞𝐱𝐩.  a

 𝐄𝐜𝐨𝐡
𝐏𝐁𝐄 b 𝐄𝐜𝐨𝐡

𝐏𝐁𝐄 𝐄𝐜𝐨𝐡
𝐓𝐏𝐒𝐒 b  𝐄𝐜𝐨𝐡

𝐓𝐏𝐒𝐒 

Ni 4.48 4.87 4.84 5.40 6.12 

Cu 3.51 3.48  3.48 3.73 4.45 

Rh 5.76 5.62 5.61 6.22 6.73 

Pd 3.93 3.71 3.70 4.01 4.00 

Ag 2.96 2.49 2.48 2.73 3.29 

Ir 6.96 7.32 7.35 7.71 7.73 

Pt 5.87 5.50 5.49 5.79 5.43 

Au 3.83 2.99 2.98 3.28 3.30 

(a) Ref. 13, (b) Ref. 14. 

Table 1. Cohesive energy calculated within PBE and TPSS functionals and experimental values. All data is 

given in eV/atom. 
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A way to quantify the accuracy of these methods is by calculating the Mean Error (ME) and 

the Mean Average Error (MAE). Then, one can see that TPSS overestimates the cohesive energy 

values and that PBE is better suited, see Table 2 below. 

 

Error 
PBE TPSS 

Exp. PBE Exp. TPSS 

ME -0.17 -0.01 0.47 0.27 

MAE 0.36 0.01 0.71 0.37 

Table 2. ME and MAE of cohesive calculations. 

Although TPSS values of cohesive energies are not as good as PBE ones, TPSS functional 

give results with similar accuracy for the calculated shortest interatomic distances in bulk, see 

Figure 6. For Ni and Cu bulk calculations, however, there is slight deviations to experimental ones. 

The shortest interatomic distance within a crystal cell, δ, depends on the lattice parameter a, 

which in the fcc structure, it equals a/√2.  

 

   

 

 

 

 

 

 

 

 

Figure 6. Calculated δ, δcalc, versus experimental values, δexp. Dotted line would represent perfect 

agreement. 
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7.2. SURFACE RELAXATION 

The surface relaxation (atomic movement in the surface normal direction) observed in the 

calculations is based on the fact that atoms at the surface of a crystal have less neighbours than 

they do in the bulk, and so they are then under-coordinated, as the electronic readjustment makes 

that they do not remain at their precise bulk truncated positions. Rather, the few atoms from the 

top layers of the metal are likely to move, retaining their periodicity, in response to their new 

environment. So, when a crystal is cut to form a surface, atoms rearrange in order to reduce the 

charge-density corrugations. This leads to a motion of the atoms left on top of the surface atoms 

resulting in a displaced position towards the rest of the crystal. This is schematically illustrated in 

Fig. 7 (where d12 = d34 and d12 < d23 as a result of symmetric layer relaxation). 

 

 

 

 

 

 

Figure 7. Schematic side view of a relaxed surface of 5 layers. 

 The results obtained show that there is a contraction of the slab in average of all metals for 

the (001) and (011) surfaces yet there is an expansion of all metals for (111) surface, see Table 

3. The degree of relaxation is consistent with the surface energy calculations in the sense that 

the more stable the surface is, the less contraction of the layers. This makes perfect sense in an 

instability-driven relaxation. Some Low-Energy Electron-Diffraction (LEED) analysis confirmed 

the prediction of multilayer relaxation.5   See Table 4, 5, and 6 below. We calculated the relaxation 

energy from the difference between fixed surface energy and relaxed surface energy, which is a 

way to determine surface relaxation; see Table 3 to observe that the most stable surfaces have 

also less relaxation energy. Fixed surface energy has been obtained using Eq. 11 but the Eslab at 

bulk truncated positions. 
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Surface Functional 𝜸̅𝒇𝒊𝒙 [J/m2] Contraction [%] Erel [J/m2] 

(001) PBE 1.75 9 -0.03 

 TPSS 2.14 16 -0.07 

(011) PBE 1.84 21 -0.08 

 TPSS 2.17 9 -0.14 

(111) PBE 1.34 -16 -0.03 

 TPSS 1.55 -13 -0.04 

Table 3. Average percentage of contraction, fixed surface energy and relaxation energy for (001), (011), 

and (111) surfaces. For TPSS calculations on Ni and Cu not all values are not included as were not 

converged. Negative values of contraction denote expansion of the slab. 

 

 Method Ni Cu Rh Pd Ag Ir Pt Au 

Δd12 PBE 0.17 0.82 -0.20 1.36 1.10 -0.24 2.45 2.44 

 TPSS – 4.05 -0.01 1.78 0.49 -0.01 -0.01 2.22 

 LEED  -0.7 ± 0.5a -1.2 ± 0.6c  1.3 ± 1.3a -0.5 ± 0.3d    0.2 ± 1.1b 0.6 ± 8.1e 

 LEED  -0.3 ± 1.0a  2.4 ± 0.9a   1.0 ± 0.1a  

Δd23 PBE  1.43 1.96 1.73 1.18 1.43 1.64 1.14 1.69 

 TPSS – -4.46 1.41 -0.13 -0.08 1.73 -1.46 1.64 

 LEED    -0.7 ± 0.7c -1.3 ± 1.3a 1.0a  -1.0 ± 1.1b -0.64 ±1.7e 

 LEED    0.7 ± 0.9a 0.4 ± 0.4d    

Δd34 PBE  1.69 1.76 1.63 1.49 1.47 2.08 2.03 1.52 

 TPSS  – -1.50 1.33 0.04 6.63 1.85 -0.63 1.52 

 LEED    0.4 ± 1.1c 2.2 ± 1.3a 0.0 ± 0.4d  0.2 ± 2.2b  -1.1 ± 1.7 e 

 LEED    0.7 ± 1.8a     

(a) Ref. 5, (b) Ref. 15, (c) Ref. 16, (d) Ref. 17, (e) Ref. 18. 

Table 4. Percentage interlayer relaxation, Δdij, for several close-packed fcc metal surfaces, as obtained 

from DFT (PBE and TPSS) calculations of (111) surface and LEED analyses. Positive values denote 

expansion while negative ones denote contraction. 
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 Method Ni Cu Rh Pd Ag Ir Pt Au 

Δd12 PBE -9.70 -10.21 -10.14 -9.55 -9.25 -11.47 -14.25 -13.92 

 TPSS -2.48 -10.45 -7.68 -7.67 -5.70 -10.57 -11.85 -11.06 

Δd23 PBE  1.50 4.48 0.43 3.69 4.18 2.22 9.07 9.07 

 TPSS -6.87 11.62 -0.49 3.28 2.12 1.12 7.08 6.95 

Δd34 PBE  0.16 -2.22 1.56 -0.94 -2.59 -1.91 -4.08 -6.17 

 TPSS  -0.60 10.72 3.24 -0.89 3.78 -0.34 -2.36 -4.22 

Table 5. Percentage interlayer relaxation, Δdij, for several close-packed fcc metal surfaces, as obtained 

from DFT (PBE and TPSS) calculations of (011) surface and LEED analyses. Positive values denote 

expansion while negative ones denote contraction. 

 

 Method Ni Cu Rh Pd Ag Ir Pt Au 

Δd12 PBE -3.37 -2.36 -4.00 -1.16 -1.74 -5.51 -2.79 -1.07 

 TPSS 1.77  -3.80 0.27 -1.43 -4.51 -2.18 -5.42 

 LEED -1.0 ± 1.0a -1.1 ± 0.4a 0.5 ± 1.0b 3.0 ± 1.5b     

Δd23 PBE  1.11 0.45 0.17 0.16 -0.01 0.82 -0.70 0.35 

 TPSS 2.22  0.08 -1.21 -0.18 0.51 -0.50 -3.93 

 LEED    0.0 ± 1.5b -1.0 ± 1.5b     

Δd34 PBE  0.49 -0.33 0.89 -0.04 -0.46 0.00 -0.26 0.15 

 TPSS  -3.01  0.19 -1.41 0.67 0.11 -0.21 -3.71 

(a) Ref. 19, (b) Ref. 20. 

Table 6. Percentage interlayer relaxation, Δdij, for several close-packed fcc metal surfaces, as obtained 

from DFT (PBE and TPSS) calculations of (001) surface and LEED analyses. Positive values denote 

expansion while negative ones denote contraction. 
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For two of these surfaces (Pd and Pt) there is an excellent agreement between theory and 

experiment suggesting that the expansion effect is real. However, for Cu(111) and most of the 

other surfaces, experiment and theory disagree, and the question of how exactly the topmost 

layer relaxes is still somewhat unclear.5  Accuracies obtained from experimental values of 

interlayer distances are not very good, so clear comparisons between experimental and 

calculated values are hindered. See also in Fig. 8 that the results from PBE or TPSS are also 

really different between them but see how in many cases calculated values fall within the 

experimental uncertainties. 

Figure 8. Calculated interlayer distance, Δd12
calc, versus averaged experimental values, Δd12

exp. Dotted line 

would represent perfect agreement. 

7.3. SURFACE ENERGETICS 

7.3.1. Ab initio methods 

The surface energies were calculated ab initio, with the goal of connecting the surface chemical 

activity with a degree the bulk description, see Eq. 11. The other computational calculation to 

obtain surface energy is using Eq. 12 to plot 𝐸𝑠𝑙𝑎𝑏 in front of 𝑁. Therefore, 𝐸𝑏𝑢𝑙𝑘 obtained from 

linear regression can be compared with previous ones to quantify the accuracy them.  
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See Fig. 9 values for Ag along (011) direction using TPSS functional as a representative 

example of regression for all the studied fcc metals. Then from the slope of the linear regression 

a surface energy of 1.70 J/m2 is obtained. Note that the data is perfectly fitted to the regression 

line, obtaining a coefficient of determination (R2) equal to 1. This example has been chosen as 

representative as all the linear regressions done give the same error, even if there are five or 

three types of slab.  

 

 

 

 

 

Figure 9. Linear regression of 𝐸𝑠𝑙𝑎𝑏 in front of 𝑁 for Ag (011) at TPSS. 

The surface energies obtained are encompassed in Table 7. At a first glimpse, all calculations 

agree with the experiment yet surface calculations obtained from linear regression (lr) are more 

accurate than direct calculations (dc). This fact is due to the dragged error of bulk calculations 

that in linear regression calculations is not contemplated.  

 

Surface Method Ni Cu Rh Pd Ag Ir Pt Au 

 Experimental a 2.45 1.83 2.7 2.05 1.25 3.00 2.48 1.50 

(001) PBE a – 2.15 3.01 2.15 1.27 3.49 2.47 1.36 

 PBE (dc) 2.17 1.47 2.27 1.50 0.80 2.79 1.90 0.86 

 PBE (lr) 2.33 1.46 2.57 1.53 0.82 3.10 1.78 0.86 

 TPSS (dc) 4.72 – 2.80 1.61 1.17 3.02 2.16 1.19 

 TPSS (lr) – – – 1.83 1.25 3.34 2.03 1.15 

(011) PBE a – 2.19 3.08 2.23 1.35 3.53 2.50 1.41 

 PBE (dc) 2.26 1.51 2.29 1.54 0.83 2.79 1.95 0.86 

 PBE (lr) 2.35 1.59 3.32 1.67 0.91 3.00 1.80 0.93 

 TPSS (dc) 4.14 3.85 2.81 1.53 1.42 3.04 2.27 1.16 

 TPSS (lr) – 2.68 3.28 2.32 1.70 3.43 2.10 1.23 
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(111) PBE b 1.92 1.30 1.98 1.27 0.74 2.27 1.46 0.73 

 PBE (dc) 1.72 1.33 1.79 1.14 0.82 2.05 1.26 0.64 

 PBE (lr) 1.85 1.14 1.83 1.11 0.67 2.08 1.27 0.68 

 TPSS (dc) – 3.96 2.17 1.19 0.98 2.30 1.51 0.87 

 TPSS (lr) – – 2.22 1.26 0.87 2.28 1.50 0.88 

(a) Ref. 3, (b) Ref. 13. 

Table 7. Surface energy of fcc metals at different planes calculated within direct calculation (dc) of a 6-

layers surface and linear regression method (lr) using 4 to 6 layered surfaces. All data in J/m2. 

 

 

Surface Error 
PBE (dc) PBE (lr) TPSS (dc) TPSS (lr) 

Exp. PBE Exp. PBE Exp. Exp. 

(001) ME -0.44 -0.62 -0.35 -0.54 0.18 -0.14 

 MAE 0.44 0.62 0.38 0.54 0.51 0.27 

(011) ME -0.40 -0.65 -0.21 -0.44 0.37 0.28 

 MAE 0.40 0.65 0.37 0.51 0.64 0.46 

(111) ME -0.81 -0.12 -0.83 -0.13 -0.26 -0.66 

 MAE 0.81 0.14 0.83 0.13 0.87 0.66 

Table 8. ME and MAE values of surface energies calculated within direct calculation (dc) and linear 

regression (lr) compared to experimental and previous calculation. 

 

Note that within PBE all surface energies obtained are lower than the experimental3 ones, 

and so, the underestimation is evident. On the other hand, with TPSS functional the surface 

energy values are sometimes overestimated, this is the case for Cu. Note as well that when 

calculating surface energy with linear regression a slightly better agreement is achieved. 
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Figure 10. Accuracy of calculated surface energies of 6-layers slab. Dotted line would represent perfect 

agreement. 

Surface energy can explain some physical properties of metals such as malleability. Note that 

for Cu, Ag, and Au, which are the most malleable fcc metals, surface energies are lower. This is 

also accords to its lower cohesive energy. See Table 9 where the averaged surface energy from 

the surfaces (001), (011), and (111) have been calculated because experimental surface energy 

is for an isotropic crystal, which does not have orientations, so a fairer comparison is on averaged 

relaxed surface energies. 

 

 Ni Cu Rh Pd Ag Ir Pt Au 

𝛾𝑒𝑥𝑝 a 2.45 1.83 2.70 2.05 1.25 3.00 2.48 1.50 

𝛾̅𝑃𝐵𝐸
𝑟𝑒𝑙  2.07 1.43 2.18 1.40 0.77 2.57 1.68 0.79 

𝛾̅𝑇𝑃𝑆𝑆
𝑟𝑒𝑙  – – 2.32 1.52 1.17 2.82 1.96 1.08 

(a) Ref. 3. 

Table 9.  Experimental and averaged relaxed surface energy of fcc metals obtained by direct calculation. 

All data in J/m2. 

When calculating ME and MAE for the averaged surface energy, one can clearly see that 

TPSS functional has better accuracy than PBE one. We could also predict that the face exposed 

of the fcc metals is a mixture of the most stable surfaces (001), (011), and (111) because of its 

lower deviation from experimental data.  
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Type of error 
PBE TPSS 

Exp. Exp. 

ME -0.55 -0.35 

MAE 0.55 0.35 

Table 10. ME and MAE of averaged surface energies calculated for all fcc metals except Ni and Cu.  

The variation of surface energy with the type of crystal facet exposed, as seen, is known as 

surface energy anisotropy. Generally, the surface energy of a metal is proportional to the number 

of broken bonds at the surface. Thus, more open surfaces with more broken bonds are less stable 

than the close-packed ones. This effect is qualitatively seen in the equilibrium crystal shapes of 

metal particles when expose close-packed surfaces. Then, clearly, for each metal the surface 

energy increases along with the surface under-coordination, being lowest for the (111) surfaces 

and highest for the (011) surfaces. See in Table 11 values for Ag as a representative example for 

all the studied fcc metals. 

 

Surface 𝛾 (J/m2) ZS Z Broken Bonds 

(011) 1.42 7 12 5 

(001) 1.17 8 12 4 

(111) 0.98 9 12 3 

Table 11. Surface energies of (111), (011), and (001) Ag surfaces within TPSS functional. 

Although the variation of surface energy with the exposed crystal facet is a real fact, note that 

there is really a small variation with the number of layers of the slab. See in Fig. 11 how 

calculations with 2 layers showed an interaction between the top and the bottom layers, but this 

stabilizes for the widths used in the present work. 
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Figure 11. Variation of surface energy with the number of layers of the slab for Ag (011) at PBE. 

7.3.2. Semi-empirical methods 

When using Stephan equation, see Eq. 13, the obtained 𝛾 can be compared with experimental 

values, 3 see Fig. 12. There it is evident that trends are captured but with a great overestimation 

and strong deviations because slopes should be 1 and the interception with the origin zero; 

accordingly, the degree of precision is ~0.07 J/m2. So, Stephan equation can be safely used for 

qualitative analysis, but for quantitative arguments. 

Figure 12. Lineal dependence and regression of surface energy by semi-empirical methods within Stephan 

equation in front of experimental surface energy of fcc metals. All data in J/m2. 
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Surface Method Ni Cu Rh Pd Ag Ir Pt Au 

 Experimental a 2.45 1.83 2.7 2.05 1.25 3.00 2.48 1.50 

(001) PBE (bbm) 1.15 0.77 1.12 0.70 0.42 1.44 1.02 0.50 

 TPSS (bbm) 1.63 1.20 1.37 0.75 0.60 1.53 1.00 0.56 

 (se) 8.49 6.40 9.56 7.01 4.26 10.63 8.78 5.54 

(011) PBE (bbm) 2.09 1.41 2.04 1.27 0.77 2.62 1.86 0.92 

 TPSS (bbm) 2.97 2.09 2.49 1.37 1.02 2.79 1.83 1.05 

 (se) 7.43 5.40 8.36 6.13 3.73 9.30 7.68 4.84 

(111) PBE (bbm) 1.91 1.29 1.86 1.16 0.70 2.39 1.70 0.84 

 TPSS (bbm) – 1.97 2.27 1.26 1.00 2.55 1.67 0.96 

 (se) 9.55 7.20 10.75 7.89 4.79 11.95 9.88 6.23 

(a) Ref. 3. 

Table 12. Surface energy of fcc metals at different planes calculated within Stephan equation (se) or 

broken-bond model (bbm). All data in J/m2. 

Then when using the broken bond rule, see Eq. 14, also just trends were captured but 

accuracy is better than using Stephan equation. See Fig. 13 and 14 that show the linear 

correlation with experimental data,3 where underestimation is obvious for PBE values and also 

TPSS values, but within slight overestimation in a couple of cases. Also note that the degree of 

precision is of ~0.6 J/m2 for PBE, whereas for TPSS is slightly better, ~0.32 J/m2. 

 

 

 

 

 

 

Figure 13. Linear dependence and regression of surface energy by semi-empirical methods within broken-

bond rule in front of experimental surface energy of fcc metals. Cohesive energy in this case is calculated 

within PBE functional. Dotted line would represent perfect agreement. 
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Figure 14. Linear dependence and regression of surface energy by semi-empirical methods within broken-

bond rule in front of experimental surface energy of fcc metals. Cohesive energy in this case is calculated 

within TPSS functional. Dotted line would represent perfect agreement. 

Another way to determine the accuracy of this semi-empirical method is by plotting the 

cohesive energy used in front of surface energy. Then, within the obtained slope of the linear 

regression, one can make comparisons with the theoretical slope that should have been obtained. 

Calculations using the cohesive energy from PBE functionals are slightly more accurate than 

TPSS ones. As commented before, this fact is due to the poorer accuracies of TPSS functional 

when describing isolated atoms, see Table 13. 

 

Surface Method Theoretical slope Obtained slope 

(001) PBE 0.18 0.21 

 TPSS 0.18 0.23 

(011) PBE 0.24 0.38 

 TPSS 0.24 0.42 

(111) PBE 0.13 0.34 

 TPSS 0.13 0.34 

Table 13. Slopes obtained within broken bond method. 

 

 

y = 0.565x - 0.138
R² = 0.671

y = 1.057x - 0.329
R² = 0.702

y = 0.844x - 0.118
R² = 0.749

0

1

2

3

0 1 2 3

𝛾
[J

/m
2 ]

𝛾exp [J/m2]

TPSS

(001) surface

(011) surface

(111) surface



38 Ruvireta Jurado, Judit 

 

7.3.3. Surface energy versus cohesive energy 

Relaxed surface energy of a metal can also be related with its cohesive energy. As seen in Fig. 

16 and 17, as higher is the cohesive energy, the surface energy is higher too. This is due to the 

metallic bonding of different metals. Also note the degree of precision is of ~0.12 eV/atom for PBE 

and similar for TPSS, ~0.16 eV/atom. In addition, see that the trend for (001) and (011) surface 

is similar yet (111) is slightly different. 

Figure 15. Lineal dependence and regression of surface energy in front of cohesive energy of fcc metals 

using PBE functional 

Knowing that the cohesive energies of Ni and Cu obtained with TPSS functional are not as 

good as expected. The following regression in Fig. 16 has been done without these two elements. 

Figure 16. Lineal dependence and regression of surface energy in front of cohesive energy of fcc metals in 

(011) surface using TPSS functional. Ni and Cu results are  not included as were not converged.
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In order to know if the deviations of linearity come from relaxations, fixed surface energy has 

been plot in front of cohesive energy. One can see in the error obtained that, as predicted, the 

deviation is slightly lower.  See Table 14. Then is to assume that relaxation energy is not a high 

issue in surface energy for these particular metals. 

Surface Method Linear regression equation R2 

(001) PBE y = 0.433x - 0.194 0.928 

 TPSS y = 0.426x - 0.116 0.994 

(011) PBE y = 0.439x - 0.138 0.925 

 TPSS y = 0.422x + 0.035 0.974 

(111) PBE y = 0.284x + 0.079 0.798 

 TPSS y = 0.324x - 0.097 0.969 

Table 14. Parameters obtained from plotting fixed surface energy against cohesive energy. 

With the obtained data one can see that cohesive energy can explain the high melting point 

(Tm) of these metals and also the direct relation with surface energy. The higher the cohesive 

energy, the higher melting temperature of the metal due to its strong interaction. 21 22 23 24 

Figure 17. Dependence and regression of cohesive energy in front of the melting point of fcc metals within 

PBE functional (left) and TPSS functional (right). 
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Finally, the variation of the surface energy of fcc metals along the periodic table can also be 

a way to relate cohesive energy and surface energy. Surface energy shows the typically parabolic 

dependence on the d band occupation in transition metals, which is already well known from the 

cohesive energy.11 In the case of the fcc metals studied, the surface energy decreases along the 

period because the bonding band has been already completed and now the trend is reserved 

when antibonding band is being filled. Thus, the bonding interaction decreases and as a 

consequence cohesive energies and surface energies too, see Fig. 18. 

 

 

 

 

Figure 18. Variation of surface energy in the periodic table.  
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8. CONCLUSIONS 

All the objectives of the work were carried out, obtaining the following conclusions: 

 Slab models of 6 layers are ratter accurate to obtain surface energies, but linear regression 

method is better. 

 The most stable surface of fcc metals is the (111) surface, as initially thought, because of 

its higher degree of compression. 

 With PBE functional it is easier to calculate surface energies than with TPSS, but PBE 

accuracies are slightly worse than using TPSS functional. In the case of isolated atom 

calculations, TPSS functional gave worse results due to the poorer accuracies of the 

functional when describing isolated atoms. 

 The most stable surfaces have also less relaxation energy. Comparing both functionals 

studied, TPSS delivers lager relaxation energies because surface relaxations are more 

acute. 

 The surface energy has a direct dependence with bulk cohesive energy and relaxation 

energy but an indirect dependence with surface compacting and saturation.

 Semi-empirical methods are useful for studying trends of surface energies in fcc metals. But 

they can only be used for qualitative studies.

 Surface energies and cohesive energies show the typically parabolic dependence on the d 

band occupation. 
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