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ABSTRACT

Reconstructing an estimate of linear baryon acoustic oscillations (BAO) from an evolved
galaxy field has become a standard technique in recent analyses. By partially removing non-
linear damping caused by bulk motions, the real-space BAO peak in the correlation function
is sharpened, and oscillations in the power spectrum are visible to smaller scales. In turn these
lead to stronger measurements of the BAO scale. Future surveys are being designed assuming
that this improvement has been applied, and this technique is therefore of critical importance
for future BAO measurements. A number of reconstruction techniques are available, but the
most widely used is a simple algorithm that decorrelates large-scale and small-scale modes
approximately removing the bulk-flow displacements by moving the overdensity field. We con-
sider the practical implementation of this algorithm, looking at the efficiency of reconstruction
as a function of the assumptions made for the bulk-flow scale, the shot-noise level in a random
catalogue used to quantify the mask and the method used to estimate the bulk-flow shifts. We
also examine the efficiency of reconstruction against external factors including galaxy density,
volume and edge effects, and consider their impact for future surveys. Throughout we make
use of the mocks catalogues created for the Baryon Oscillation Spectroscopic Survey (BOSS)
Date Release 11 samples covering 0.43 < z < 0.7 (CMASS) and 0.15 < z < 0.43 (LOWZ),
to empirically test these changes.

Key words: methods: data analysis surveys—cosmological parameters—cosmology:
observations —distance scale —large-scale structure of Universe.

Universe (e.g. Meiksin, White & Peacock 1999). The scale of the

1 INTRODUCTION pattern depends on the sound horizon at the baryon drag epoch

Many different scenarios have been proposed to explain the ob-
served accelerated expansion rate of the Universe, based on per-
turbing either the matter-energy content of the Universe or the law
of gravity away from the standard General Relativity + cold dark
matter (CDM) picture. In order to differentiate between models,
it is important to establish robust and accurate measurements of
the expansion rate. The baryon acoustic oscillation (BAO) scale
provides a standard ruler in the distribution of mass, and in turn
galaxies, allowing a mechanism to make such measurements. The
BAO feature arises from spherical imprints in the density field,
remnants of pressure waves that travelled away from perturbations,
through the tightly coupled photon, baryon plasma of the early
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— quantifying the distance propagated by the waves. For the fidu-
cial concordance ACDM model that we adopt in this paper, the
sound horizon ry = 149.28 Mpc (comoving), which is close to the
best-fitting value cited in Planck Collaboration XVI (2013).

In the correlation function of the matter density field, this effect
leads to a peak at a scale corresponding to the sound horizon —
where any perturbation is surrounded by a spherical shell of higher
than average density. In the Fourier representation of the two-point
statistic, the power spectrum, the effect translates to a series of peaks
and troughs as a function of scale. These patterns of density per-
turbations expand with the expansion of the Universe meaning the
observed BAO scale in a galaxy distribution depends on the sound
horizon projected at the redshifts of the galaxies, in the observed
units of redshift and angle. Thus, the BAO feature provides a mech-
anism to measure the combination of the sound horizon with the
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Table 1. Measurements from SDSS reconstructed galaxy surveys.

Reference Data sample Pre-reconstruction error  Post-reconstruction error
Anderson et al. (2014) DR11 CMASS 1.5 per cent 0.9 per cent
Tojeiro et al. (2014) DR11 LOWZ 2.7 per cent 1.9 per cent
Ross et al. (2014) DR10 red sample 2.7 per cent 2.0 per cent
Ross et al. (2014) DR10 blue sample 3.1 per cent 2.6 per cent
Anderson et al. (2014) DR10 CMASS 1.9 per cent 1.3 percent
Tojeiro et al. (2014) DR10 LOWZ 2.6 per cent 2.5 per cent
Anderson et al. (2012) DR9 1.7 per cent 1.7 per cent
Padmanabhan et al. (2012) DR7 LRG“ 3.5 per cent 1.9 per cent

Note: “The DR7 and DR9 constraints come from correlation function measurements whereas the DR10
and DR11 values quoted here are from the power spectrum measurements.

angular diameter distance Dx(z)/rq and Hubble parameter H(z)ry
across and along the line of sight, respectively (Blake & Glazebrook
2003; Hu & Haiman 2003; Seo & Eisenstein 2003).

For a sample of galaxy pairs with an isotropic distribution and
clustering signal, the projection of the BAO peak in the monopole
depends on Dy (z)/r4, where

Dy (2) = [ez(142)* D} (z)H”(z)}m. 1)

Locations of peaks in the temperature—temperature cosmic mi-
crowave background (CMB) power spectrum provide a similar
measurement, where the projection depends on the angular diam-
eter distance at the last scattering surface. A full fit to both CMB
and galaxy survey data for a set of cosmological models provides
further constraints on 7y, allowing accurate distance measurements
to the survey redshifts.

Recent measurements of the BAO scale in galaxy surveys have
built up a distance ladder, mainly based on monopole measure-
ments constraining Dy (z)/rq (Kazin et al. 2010; Percival et al. 2010;
Beutler et al. 2011; Blake et al. 2011; Anderson et al. 2012, 2014;
Padmanabhan et al. 2012; Tojeiro et al. 2014). At higher redshifts,
measurements from the Lya forest have anchored this ladder at an
epoch before dark energy (Slosar et al. 2013; Delubac et al. 2014;
Font-Ribera et al. 2014). The most recent data from the Baryon Os-
cillation Spectroscopic Survey (BOSS) are of sufficient quality that
the measurement of Da(z)/rq and H(z)rq from the monopole and
quadrupole, provide enough extra information beyond monopole-
only fits that the extra complication is warranted (Anderson et al.
2014).

In the power spectrum, the BAO signal continues to small scales
(typical galaxy surveys contain a BAO signal to k < 0.3 hMpc™!),
extending from the linear into the non-linear regime, where the
signal is degraded. This degradation increases in importance to low
redshift, and results from increasing bulk motions of matter and non-
linear structure formation (Eisenstein, Seo & White 2007a). These
processes move galaxies on average by approximately 104~! Mpc
from their linear BAO positions resulting in a smearing of the acous-
tic feature in configuration space, which is equivalent to a damping
of the BAO in the power spectrum (Meiksin et al. 1999; Seo &
Eisenstein 2005; White 2005). This significantly reduces the preci-
sion of the BAO-scale measurement.

This picture of the BAO signal is further complicated by redshift-
space distortions (RSD; Kaiser 1987), which result from using the
observed relative velocity of each galaxy to deduce the position.
Peculiar velocities distort these positions from those due to cos-
mological expansion. RSDs induce a non-zero quadrupole moment

in the measured density field. In the linear regime, they cause an
increase in the amplitude of the power spectrum or correlation func-
tion monopole. On smaller, non-linear scales where velocities are
incoherent with the large-scale structure, they generate an additional
damping term. Thus, the BAO damping is dependent on the angle to
the line of sight for a redshift-space galaxy sample. The amplitude
and signal-to-noise of the Fourier modes are also angle dependent.

As the signal degradation due to bulk flow is gravitationally
induced, Eisenstein et al. (2007b) suggested that it is possible to
partially reverse this effect, utilizing the galaxy map to estimate
the potential that sources the motions between regions of a given
scale. These motions can be used to mitigate the damping and, in
effect, recover information about the linear overdensity. The process
is called reconstruction and has precursors dating back to Peebles
(1989); see Eisenstein et al. (2007b) for a brief review of previous
work. Most recent work to measure the BAO scale has used this
simple algorithm for which a perturbation theory based analysis was
presented by Padmanabhan, White & Cohn (2009) and extended to
biased tracers in Noh, White & Padmanabhan (2009).

The reconstruction technique has been successfully applied to
a number of galaxy samples selected from the Sloan Digital Sky
Survey (SDSS) data (a list of results and references is provided
in Table 1) and also to the WiggleZ Dark Energy Survey (Kazin
et al. 2014). Reconstruction increased the precision of the measure-
ments in all of the samples analysed, except for the Data Release
9 (DR9) CMASS sample (Anderson et al. 2012) and the DR10
LOWZ sample (Tojeiro et al. 2014) where neither achieved a sta-
tistically significant improvement in the BAO-scale measurement
with reconstruction. Analysis with mock samples demonstrated that
reconstruction is a stochastic process; reconstruction is less likely to
reduce initially small errors. Both of these samples were ‘lucky’ data
sets with a small pre reconstruction error. The pre-reconstruction
DR10 LOWZ error is smaller than the pre reconstruction DR11
LOWZ error although the sample covers a smaller volume and has
a less contiguous area.

Although the reconstruction algorithm suggested by Eisenstein
et al. (2007b) is theoretically straightforward, it requires several
assumptions. In this paper, we empirically test these to establish the
most efficient set of values to use. In Section 2, we briefly review
first-order Lagrangian Perturbation Theory (LPT), and describe the
practicalities of creating the reconstruction algorithm. In Section 3,
we describe the simulations that we use to carry out our analysis.
In Section 4, we describe the fitting procedure used to measure the
BAO scale. In Section 5, we look at how the survey density impacts
the outcome, Section 6 checks the effects of survey edges on results.
Section 7 looks at various aspects of the method such as smoothing
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length, how many random data points are required, different ways
of implementing the algorithm and removal of RSDs, to see how
these factors affect the performance of reconstruction. We present
our conclusions in Section 8.

For efficiency we conduct our analysis in Fourier space using the
power spectrum rather than the correlation function to measure the
BAO. Previous analyses have shown the two methods to produce the
same results (Anderson et al. 2014; Tojeiro et al. 2014). Throughout,
we assume the cosmological model used to calculate the mocks,
Qm = 0.274, h = 0.7, Q, h* = 0.0224, n, = 0.95 and 0’3 = 0.8.

2 THE LAGRANGIAN RECONSTRUCTION
METHOD

The degradation of the BAO signal is expected to be dominated
by bulk flows in the velocity field. While methods that alter the
distribution of displacements while keeping the rank ordering the
same can make the distribution look more like that of linear the-
ory (e.g. Kitaura & Angulo 2012) they do not necessarily remove
the small-scale damping. The method proposed by Eisenstein et al.
(2007b) splits the density field in scale by moving densities accord-
ing to displacements calculated from a smoothed field. In a Fourier
framework, this reduces the damping of the oscillations due to bulk
motions (Padmanabhan et al. 2009). In configuration space, one can
see that densities on the smoothing scale are moved towards their
‘linear’ positions by correcting the non-linear displacements at this
scale.

We now review the algorithm, building up to the assumptions
made when performing a practical implementation. The reconstruc-
tion method is based on estimating the displacement field from a
smoothed version of the observed galaxy overdensity field. The
galaxies, and points within a random catalogue that Poisson sample
the 3D survey mask, are moved backwards based on this displace-
ment field. We refer to these as the displaced and the shifted field,
respectively. The small-scale motions stay in the galaxy field, while
the large-scale clustering signal moves into the random catalogue.
Two-point statistics are measured based on the difference between
the galaxy and random fields. In Section 2.1, we consider how the
displacements are estimated, then in Section 2.2 we discuss some
of the practicalities of implementation.

2.1 The observed galaxy displacement field
in perturbation theory

It is natural to work in a Lagrangian frame work where the Eulerian
position of a particle x can be described by the sum of its Lagrangian
position g and some displacement vector ¥,

x(g,1)=q+%¥(q,1). ()

Eisenstein et al. (2007b) use the galaxy density field to estimate the
Lagrangian displacements. To build up to this, we first review the
first-order LPT method of estimating the Lagrangian displacement
field from a matter density field sampled at x.

Conservation of mass allows us to equate the total average density
in Lagrangian coordinates with the sum of the Eulerian density,

pd’q = p(x, 1) dx, 3)

where p (x) is the density of the matter at position x and p is the
average density. Thus, the first-order overdensity in Eulerian space
can be related to the first-order Lagrangian displacement vector by

Ve-¥ay(g,t) =8y (x,1), (€]

MNRAS 445, 3152-3168 (2014)

with the subscript (1) as a reminder that they are both first-order
terms. Assuming W is an irrotational vector field (Bouchet et al.
1995), it can be expressed in terms of a Lagrangian potential where

V(g,t)=-V,P(q,1), ®)
such that
V- Wa)(g, 1) ==V, ®(q,1) =81 (x,1). (6)

From these relations, we can derive an expression for the first-order
displacement field in Fourier space that can be calculated directly
from the Fourier transform of the overdensity field,

ik
W (k) = —;—zam (k). %)

This relation is the standard Zel’dovich approximation (Zel’dovich
1970) and is the first-order term in an LPT expansion of the dis-
placement field.

For a galaxy survey, we typically have to use the distribution
of galaxies to estimate the matter field of the Universe, although
this may change for future surveys with simultaneous weak-lensing
and galaxy survey coverage. The current situation poses several
problems:

The first is that galaxies are biased tracers of the matter. In this
work, we correct for this by assuming a local deterministic galaxy
bias such that §, = bd, where b, the galaxy bias, is the assumed
ratio between the galaxy overdensity 6, and matter overdensity 4.

Secondly, 3D galaxy positions are inferred from their angular
position on the sky combined with their redshift. Thus, we have
to assume a cosmological model for the distance—redshift relation
before we can perform the reconstruction. However, the approxima-
tion of only performing reconstruction for a single fiducial model
is expected to only weakly affect measurements: in Padmanabhan
etal. (2012), they show that the distance scale measurement, Dy /75,
is robust to changes in the value of €2,, used within a flat ACDM
cosmology.

Thirdly, RSDs create a non-zero quadrupole moment with a sign
dependent on whether they are in the linear/non-linear regime: linear
RSD enhance the clustering signal along the line of sight, while
incoherent non-linear peculiar velocities reduce it. The strength of
linear RSDs at a given redshift depends on the amplitude of the
peculiar velocity field, and can be characterized by fo g, where f =
dIn D(a)/dIna, D(a) is the growth function and a is the scale factor.

To account for galaxy bias and RSDs, equation (6) can be mod-
ified following Nusser & Davis (1994) and Padmanabhan et al.
(2012) to
Vowtlv.wo % 8

Y+ (¥-P)F = b ®
This is the first-order equation linking the displacement field to a
sample of galaxies. An estimation of the potential can also be used
to remove linear RSD from the galaxy distribution (Kaiser 1987;
Scoccimarro 2004; Eisenstein et al. 2007b; Padmanabhan et al.
2012) by displacing the galaxies by an additional

Wrsp = —f (W - P)F, ®

where the r vector points along the radial direction of the survey.
Note that this correction is not the same as removing the RSDs in
the Lagrangian displacement field as per equation (8) and removes
the estimated RSD signal on a galaxy by galaxy basis.
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2.2 Practical implementation

Equation (8) can be solved either using finite difference techniques
in configuration space or in Fourier space, where the vector opera-
tors have a simple form. While Padmanabhan et al. (2012) used a
finite difference method, we have considered both approaches and
found them to match (see Section 7.3). Our standard approach is
to use Fourier based calculations on a Cartesian grid, which are
computationally less expensive.

The calculation of the smoothed overdensity from which the
displacements are computed requires an estimate of the average
galaxy density. This is commonly realized using a catalogue of ran-
dom points Poisson sampled within the survey mask. As discussed
above, a shifted random catalogue is also required which forms part
of the reconstructed overdensity alongside the displaced galaxy
catalogue. These catalogues should not be the same to avoid induc-
ing spurious fluctuations between the derived potential and shifted
fields. In order to minimize shot noise, the random catalogue should
have a higher density than that of the galaxies: in this paper, we use
100 times more randoms than galaxies for all tests, unless stated
otherwise. To ensure that the randoms match the galaxy density as
a function of redshift, 7 (z), we match the radial distributions after
removing the RSDs from the galaxies. We do this by assigning each
random point a redshift picked at random from the galaxy catalogue
post-RSD removal.

We carry out our tests on the SDSS III PTHalo mocks which
are described in more detail in Section 3. The catalogues are set
within boxes of length 3.5 A~ Gpc. The overdensity and fast Fourier
transforms (FFTs) are calculated on a 5123 grid. The size of the box
is larger than the survey by at least 200 ~~! Mpc on each side to
ensure sufficient zero padding to avoid aliasing. A nearest grid-
point assignment scheme is used to calculate the overdensity. We
do not use any interpolation scheme to fill in regions within the box
that are not covered by the survey as done in Padmanabhan et al.
(2012).

To ensure that the correct size regions source our Lagrangian dis-
placement vectors, the density fields are convolved with a Gaussian
filter, S (k) = e~*®’/2 where R is the smoothing length. This allevi-
ates small-scale non-linear motions, ensuring they do not contribute
to the estimates of growth-related distortions. The convolution is
carried out in Fourier space prior to calculating the overdensity.

The smoothing can introduce spurious fluctuations in the over-
density outside of the survey volume. To account for this, we create
a binary angular mask using the MANGLE software (Swanson et al.
2008). Imposing redshift cuts we create 3D mask used to cut the
smoothed galaxy and random fields prior to calculating the overden-
sity. As the mask abruptly nulls the density of regions outside the
survey, we find a slight deformation of the Lagrangian displacement
field at the survey boundaries as well as the standard edge effects
caused by loss of signal. We investigate these effects in Section 6.

In order to use equation (8), we need estimates for the values of
bias b and the growth factor f for each galaxy catalogue to be anal-
ysed. While f can be calculated for a fiducial cosmology, we must
estimate b empirically from the data itself. Thankfully, the mea-
surements are insensitive to mild deviations as shown in appendix
B in Anderson et al. (2012), although we would expect a loss in
efficiency of the reconstruction algorithm for larger deviations.

3 MOCK CATALOGUES

To empirically test the efficiency of reconstruction on distribu-
tions of galaxies with realistic masks, we make use of the PTHalo

6 T T

—— CMASS North
5 ——LOWZ North 7

n(z) (h® Mpc )

0.2 0.3 0.4 0.5 0.6 0.7
Redshift

Figure 1. The number density of galaxies as a function of redshift for both
the North Galactic Cap of CMASS and LOWZ data.

(Manera et al. 2013) mocks created to match the DR11, BOSS
galaxy samples. BOSS (Dawson et al. 2013) is part of the SDSS
III (Eisenstein et al. 2011), a project that used the SDSS telescope
(Gunn et al. 2006) to obtain imaging (Gunn et al. 1998) and spec-
troscopic (Smee et al. 2013) data, which were then reduced (Bolton
et al. 2012) to provide samples of galaxies from which clustering
could be measured. Recent analyses of these data have benefited
from having a large number of mocks, that have been used to esti-
mate covariance matrices, and test methods. We use mocks created
to match the angular mask corresponding to the galaxies included
in DR11 (Manera et al. 2014).

BOSS measures redshifts for two galaxy samples, known as
CMASS (which was selected to an approximately constant stel-
lar mass threshold) covering 0.43 < z < 0.70 and LOWZ (low-
redshift) sample with 0.15 < z < 0.43 (further details about these
samples, including the targeting algorithms used can be found in
Anderson et al. 2014). A comparison of the redshift distribution of
both samples is provided in Fig. 1. The different redshift ranges
mean that they cover different volumes, giving BAO measurements
with different average precision. We will utilize samples of 600
mocks matched to the CMASS sampling, and 1000 LOWZ mocks.

Because we use the PTHalos mocks extensively, we briefly review
the process used to generate them. The method initially creates a
matter field based on second-order LPT, displacing a set of tracer
particles from their Lagrangian position by

] =\I’”)+\I’(2), (10)

where the first-order term is the Zel’dovich approximation and the
second-order term describes gravitational tidal effects

Vo aw® ow!” 2w gy
@ O(; 0g; 0q; - dq; 0q; |

an

RSDs are added to the mock galaxy distribution by modifying their
redshifts according to the second-order LPT peculiar velocity field
in the radial direction. The matter field is created in a single time-
slice, rather than in a light cone, thus the growth rate and RSD
signal are constant throughout the sample. Haloes are located with
a Friends of Friends algorithm, and halo masses calibrated to N-body
simulations. The clustering of the haloes is shown to be recovered
to at least ~10percent accuracy over the scales of interest for
BAO measurements. The haloes are populated with galaxies using
a Halo Occupation Distribution (HOD) calibrated by the observed
galaxy samples on small scales between 30 and 80 /4~! Mpc. For
the CMASS mocks, a non-evolving HOD was assumed, while the
LOWZ mocks adopted a redshift dependant HOD (Manera et al.
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2014), with evolution introduced as a function of galaxy density.
The mock galaxies are not assigned colour or luminosity.

The mocks are sampled to match the angular mask and redshift
cuts of the survey data. Furthermore, to replicate some of the obser-
vational complications inherent in the BOSS survey, galaxies are
sub-sampled to mimic missing galaxies caused by redshift failure,
and close pairs — simultaneous spectroscopic observations are lim-
ited to objects separated by >62 arcsec. We weight mock galaxies
using the FKP weighting scheme in Feldman, Kaiser & Peacock
(1994), which we apply to calculate the displacement field, and to
estimate the final clustering signal. The FKP weight is designed to
optimally recover the overdensity field given a sample with varying
density, and is therefore appropriate to use for both measurements.
We therefore apply a weight to each galaxy

W = WFKp (wcp+wred_l)v (12)

where w, and w4 correct for the close-pairs and redshift failures,
respectively (see Anderson et al. 2012 for further details), and wgkp
is the FKP weight

1

e -

WEFKP =
with fixed expected power spectrum Py = 20000 /73 Mpc?, and
average galaxy density 7 (z).

The clustering on intermediate scales is built up by interpolat-
ing between the small and large scales. Thus, we see that galaxy
displacements within the mocks will be formed from the struc-
ture growth (at second order) and a random component from the
intrahalo velocities. Hence, they will provide a good test of recon-
struction, although obviously, the intermediate-scale clustering is
not as accurate as it would have been had the mocks been calcu-
lated from N-body simulations, which we should bear in mind when
interpreting our results. For simplicity in our analysis we use only
the North Galactic Caps (NGC) of both sets; the CMASS NGC
mocks each cover an effective area of 6308 deg” and the LOWZ
NGC mocks have an effective area of 5287 deg?. Following previ-
ous work (Anderson et al. 2014; Tojeiro et al. 2014), we assume a
linear bias value of 1.85 for both samples which is calculated from
the unreconstructed correlation function of the data. We use a linear
growth rate of f = 0.74 for CMASS and f = 0.64 for the LOWZ
sample.

The DR11 PTHalo mocks have been used in a considerable num-
ber of previous BOSS analyses, measuring BAO (e.g. Anderson
etal. 2014; Tojeiro et al. 2014), RSD (e.g. Samushia et al. 2014), full
fits to the clustering signal (e.g. Sdnchez et al. 2014). We consider
that they have therefore been extensively tested, and any limitations
result from the method, as discussed above.

4 MEASURING THE BAO SCALE

In the following, we will only consider measuring the BAO scale
from spherically averaged two-point clustering measurements. The
monopole provides the majority of the important cosmological sig-
nal (Anderson et al. 2014), and thus is of most direct importance
when testing the efficiency of reconstruction. Comparisons of BAO-
scale measurements made using either the monopole correlation
function or monopole power spectrum have revealed a high degree
of correlation (Anderson et al. 2014; Tojeiro et al. 2014). For sim-
plicity, we therefore only consider fitting the power spectrum, as
this requires significantly less computational effort to calculate.
The BAO scale is usually quantified with a dilation parameter
comparing the observed scale with that in the fiducial model used

MNRAS 445, 3152-3168 (2014)

to measure the clustering statistic. For a measurement made from
a monopole power spectrum to which all modes contribute equally,
we define « as

&:a(&) , (14)
ra rd / fq

where rq is the comoving sound horizon at the drag epoch, and Dy
was defined in equation (1). « can then be determined assuming
that it linearly shifts the observed power spectrum monopole in
wavelength. A value of & < 1 implies the acoustic peak appears at
a larger scale than predicted by the fiducial cosmology. The goal of
many modern galaxy surveys is to extract an unbiased value of «
with a high level of precision.

4.1 Measuring the power spectrum

To calculate the monopole power spectrum, we follow the standard
procedure of Feldman et al. (1994), Fourier transforming the differ-
ence between a weighted galaxy catalogue and a weighted random
catalogue with densities pyq(r) and pr,,(r), respectively,

1
F(r)= v [Pea (MW () = ¥ pran(r)w(r)] , 15)

where N is a normalization constant for the integral

N = / &rp? (Mwi(r), (16)

w (r) are the weights and y normalizes the random catalogue, which
is allowed to be denser than the galaxies

y = Z pgal(r)w(r)

32 Pran(rw(r)”
The spherically averaged measured power spectrum is defined as
P(k) = |F(k)|> — F2_, where

shot?

an

F2 =49~ [ draeyw
shot = V)N &ri (r) w” (r) (18)

is a shot-noise subtraction assuming that the galaxies Poisson sam-
ple the underlying density field.

In our implementation of this routine, we calculate the power
spectrum using the FFTw package, on a 10243 grid for a box of
side length 3 Gpc. Example power spectra are presented in Fig. 2,
showing the pre-reconstruction power spectra compared to the post-
reconstruction power spectra (where the average power of the col-
lection of mocks for each sample is shown). To show that the ampli-
tude has reduced by the expected amount for that redshift, we also
include the pre-reconstruction power spectra divided by the linear
Kaiser boost of 1 + 2/3(f/b) + 1/5(f/b)>.

4.2 Modelling the power spectrum

To measure the baryon acoustic scale, we follow Anderson et al.
(2014) and fit our power spectrum measurement with a model con-
sisting of a smooth broad-band term defined by a polynomial, mul-
tiplied by a model of the BAO signal which is rescaled by «. The
model power spectrum can be written as

pm (k) — Psmoolh (k) Odamp (k/a) , (19)

where the PS™°° (k) is the broad-band power and O(k) contains the
BAO signal. The linear power spectrum P'"(k) is calculated using
the camB package (Lewis & Bridle 2002). Following Eisenstein et al.
(2007a) and using the fitting formula of Eisenstein & Hu (1999) a
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Figure 2. Average power spectra of CMASS and LOWZ mock pre- and
post-reconstruction. The amplitude of the large-scale power is decreased
by the Kaiser factor (1 4+ 2/3(f/b) + 1/5(f/b)*) when the linear RSDs are
removed in the reconstruction process as shown by the dashed lines. The
non-reconstructed power spectrum divided by the Kaiser factor is shown by
the grey line.

model of the ‘De-wiggled” smooth power spectrum P™!i"(k) is
used to decouple the linear BAO feature O"" from the linear power
spectrum,

Plin (k) — Psm,lin (k) Olin (k/O() . (20)

To account for non-linear structure formation, the linear BAO signal
is damped

0% ™ (kja) = (O™ (kfa) — 1) e %/ 4 1. 1)

The damping scale X is fixed using values derived from the average
damping recovered from the mocks pre-/post-reconstruction. We
use CMASS, pre-reconstruction 8.3 /! Mpc, post-reconstruction
4.6~ Mpc; and LOWZ, pre-reconstruction 8.8 2~! Mpc, post-
reconstruction 4.8 h~! Mpc.

The smooth broad-band part of the power spectrum is calculated
using a model constructed with five polynomial terms A; and a
multiplicative term B, that accounts for large-scale bias (Ross et al.
2013; Anderson et al. 2014)

P (k) = B, P (k)"™"™ + Ak + Ay + % + % + %. (22)

To replicate the effects of the survey geometry, a window function
(IW(k)|?) is constructed from the normalized power spectrum of
the random catalogue as shown in Percival et al. (2007). This is
convolved with the model power spectrum over 0 < k; < 22 Mpc ™.

A plot showing the average pre- and post-reconstruction power
spectra of the 600 CMASS catalogues divided by the smooth model
is shown in Fig. 3. It is clear that the reconstruction process has
reduced the damping of the BAO on small scales.

4.3 Fitting the BAO scale

For each mock analysed, we calculate a likelihood surface for
o, covering the range from 0.8 < « < 1.2 with separation of
Aa = 0.002. At each point, we marginalize over the polynomial pa-
rameters, and calculate the likelihood assuming that all parameters
were drawn from a multivariate Gaussian distribution.

0.04
0.03f —e—recon R
—¥—no recon
g 0.02F
D.g 0.01F
=
I
o
o -0.01}
[@2]
2 _0.02f
-0.03f Bl
-0.04 ‘ ‘ : :
0.05 0.1 0.15 0.2 0.25
k (h Mpc™")

Figure 3. Average of 600 CMASS mock power spectra divided by the
no-wiggle model, pre-reconstruction is shown by the red line and post-
reconstruction is the blue line. The plot shows how the oscillations are
less damped post reconstruction. The discreteness is a result of the power
spectrum binning choice.

We characterize how well the reconstruction algorithm works by
comparing the pre- and post-reconstruction 1o errors, calculated by
marginalizing over the likelihood surface, which we call o . and
0 o, post> Tespectively. From each set of mocks, we also calculate the
mean values of these errors (0 «, pre/post)» and the standard deviation
of the distribution of marginalized best-fitting @ values, Su, pre/post
for comparison.

To account for a different number of LOWZ and CMASS mocks,
we include a correction on the errors to compare samples (as de-
scribed in Percival et al. 2014). There are two corrections, the first
follows from our method of estimating the inverse covariance ma-
trix leading to a bias that can be corrected by a renormalization
of the x? value. The second comes from the propagation of errors
within the covariance matrix which can be corrected with different
multiplicative factors applied directly to the variance of the sample,
and to the recovered o .

5 CHANGE IN EFFECTIVENESS
WITH SURVEY DENSITY

Although reconstruction is a non-local process, there are only mild
correlations between regions separated on large scales of the order
of the survey size, such that we expect the galaxy number density
to drive the effectiveness of reconstruction rather than the survey
volume. Increasing the galaxy density reduces the shot noise in
measurements of the displacement field and as a result we would
expect the reconstruction to be more efficient. In this section, we
quantify this effect by comparing the pre- and post-reconstruction
errors after sub-sampling the galaxy catalogues to match 20, 40, 60,
80 and 100 per cent of the original density keeping the same relative
redshift distribution. As a result of tests carried out in Section 7, we
use a smoothing length of 15 ~! Mpc for the CMASS sample and
10 2~! Mpc for the LOWZ sample.

In addition to reconstruction, the error on post-reconstruction
BAO-scale measurements depends on the volume through an inter-
play with the survey density, in such a way that the error decreases
as the survey density and volume increase. The combination can be
characterized by an effective volume (Feldman et al. 1994; Tegmark
1997),

_ A P 17
Veff(k)=/ {m} d’r, (23)

which also depends on the power spectrum amplitude in redshift
space, which we denote P; . In the following, we use the measured
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Figure 4. Recovered « (left) and o, (right) values from power spectrum fits of both CMASS and LOWZ samples. The pre-reconstruction values are on the
x-axis and the post-reconstruction values on the y-axis. The black squares indicate samples cut to 20 per cent of their original density, the red points indicate
60 per cent of the original density and the green crosses are the samples at 100 per cent density. Clearly, the scatter in both sets of plots is reduced for both
pre- and post-reconstruction measurements as the density of the sample is increased. The CMASS samples show less scatter than the LOWZ samples in both
graphs and the recovered errors are smaller. Reconstruction clearly reduces the recovered o, values on average in all of the samples although the fraction of

mocks that show improvement increases with sample density.

value at k &~ 0.1 AMpc~'. The power spectrum error is inversely
proportional to the square root of the effective volume for a given
sample. We expect the BAO precision without reconstruction to
depend on this and the degree of BAO damping. We choose to plot
our measurements of BAO-scale errors against effective volume,
even though we only change the galaxy density for each sample.
This allows us to simultaneously present LOWZ and CMASS re-
sults against a consistent baseline. We compare the improvement in
error due to reconstruction for each sample which being a relative
measurement can be directly compared to the average survey den-
sity. We also compare the relative improvement of reconstruction
against 71 P o. This allows us to separate the efficiency of recon-
struction from the amplitude of the clustering signal.

Fig. 4 compares pre- versus post-reconstruction « and o, on a
mock by mock basis. These plots show points for a subset of the re-
vised density catalogues, clearly showing that increasing the density
of the survey reduces the scatter in « and o,. The distribution of «
values in both samples follows a locus with shallower gradient than
the solid line showing that, on average, post-reconstruction values
are closer. We see a corresponding improvement in the values of o,

where all points that fall below the solid line indicate a reduction in
error post-reconstruction. The o values extracted from the CMASS
measurements are clearly smaller than the LOWZ values both pre-
and post-reconstruction. As the density of a sample is increased,
both o values and their scatter decreases.

The («) and (o,) values recovered from each set of mocks
pre- and post-reconstruction are collated in Table 2. Predictions in
Eisenstein et al. (2007b) suggest that non-linear structure forma-
tion induces a small bias in the acoustic scale measured in the
galaxy distribution of the order of 0.5 per cent. Pre-reconstruction,
the CMASS sample shows a small bias in the mean recovered o
away from the true value o = 1. The bias is consistent, between 0.3
and 0.4 percent high for the range of densities analysed, accord-
ing to predictions. Tests on high-resolution simulations suggest that
this bias should be reduced by reconstruction to 0.07-0.15 per cent
(Mehta et al. 2011). The correction due to reconstruction is shown to
be a consequence of reducing the amplitude of mode coupling terms
in the density field apparent at low redshift (Padmanabhan et al.
2009). Post-reconstruction the bias reduced in all of the CMASS
samples. At 100 per cent density, the bias is reduced to 0.02 per cent

Table 2. BAO-scale errors recovered for different survey densities from the LOWZ and CMASS mocks.

Oq,post

Sample Density(per cent) Veff(}f3 GPC3) (otpost) (0 a, post) S, post (otpre) (oa, pre) S, pre per cent with Tapre <1

CMASS 100 1.12 0.9998  0.0112 0.0109 1.0032 0.0173 0.0172 100
80 0.97 1.0005  0.0130 0.0125 1.0038  0.0185 0.0185 100
60 0.78 0.9997  0.0141 0.0140  1.0036  0.0212 0.0214 99.5
40 0.54 0.9994  0.0182 0.0182  1.0035 0.0237 0.0244 94.3
20 0.23 1.0009  0.0303 0.0287 1.0037  0.0384 0.0363 79.0

LOWZ 100 0.52 0.9997  0.0169 0.0157 1.0035  0.0302 0.0308 99.2
80 0.47 0.9992  0.0208 0.0216  1.0031  0.0323 0.0334 93.3
60 0.39 1.0041 0.0236 0.0254  1.0006  0.0348 0.0344 90.3
40 0.29 1.0014  0.0304 0.0314  1.0014  0.0418 0.0406 83.0
20 0.14 0.9959  0.0493 0.0425 1.0008  0.0579 0.0499 65.8
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Figure 5. Recovered () (left) and (o4) (right) from power spectrum fits for CMASS and LOWZ as a function of effective volume. The («) values are
consistent in the range of CMASS subsamples. The value is biased high pre-reconstruction (black dashed line), and the bias is removed by reconstruction
such that the values are consistent with 1 (black full line). The pre-reconstruction LOWZ sample (red dashed line) shows no bias in («) pre-reconstruction for
subsamples at a lower effective volume. When the effective volume is increased the bias in the pre-reconstruction () measurement becomes apparent and is
removed post-reconstruction (red full line). The average o 4, post Values are clearly reduced with increasing effective volume both pre- and post-reconstruction

for both samples.

high of the true value, below the statistical uncertainty on (o) of
0.05 per cent. At all densities the post-reconstruction CMASS («)
are within 1o of the true value and are significantly lower than the
error on any one realization. The standard deviation of « values
for a set of mocks are consistent with the (o,) values confirm-
ing the validity of our likelihood calculations. Pre-reconstruction,
the lower density (20, 40 and 60 per cent) LOWZ («) values are
within 0.1 percent of 1. There is weak evidence that the LOWZ
bias increases with Vg, and at 100 per cent density, the bias in
the LOWZ sample is increased to 0.4 per cent in line with the pre-
reconstruction CMASS samples. This suggests that the low bias in
the low-density samples is a ‘lucky’ coincidence, a consequence of
undersampling the density and losing small-scale information. At a
higher redshift, the galaxies in the CMASS mocks are not as tightly
clustered which may explain why this effect is only seen in the
LOWZ sample. Post-reconstruction, the bias in the measurement
of («) increases from 0.08 to 0.4 percent high in the 20 per cent
sample, remains the same for the 40 per cent sample and increases
from 0.06 to 0.4 per cent high for the 60 per cent sample. Thus for
these low-density LOWZ samples, reconstruction fails to move the
average (o) values closer to 1. If the initial recovered («) values are
not as expected (i.e. biased away from 1) due to high shot noise in
the galaxy density field, it is unlikely that using this distribution of
galaxies to measure the Lagrangian displacement field will enable
reconstruction to accurately correct the density field. However, as
the density of the LOWZ sample is increased, the bias values fall
in line with predictions. In these cases, reconstruction reduces the
bias in the recovered («) values. At 100 per cent density, the pre-
reconstruction value is biased by 0.4 per cent high, this is reduced
to 0.03 per cent low post-reconstruction within the statistical uncer-
tainty on one measurement of 0.05 per cent, at 80 per cent density
the bias is reduced from 0.3 per cent high to 0.08 per cent low, these
results are consistent with the CMASS results and predictions.
Graphs of (@) and (o) for all density subsets of CMASS and
LOWZ are shown in Fig. 5. The CMASS (o) values are very con-
sistent pre- and post-reconstruction. The LOWZ results only be-
come consistent with the CMASS results and predictions above
an effective volume of 0.5 4~ Gpc>. The (o) show a clear reduc-
tion with effective volume for both samples both pre- and post-
reconstruction. The LOWZ errors are higher than the CMASS
pre-reconstruction due to the more advanced non-linearities in the
density field. However, as the effective volume is increased, the
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Figure 6. Percentage improvement, 100 x (1 — (0a, post) /(T w, pre)), ON 0
recovered after reconstruction for both CMASS (black line) and LOWZ (red
line) samples as a function of 7i. The improvement clearly increases with
the average survey density in both cases.

LOWZ post-reconstruction error rapidly decreases and surpasses
the CMASS error suggesting that for a given effective volume,
reconstruction works harder for the lower redshift sample.

We quantify how effective our reconstruction algorithm is by
comparing the percentage reduction in (o,) before and after ap-
plying the algorithm. Fig. 6 shows the improvement 100 x (1 —
(0, post) /{0 «, pre)) as a function of 7. Both sets of results show that
the efficiency of reconstruction is increased as the density of the sur-
vey is increased. The third point on the CMASS curve representing
the 60 per cent density sample in Fig 6 is an outlier and does better
than the 80 per cent density sample, although its absolute error is
larger. For the LOWZ sample, the efficiency drops more rapidly
once the galaxy density is below 1x 10~* 4> Mpc . However, the
CMASS sample seems to show a constant decline in the efficiency
of reconstruction with the reduction in survey density. There is no
suggestion that the efficiency will asymptote at an optimal density.
Performing a simple linear fit on the data, we find that the fractional
reduction in error, 1 — {0y post) / (Ta,pre) A 10007 + 0.13. This sug-
gests that for a reduction in error of 50 per cent, the survey density
should be approximately 4x 10~* * Mpc—3.

In Fig. 7, the effectiveness of reconstruction is compared to the
i1 Ps o quantity, thus removing the clustering strength dependence
from the comparison. The two curves show a clear trend of in-
creasing efficiency with 7 P o. The higher P ( value of the LOWZ
sample moves the curve to the right compared to the CMASS curve.
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Figure 7. Percentage improvement, 100 x (1 — (0 a, post)/ (T, pre))> ON 0
recovered after reconstruction for both CMASS (black line) and LOWZ (red
line) samples as a function of 7 P o. There is a clear trend of improvement
as 71 Ps o is increased in both cases, although LOWZ does slightly worse than
CMASS for a given 71 P .

Thus compared to Fig. 6 the LOWZ sample does not do as well as
the CMASS sample for a given 7 P; o. This suggests that for a given
sample, a higher clustering signal amplitude would increase the ef-
fectiveness of reconstruction. This is expected as at low redshifts
where the clustering is more evolved, there is a greater non-linear
contribution to the density field to remove, and the density pertur-
bations that source the Lagrangian displacement fields are larger.

Histograms of the « and o, values recovered from the mocks for
CMASS, LOWZ pre- and post-reconstruction are shown in Figs A1
and A2 in Appendix A.

6 CHANGE IN EFFECTIVENESS NEAR EDGES

At a survey boundary, due to a reduction in information describing
the surrounding overdensity, we expect reconstruction to be less
efficient. Although we do not expect this ‘edge effect’ to be sub-
stantial for the CMASS sample, which has a large volume to edge
ratio, we attempt to quantify it in this section, as it will be of inter-
est for future surveys. The effect of an artificial edge is shown in
Fig. 8, which shows a thin redshift slice through one mock where
a survey boundary (the black line) has been artificially imposed.
Dashed contours show the full density (left) and displacement field
amplitude in one dimension (right) calculated using the full sample,
and the solid contours show the result of cutting along the boundary.
After excising the information to the left of the dashed black line,
we see that both density and displacement fields are damped at the
boundary, and the displacement field is mildly distorted on larger
scales. This matches expectation: the displacement estimated for a
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Table 3. BAO-scale errors recovered varying the percentage of the
survey that lies along an edge.

Sample  per cent edge galaxies (etpost) (0w, post) S, post
Cut 0 1.0002 0.0114  0.0113
2 1.0000 0.0114 0.0114
Full 67 1.0005 0.0125 0.0134
2 1.0002 0.0112 0.0110

galaxy positioned near an edge of the survey will not be influenced
by anything beyond the boundary.

Although the reconstruction process is non-local it is expected
that the influence of the edges on larger scales to be small (such
as seen in the distortions in the Lagrangian displacement field) and
that the majority of the effect will be seen on small scales adjacent
to the boundary. We therefore define an edge galaxy as one that
is within 10 h~! Mpc of a survey boundary, and we only consider
edges in the angular projection of the survey due to the low density
of galaxies at the highest and lowest redshifts (as shown in Fig. 1).

To test the impact of the mask on the recovered BAO fit values
for the CMASS sample, a new mask was constructed that is cut
back in angular area by ~20/4~! Mpc around the survey edges.
Galaxies and randoms were cut using this new mask (discarding
~2 per cent of each) and the displacement field was calculated using
both the full and cut regions. We refer to the masked sample as the
‘cut’ sample and reconstruct it using either the overdensity of the
original full survey, or only using the cut survey. We use the results
from reconstruction generated from the full survey overdensity as
an approximation of a survey with no edge to compare with a survey
with an edge.

The BAO-scale results for both samples are given in Table 3, and
are consistent suggesting that our simple method of masking the
data does not alter the performance of the reconstruction algorithm
for the CMASS sample. This in turn suggests that the CMASS
boundary has negligible effect on the efficiency of reconstruction.
As the CMASS sample has such a low edge-to-volume ratio, it does
not provide us with a large enough percentage of edge galaxies to
quantify their effect.

In order to test the effects of edges further, we have used the
CMASS mocks to artificially create a survey with a large edge-
to-volume ratio. To do this, we cut the survey into 257 stripes in
right ascension, ~0.6° across, which translates into a comoving
physical separation of approximately 14 4~! Mpc at the effective
redshift of the sample. The overdensity and thus the displacement
field are calculated using data spanning from one true edge of the
survey up to a synthetic edge such that it is always calculated in a

-1,300

-1,350-

-1,400f

y Mpc h'!

-1,480

-1,5095=
~350 -300 -250 -200 -150 -100

x Mpc h'

Figure 8. The left-hand figure shows the smoothed overdensity field, the right-hand figure shows the amplitude of the Lagrangian displacement field in the
x-direction. The dashed lines show the original fields and the full lines show the field recovered using only the information to the right of the dashed black line.
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Figure 9. Plot showing how we impose edges on all galaxies within the
sample. In each panel, only the dark blue galaxies are reconstructed, and
this reconstruction only uses information from the galaxies shown in light
and dark blue. The figures depict stripes 10, 100 and 190, respectively, out
of the 257 stripes that we split the sample into. Once we have applied recon-
struction for each of the 257 stripes, and measured the galaxy and random
displacements in that stripe, we stitch the galaxy and random catalogues
back together to give a full sample, reconstructed as if all galaxies lie close
to an angular boundary.

region covering > half of the whole survey volume as illustrated
in Fig. 9. The stripe of galaxies/randoms that lies on the edge of
the overdensity in each instance is reconstructed using the new
displacement field. Our reconstructed stripes are then concatenated
to replicate a survey where the majority of galaxies (67 per cent) lie
within 10 2~! Mpc of an edge. We call this ‘the edge catalogue’.
On a mock by mock basis, the o4 posc values for the edge cat-
alogue are larger compared to the standard reconstruction in 559
out of 600 mocks. For the remaining 41 mocks, the error is only
smaller in the edge sample by an average of (Ao 4, post) = 0.0004.
Histograms showing the « and o, distributions for each sample
are shown in Appendix A in Fig. A3. Comparing the rms displace-
ments of the edge sample with the standard sample for the first
CMASS mock, the edge sample galaxies have an rms displacement

of 2.9 h~! Mpc whereas the standard sample have an rms displace-
ment of 3.6 ! Mpc. The displacements are reduced in the edge
catalogue as the overdensity field beyond the boundary is not picked
up and the amplitude of the displacement field drops off towards
the boundary edge, where 67 per cent of the edge galaxies reside.
The (post) and (0q, post) Values are shown in Table 3. Although
the edge sample does not do as well as the standard reconstruction, it
does notably better than the non-reconstructed set of mocks. As we
have constructed the edge files to represent a worst case scenario,
we conclude that even surveys with a large surface area to volume
ratio should benefit from reconstruction provided the galaxy density
is sufficiently large, as discussed in the previous section. Assuming
a linear relation between the percentage of edge galaxies and the
reduction in effectiveness of reconstruction, we can estimate the
effect that a particular survey geometry (of a contiguous volume)
will have. For example a survey with 20 percent edge galaxies
should expect approximately 3 per cent increase in the error on the
measurement due to edge effects compared to a survey with only
2 percent edge galaxies. For the CMASS sample, the fractional
increase in the o, pos ¥ for a specific fraction of edge galaxies X is
2x 1073
Yy = —X, (24)
00
where o) is the error for a sample with no edges; this is 0.011 16 for
the CMASS mocks in our standard reconstruction. As the absolute
value o is dependent on other factors, including the density and
volume and redshift of sample which may not be independent of
the edge results, we use this as a rough indication of the expected
increase of 04, post With edge fraction to show that the effect is small.
These tests have been conducted to look at edge effects on a
contiguous survey, not surveys that are constructed from disjointed
patches. Small holes within a survey, that are significantly smaller
than the smoothing length applied, are simply equivalent to a re-
duction in the sample density. However, holes comparable to the
smoothing scale or larger, could exclude regions important for the
reconstruction as discussed in Eisenstein et al. (2007b). Previous
applications of reconstruction, such as Padmanabhan et al. (2012),
have used constrained realizations or Wiener filter methods to fill-in
regions outside the survey or holes within the survey. However, it
is important to realize that these methods are not providing extra
information in these regions: they simply provide a plausible con-
tinuation of the density field. The efficiency of reconstruction would
still be reduced near the boundaries of large holes. From the tests
above, we conclude that the actual effect of the boundaries is itself
small for BAO-scale measurements, and this suggests that it may be
unnecessary to perform a complicated extrapolation of the density
field to regions where there are no data.

7 CHANGE IN EFFECTIVENESS
WITH METHOD

7.1 Smoothing length

As discussed in Section 2, the smoothing dictates the minimum
scale of perturbations used to calculate the displacements and sets
the scale on which the overdensity is measured. Padmanabhan et al.
(2009) noted that in theory, if the measured overdensity field were
the linear matter field, and no smoothing was applied, the Zel’dovich
displacements would take the data back to Lagrangian positions, and
the displacements would be transferred to the random catalogue.
This process would be equivalent to performing no reconstruction.
However, working with a discrete non-linear galaxy distribution,
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Figure 10. The recovered (opost) (Ieft) and (074, post) (right) values as a function of smoothing scale for CMASS (black line) and LOWZ (red line). The optimal
smoothing scales are where the bias on () is removed and the error (o) is a minimum. The CMASS sample has an optimal smoothing scale of 154! Mpc

and the LOWZ sample has an optimal smoothing scale of 104! Mpc.

Table 4. BAO-scale errors recovered for different smoothing lengths from the LOWZ and CMASS mocks.

Sample Smoothing (h’1 Mpc) (etpost) (0, post) Ser, post per cent mocks with 04, post < g, pre

CMASS 5 0.9998  0.0137 0.0118 99.1 per cent
8 1.0006  0.0115 0.0106 100 per cent
10 1.0009  0.0111 0.0103 100 per cent
15 0.9998 0.0111 0.0110 100 per cent
20 0.9989  0.0118 0.0118 100 per cent
30 0.9989  0.0121 0.0127 100 per cent
40 0.9974  0.0124 0.0133 100 per cent

LOWZ 5 0.9980 0.0185 0.0172 96.6 per cent
8 0.9997  0.0170 0.0157 99.7 per cent
10 0.9997  0.0169 0.0157 99.7 per cent
15 0.9986  0.0174 0.0169 98.6 per cent
20 0.9989  0.0181 0.0187 97.0 per cent
30 0.9996 0.0192 0.0214 98.3 per cent
40 0.9977  0.0197 0.0231 98.2 per cent

the density field smoothed on small scales will be dominated by
incoherent highly non-linear fluctuations and shot noise and we
will not be correcting for the damping where the BAO signal is the
strongest. For a large smoothing scale, the algorithm will only pick
up modes of the density field that are well in the in the linear regime
and density perturbations in the quasi-linear regime get washed out
making the algorithm less effective. In this section, we empirically
measure the optimal smoothing scale.

In previous work (Eisenstein et al. 2007b; Anderson et al. 2012;
2014; Padmanabhan et al. 2012), a Gaussian smoothing kernel of
R =10 — 20 h~! Mpc has been used and mildly deviating from this
has been shown not to alter the results (see appendix B of Anderson
et al. 2012 and Padmanabhan et al. 2012). Here, we provide a more
extensive test on how the smoothing length alters the measurements
and their errors. A wide range of smoothing lengths between 5 and
40 hMpc~' on the CMASS and LOWZ mocks are considered.

Fig. 10 shows how the smoothing scale affects («) and (o)
recovered from the mocks. The bias in the measurement of « is
reduced most using the 5 and 15 h~' Mpc for CMASS and 8 and
10 2~! Mpc for LOWZ. For a larger smoothing scale, the bias is
reduced from the pre-reconstruction value but the samples tend to
become biased low. In the CMASS mocks, the (o) value is reduced
the most with a smoothing scale of 10 and 154! Mpc. In the
LOWZ measurements, the (o) value is reduced the most with a
smoothing scale of 10 4~' Mpc. When the scale is smaller than this,
the algorithm quickly breaks down due to the increased non-linear
and shot-noise contribution to the estimate of the displacements and
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the error increases sharply. Conversely, when the smoothing scale
is increased, the result is a steady decline in the error reduction.
Below the optimal smoothing length, the reconstructed cata-
logues still perform better than the pre-reconstruction data. For the
CMASS sample, all smoothing lengths between 8 and 40 2~! Mpc
give an improvement on every mock and the 5 4~! Mpc smoothing
kernel gives an improved result in 595 out of the 600 mocks. For the
LOWZ sample, all smoothing lengths give an improvement in over
96 per cent of the mocks. The average values of the best-fitting «
and o, values are shown for each smoothing scale for both samples
are shown in Table 4. From these results, we deduce that the optimal
smoothing scale for CMASS is 15 and 10 h~! Mpc for LOWZ.

7.2 Number of randoms

The random catalogue serves a dual purpose; it is compared to the
galaxy density to estimate the overdensity field and it is moved in the
reconstruction process where it becomes the shifted field (§). As it
is a discrete field, it is desirable to have a large number of data points
to reduce the shot-noise contribution to both of these measurements.
However, the reconstruction process requires a unique set of shifted
randoms for each mock and as such, data storage can be a problem if
these files are large. In this section, we vary the number of randoms
used, perform the reconstruction and compare the power spectrum
fitting results.

We reduce the number of randoms in each catalogue to 10, 25
and 50 times the number of data points. As a precaution to prevent
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Figure 11. The black line shows the recovered (apost) (left) and (g, post) (right) for CMASS catalogues reconstructed using N times the number of random
points to data points (where N is the value on the x-axis) in both random catalogues. The red line shows the same recovered values for CMASS catalogues
reconstructed using 100 times the number of random to data points in the overdensity calculation and N times the number of randoms to data points in the
shifted random catalogue. Above N=10, both types of reconstructed catalogue show consistent measurement values. The error decrease with increasing N
value suggests optimal reconstruction requires at least 25 times the number of random to data points in the overdensity calculation and as high as possible ratio

of random to data points in the shifted random catalogue.

spurious correlations between mocks caused by using the same set
of randoms, we randomly subsample these for each mock from the
initial random catalogue of 100 times the number of data points.
To prevent correlations between the displacements induced and &
used to calculate the two-point statistics, we use a different base of
randoms with 100 times the number of data points for each. Two
sets of reconstructed catalogues are created; one using the smaller
number of randoms for both fields which we name R; ; where i is
the ratio of randoms to data points in both; and one that maintains
100 times the number of randoms to calculate the overdensity but
uses the smaller number of randoms in the shifted catalogue, we
name these Rjq,; Where j is the ratio of randoms to data points in
the shifted field.

Fig. 11 shows (apes) and (0, post) as a function of the number
of randoms for both cases. Both data sets have a {apos) consistent
with one for i, j > 25. The (0, post) values are consistent implying
that the precision of the result is only sensitive to the number of
randoms in the shifted field and increasing the number of randoms
in the initial overdensity field is inconsequential as this field is
smoothed. Note that the galaxy field is also smoothed, but its shot
noise is dominant and, unlike the randoms it is strongly clustered,
changing the importance of the smoothing on the field. In the Ry, 19
and Ry, 1o catalogues, the (o) values are no longer consistent,
suggesting for either random catalogue there needs to be more than
10 times the number of randoms compared to data points. The
numerical results are shown in Table 5.

7.3 Finite difference method

There are a number of options for finding solutions to equation (8),
including methods based in Fourier space or in configuration space

Table 5. BAO-scale errors recovered for
different ratios randoms to mock data for
the CMASS mocks.

Sample <0‘posl> (0, posl) Sa, post

Rio, 10 0.9994 0.0118 0.0118
R25,25 0.9998 0.0116 0.0114
Rs0, 50 0.9997 0.0114 0.0113
Ri00, 10 1.0005 0.0119 0.0117
R100, 25 1.0004 0.0115 0.0113
R100, 50 1.0004 0.0114 0.0112
Ri00,100  0.9998 0.0111 0.0110

as used by Padmanabhan et al. (2012). To check that the approx-
imations used in the configuration space method of Padmanabhan
et al. (2012) give the same solution as our Fourier-based method,
we have implemented both. The configuration space method solves
for the potential as defined in equation (5), and the equation we
want to solve is equation 8 rewritten in terms of the potential as

Vi + IV (Vo) P = _—‘Sg. (25)

b b

We solve this on a grid using finite differences to approximate the
derivatives. The potential at each grid point is expressed as a func-
tion of the potential at the surrounding grid points. The Laplacian
of the potential at a grid point can be approximated as a function of
the potential at the six nearest grid points and the central point:

1
Voo A 2 {Z bijk — 6¢000] , (26)
A

where the sum over A is the sum over the six adjacent grid points and
g is the spacing between grid points. The second part of equation 25
can be written as

%V (Vo) P = %(f “V(V¢)+ Ve, (V- 1)), @n

which can be approximated as

S oo f
—23?+Z b (

S WLl
1)?
g2r? gr2)¢A+Z( ) b2g2 4

(28)

where B is the set of points ijk such that two of the indices are zero
and the other is +1. x; is the Cartesian position of the non-zero
index and r is the distance to the central grid point. C is the set of
points where two of the indices are £1 and the third is zero. When
the two indices are the same, p = 0, when they are different p = 1.
x; and x; are the Cartesian positions of the non-zero indices.

This can be arranged as a linear system of equations such that
A¢p =5, where A is a matrix describing the dependence of the
potential on its surroundings. The & that we input here is the same
smoothed overdensity field as we use in the Fourier method. We
solve for the potential using the GMRES in the peTsc package
(Balay et al. 2013, 2014) as in Padmanabhan et al. (2012). Finite
differences are used again to calculate the displacements at each
grid point from the potential.

In Fourier space, we solve directly for the displacement field
using FFTs in the Frrw package (Frigo & Johnson 2005). We want
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Figure 12. Left: Lagrangian displacement field projected in 2D from finite difference method (red), the initial galaxy positions are shown with the open
circles. Right: the same as on the left but with the displacement vectors from the Fourier method overplotted (black).

to solve for W in equation (8), and we outline the steps in the process.
Assuming that W is irrotational, then the two vector fields on the
left of the equation can be expressed as gradients of scalar fields, so
let

¥ =Vg, (29)
g(\lr PP = Vy. (30)

Thus, Fourier transforming and carrying out the double derivatives
results in

L)
90 +y ()= 5" 31
and so
i ks (k

V() +y k)= kz; ) (32)
and finally

foo ik (k)
\I’—i—Z(\II-r)r_IFFT{ b } (33)

In Cartesian coordinates, this gives three equations that can be
solved simultaneously to get W,, W, and W.. IFFT indicates the
inverse FFT.

The accuracy of the discrete Fourier transform is dependent on
the sampling rate of the data, where a signal with frequency above
the Nyquist limit will not be recovered. As our smoothing length
is larger than our grid size, we are not concerned about the loss of
information at these frequencies.

Implementing both codes, we show the comparison of displace-
ment vectors recovered for individual galaxies for the first LOWZ
mock catalogue. Fig. 12 shows the displacement vectors projected
in 2D from a slice through the survey, on the left-hand side, the black
vectors are from the Fourier method only, on the right-hand side,
the red vectors are from the finite difference method are plotted on
top and the open circles are the original galaxy positions. This patch
is a good representation of other regions of the survey inspected.
The two vector fields are well aligned with only small differences
that can be expected from using approximate methods. Although
the amplitudes and directions of the displacements look similar for
each method, this does not automatically imply that the statistical
interpretation of the catalogues produced by both methods will be
the same. To check that both methods will deliver the same statisti-
cal results we reconstruct the first 10 LOWZ mocks using the finite
difference method and compare their power spectra to the first 10
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Figure 13. The top panel shows a comparison of average power spectra of
the first 10 LOWZ mocks reconstructed using the finite difference method
(open circles) and the Fourier method (crosses). The bottom panel shows
the ratio between the two set of power spectra.

LOWZ mocks reconstructed using our standard Fourier procedure.
The average power spectra are shown in Fig. 13 (top) and their ratio
(bottom). The ratio of power spectra show that both methods are in
good agreement with deviations on small scales as expected.

7.4 RSD removal

The redshift-space position of a galaxy is a combined measurement
of the velocity field and the real space density field. Thus, the
clustering along the line of sight is enhanced, and contains more
information than across the line of sight. Note that there is a subtlety
here — if we simply take a measured field and multiply it by a factor,
we do not change the information content. What is happening in
redshift space is that we are increasing the clustering strength of
the underlying field but not changing the shot noise, and thus the
information is increased as is the effective volume (as given in
equation 23).

However, when we remove the linear RSDs from the density
field using equation (9) we infer the displacement field from the
redshift-space data, and thus, we are not decoupling the two signals
or adding/subtracting any new information. Therefore, removing
the RSDs in this manner should not affect the signal to noise, but
does reduce the amplitude of the power spectrum. by the Kaiser
boost factor (which is input into the algorithm) as previously shown
in Fig. 2.
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Table 6. CMASS, (oy) with/without RSDs removed
during reconstruction.

Type () (o a, post) Sa, post

With RSDs removed 1.0009 0.0111 0.0103
Without RSDs removed  1.0006 0.0112 0.0108

2000
——no recon
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«— 1500} - - - - recon w/RSDs left in
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'« 10001 NN 1
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Figure 14. Comparison of average power spectra from CMASS mocks with
no reconstruction, reconstruction that removes RSDs and reconstruction that
leaves the RSDs in the galaxy distribution.

We run the reconstruction code leaving the RSDs in the galaxy
field and compare the (post) and (o, post) values to those with the
RSDs removed. The results are shown in Table 6 where the (o)
values and (oo, post) values are consistent. If we could measure the
velocity field directly, we expect that removing the RSDs should
decrease the signal to noise of the measurement. Note that by re-
moving the RSD and changing the amplitude of the power spectrum
as a function of angle to the line of sight, we are altering the rela-
tive contribution of modes to the monopole, and consequently the
cosmological meaning of the BAO measurement made. The aver-
age power spectra are shown in Fig. 14, and compared to the pre
reconstruction and standard reconstruction power spectra.

8 CONCLUSIONS

This paper presents the results of tests designed to optimize the
efficiency of reconstruction when calculating the BAO scale from
the spherically averaged power spectrum, via input parameters of
the algorithm and external influences of survey design.

In all of our tests, the algorithm leads to an improvement in
our ability to measure the BAO signal compared to the non-
reconstructed sample and the procedure in general is found to be
very robust. However, obviously, we want to ensure reconstruc-
tion is running at maximum efficiency to extract the most precise
measurements possible.

8.1 Algorithm

We have tested the algorithm to extract the optimal smoothing scale,
determine the consequence of shot noise in the random catalogues
and look for inconsistencies in the corrective bulk-flow displace-
ments due to the method used to estimate them.

Smoothing the overdensity prior to calculating the displacement
field ensures that displacements are sourced from density regions
responsible for the bulk flows which cause the strongest degradation
of the linear BAO signal. The Gaussian smoothing width is a free
parameter in our code, and so we test a wide range of smoothing

scales. If the smoothing width is too large, we only decouple modes
of the density field that are already in the linear regime and suppress
useful overdensity information. Conversely, if the smoothing scale
is too small, we decouple modes on scales smaller than the BAO
signal. In the higher redshift sample the (o) becomes increas-
ingly biased with a smoothing length greater than 154! Mpc. The
(o) values show an optimal smoothing length of between 10 and
15 h~! Mpc for the higher redshift sample and 10/4~! Mpc for the
low-redshift sample. In Tassev & Zaldarriaga (2012), they propose
an iterative scheme to extract the particle displacements where the
optimal smoothing length is calculated directly from the overdensity
field at each step. We have not tested such a scheme here.

One of the practical concerns of implementing this reconstruc-
tion process is the storage of large random catalogues. There are
two random catalogues used in the reconstruction process, one to
set up the overdensity field and another that is shifted as part of the
reconstruction process and combined with the reconstructed mock
data to calculate the two-point statistics. The density fields of the
mock and random catalogues are smoothed prior to calculating the
overdensity. Thus increasing the number of randoms in the first
catalogue does not improve the efficiency of the reconstruction al-
gorithm provided that there 25 times plus the number of randoms
to mock galaxies. However, to prevent correlations between mocks
within the same sample, it is recommended that this random cat-
alogue is different for each separate mock. However, the second
random catalogue (which becomes the shifted random catalogue),
is not smoothed. In order to reduce the shot noise in the power spec-
trum measurements, this catalogue requires as many data points
as possible. Unfortunately, each reconstruction instance produces
a unique shifted random catalogue, hence storage of data may be
problematic. Alternative solutions may be to incorporate the recon-
struction into the two-point statistic measurements calculating the
random catalogues ‘on the fly’.

We have shown that this reconstruction algorithm generates the
same displacement fields whether using finite difference approxi-
mations in configuration space or Fourier-based methods. Further-
more, we have shown that the method of inferring the RSDs from
the same Lagrangian displacement field used in the reconstruction
process does not change the signal to noise of the reconstructed cat-
alogues, but only reduces the amplitude of the clustering on large
scales via our input values of bias and the growth function.

To summarize, we recommend using a smoothing length of be-
tween 10 and 15 A~ Mpc, and as many points in the reconstructed
shifted random catalogues as storage will permit. We find no differ-
ence between Fourier and configuration space methods of estimat-
ing the displacement field and show that the method of removing
RSDs used does not alter the signal to noise of the measured BAO
signal.

8.2 Survey design

We have examined the efficiency of reconstruction versus external
factors of the survey: galaxy density, survey volume and edge to
volume ratio which will provide repercussions for future survey
design.

The density of the survey has the greatest impact on the recon-
struction algorithm within the bounds of our test parameters. This
should come as no surprise as the survey contains the information
used in the reconstruction process. For a given survey density, we
can predict how well reconstruction should perform. We test mock
catalogues at two redshifts, z = 0.32 and 0.57. Reconstruction re-
moves the expected bias in the measurements at all densities for
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the higher redshift samples. For the lower redshift samples, the
detection of the bias is only apparent at Vi > 0.4 4~ Gpc®. Recon-
struction removes the bias in those cases.

Initially, the low-redshift sample has a higher error pre-
reconstruction as a function of effective volume due to a greater
non-linear component of its density field. The error on the measure-
ment for both samples is reduced both pre- and post-reconstruction
as Ve is increased. To separate the improvement due to increased
volume from the improvement due to reconstruction, we look at
the percentage reduction in error as a function of the average sur-
vey density. Both samples show a strong trend of increasing effi-
ciency of reconstruction with increased density with no indication
of asymptoting to an optimal density. We perform a linear fit to the
data, which suggests that for reconstruction to reduce the error on
the measurement to half of its pre-reconstruction value requires a
survey density of &4 x 10~* h* Mpc~ on average.

For surveys with large edge-to-volume ratios, we have provided
an estimate of the reduction in precision expected due to edge
effects. The effects are very small; for our worst case sample con-
taining 67 per cent of galaxies less than 10 2~! Mpc from a survey
boundary, o, pose is only increased by 12 percent. We expect for
surveys with less than 5 per cent of galaxies within 10 2~! Mpc of a
boundary, the increase in o s due to edge effects will be negligi-
ble. Linearly extrapolating the results, the increase in error is only
3 per cent for every extra 20 per cent of edge galaxies.

To summarize, we suggest that the strong density dependence on
efficiency of the algorithm will change the optimal balance between
density and volume, and should be considered by future surveys.
A higher density over larger volumes is desirable to optimize the
post-reconstruction BAO measurement errors. For a survey with a
contiguous volume, we find that a high edge-to-volume ratio does
not have a big impact on the efficiency of reconstruction.

In conclusion, we have shown that reconstruction algorithm is a
robust method of improving monopole measurements of the BAO
scale. Although it is robust, there are ways of optimizing the effi-
ciency of the algorithm with regards to the methodology including
smoothing length and the number of random data points to use. We
have made predictions of the expected improvement from recon-
struction from our tests for survey density and the volume-to-edge
ratio.

We believe that our paper provides a step forwards in the prac-
tical implementation of reconstruction for surveys, and will also
aid in the design of future surveys where the trade between sample
density and reconstruction efficiency can now be predicted. How-
ever, there are many further tests to be performed, including the
analysis of reconstruction with regards to the anisotropic clustering
measurements, considering cosmological dependences, and further
statistical methods for calculating the density field. These are left
for future work.
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Figure A1. Distribution in & and o for the CMASS mocks at different densities pre- and post-reconstruction.
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