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Abstract: The MaxPHOX–Ir catalyst system provided the
highest selectivity ever reported for the reduction of cyclic
enamides derived from a- and b-tetralones. This result
indicates that iridium catalysts are also proficient in reducing
alkenes bearing metal-coordinating groups. In the present
system, selectivity was pressure-dependent: In most cases,
a decrease in the H2 pressure to 3 bar resulted in an increase in
enantioselectivity. Moreover, the process can be carried out in
environmentally friendly solvents, such as methanol and ethyl
acetate, with no loss of selectivity.

Since its advent, metal-catalyzed asymmetric hydrogenation
has attracted considerable interest from academia and
industry,[1] because it is one of the best methods to introduce
chirality into molecules. Numerous efficient catalytic systems
based on Ru, Rh, and Ir are now available that provide near
total selectivity in the hydrogenation of various prochiral
alkenes.[2] However, for some substrates, attaining high
selectivity remains a challenge. Such substrates include
cyclic enamides derived from a- and b-tetralones. The
asymmetric hydrogenation of these substrates is highly
desirable, since the derived chiral amines have key therapeu-
tic properties.[3] For example, rotigotine, a dopamine agonist
used for the treatment of ParkinsonÏs disease, can be prepared
in enantiomerically enriched form through hydrogenation of
the corresponding 3,4-dihydronaphthalene precursor
1 (Scheme 1).[4]

Until now, the asymmetric hydrogenation of cyclic
enamides has relied on the use of chiral Rh and Ru catalysts.
However, complete control of the stereoselectivity of this

process has remained elusive. With Ru–binap systems,
Bruneau and co-workers and Ratovelomanana-Vidal and
co-workers reported up to 90–95% ee in the reduction of the
parent compound N-(3,4-dihydronaphthalen-2-yl)acetamide
(2).[5] Similar results have been obtained with Rh catalysts.
Pizzano and co-workers reported 93% ee with a phosphine–
phosphinite ligand.[6] Reek and co-workers observed the
formation of the product with 94% ee in the hydrogenation of
2 with a supramolecular Rh catalyst.[7] Recently, Tang and co-
workers reported the reduction of 2 in the presence of a Rh
catalyst with a deep chiral pocket to give the product with
96% ee.[8]

We recently developed a novel route to bulky P-stereo-
genic phosphine ligands through SN2@P reactions.[9] We
envisioned that this methodology could provide access to
a library of phosphine–oxazoline ligands with the general
structure depicted in Scheme 2. A key feature of this ligand
system (MaxPHOX) is that it contains three stereogenic
centers that can be introduced from three separate and simple
building blocks. We considered that the structural diversity
arising from the different possible configurations and sub-
stitution patterns would make MaxPHOX a powerful ligand
template for catalysis. To test this hypothesis, we undertook

Scheme 1. Asymmetric hydrogenation as a route to rotigotine, a dop-
amine agonist for the treatment of Parkinson’s disease.

Scheme 2. The P-stereogenic MaxPHOX ligands can be assembled
from simple and independent building blocks. BArF = tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate.
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the synthesis of a small library of MaxPHOX–Ir catalysts and
examined their performance in the asymmetric hydrogena-
tion of cyclic enamides.

Chiral iridium–N,P complexes have been developed into
the catalysts of choice for the hydrogenation of nonfunction-
alized and minimally functionalized alkenes.[10] However,
little attention has been paid to the use of such catalytic
systems for the hydrogenation of alkenes bearing a metal-
coordinating group.[11]

Herein we report the synthesis of a MaxPHOX–Ir catalyst
library. This library enabled us to identify the structural
features necessary for complete control of enantioselectivity
in the hydrogenation of enamides derived from b-tetralones.
Thus, we show how iridium-based catalysts outperform the
best Ru and Rh systems for the hydrogenation of this class of
alkenes.

The optimized synthesis of the MaxPHOX catalyst library
is shown in Scheme 3. The N-Boc-protected amino acid was
coupled to the corresponding amino alcohol by the use of
isobutyl chloroformate. Removal of the Boc group afforded
the corresponding amino alcohols 3a–h, which were sub-
sequently coupled to the chiral phosphinyl mesyl anhydride
derived from (S)-tert-butyl(methyl)phosphinous acid
borane[9, 12, 13] with inversion of configuration at the P center
to provide the open-chain borane-protected aminophosphine
alcohols 4a–h. This key coupling reaction in the synthetic
sequence is highly chemoselective for amine nucleophiles; no
reaction was observed at the alcohol position. Next, 4a–h
were subjected to alcohol activation and base-induced chain
cyclization to produce the corresponding borane-protected
phosphine–oxazoline ligands 5a–h. We found that the ligand
synthesis was more general and efficient when the oxazoline
cyclization was carried out at a later stage. Finally, removal of
the borane protecting group with neat pyrrolidine, treatment
with [{Ir(cod)Cl}2], and counterion exchange with NaBArF

afforded the corresponding MaxPHOX–Ir complexes 6a–h in
good to excellent yields.

Complexes 6a–h had the same S configuration at the
P center.[12] The four possible diastereomers with isopropyl
groups at the tail and the oxazoline positions were synthesized
((SP,R,S)-6b, (SP,S,S)-6d, (SP,R,R)-6e, (SP,S,R)-6 f)). We also
synthesized complexes 6a, 6c, 6g, and 6h to study the effect
of the substituent on the oxazoline heterocycle.

We then studied the hydrogenation of N-(3,4-dihydro-
naphthalen-2-yl)acetamide (2) with this small library of
catalysts (Table 1). When the hydrogenation reaction was
carried out at a catalyst loading of 1 mol% under 50 bar of H2

in CH2Cl2 at room temperature with catalysts bearing the
same substituents but with different relative configurations
(6b, 6d, 6e, 6 f), matched–mismatched behavior with respect
to the configurations at the oxazoline and P center became
clear. With catalysts 6e (SP,R,R) and 6 f (SP,S,R) with the
matched configuration, the selectivity increased to 96 and
97% ee. Finally, when we changed the substituent on the
oxazoline ring to a tert-butyl group and kept the best relative
configuration found (SP,S,R ; catalyst 6g), we obtained the
product of the hydrogenation of 2 with over 99% ee.

With the second-best catalyst 6 f, we next studied the
effect of the solvent and hydrogen pressure on the hydro-

genation of cyclic enamides. When DCM was used as the
solvent, a decrease in hydrogen pressure resulted in an
increase in selectivity (Table 2, entries 1–3). Reactions at 10
and 3 bar of hydrogen resulted in complete conversion and
total enantioselectivity (99% ee). Environmentally friendly
solvents, such as methanol and ethyl acetate, also proved
appropriate for the present catalytic system (Table 2,
entries 4–8). A similar dependence of selectivity on the
hydrogen pressure was found for these solvents. At 10 bar
of hydrogen, 99% ee was reached in MeOH (Table 2,
entry 5). Also in EtOAc, the pressure could be lowered to
3 bar to enable total conversion and selectivity (Table 2,
entry 8). Therefore, a catalyst with a tert-butyl-substituted
oxazoline group is not mandatory for complete stereocontrol

Scheme 3. Synthesis of MaxPHOX ligands and the corresponding
iridium complexes. cod =1,5-cyclooctadiene, DCM= dichloromethane,
Ms = methanesulfonyl.

Angewandte
ChemieCommunications

7989Angew. Chem. Int. Ed. 2016, 55, 7988 –7992 Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


of the hydrogenation. Complete selectivity was also observed
when the hydrogen pressure was lowered to 3–10 bar and the
most cost-effective catalyst 6 f (R1 = iPr) was used.

Once the structural features of the catalyst and the
reactions conditions had been optimized, we hydrogenated
various other cyclic enamides to demonstrate the scope of the
present catalytic system (Table 3). The hydrogenation of
acetyl enamides derived from b-tetralone with various sub-
stitution patterns of the fused benzene ring occurred with
complete selectivity with the catalyst 6 f (R1 = iPr) in ethyl
acetate under 3 bar of hydrogen (Table 3, entries 1–4).
Notably, substrate 7 is a precursor of rotigotine (Table 3,
entry 1). Changes in the amido group on the enamide had no
effect on the selectivity. Thus, the benzoyl and propanoyl
enamides 11 and 12 were also reduced to the desired product
with 99% ee in DCM at low H2 pressure (Table 3, entries 5
and 6). Most notably, the reduction of the tetrasubstituted
enamide 13 also occurred with high selectivity. Whereas
reduction at 50 bar provided the product with only 82 % ee,
when the hydrogen pressure was lowered to 3 bar, the
reduction product was again obtained with 99% ee (Table 3,

entry 7). Finally, we addressed the reduction of acetyl
enamides derived from a-tetralone, which are known to be
difficult substrates for asymmetric hydrogenation.[14] Thus,
with catalyst 6 f, the parent substrate 14 was reduced at room
temperature to the desired product with 99% ee (Table 3,
entry 8). In a similar manner, the products of the reduction of
methoxy-substituted acetamides 15 and 16 were obtained
with 99% ee (Table 3, entries 9 and 10).

The X-ray crystal structure of the most efficient catalyst
6g (enantiomer) is depicted in Figure 1.[15] The six-membered
metallacycle adopts a boatlike conformation. Interestingly,
the bulky tert-butyl groups on the oxazoline ring and
phosphorous atom are syn to each other on the same face
of the metallacycle. The catalytic activity observed in
coordinating solvents, such as EtOAc and MeOH, suggests
the substrate binds in a bidentate manner to the cationic Ir
complex.[16] Although the solid-state conformation of preca-
talyst 6g might not be the active conformation in solution, it is
reasonable to assume that the directing amide group binds to
an axial position away from the bulky tert-butyl groups,
whereas the alkene binds equatorially trans to phosphorus.[17]

It was recently demonstrated that iridium(III) dihydride

Table 1: Hydrogenation of N-(3,4-dihydronaphthalen-2-yl)acetamide.
Influence of the oxazoline substituent and the relative configuration of
the catalyst on the selectivity.[a]

[a] Complete conversion was observed in all cases, as determined by
1H NMR analysis of the crude reaction mixtures after 24 h at room
temperature; ee values were determined by HPLC analysis on a chiral
stationary phase.

Table 2: Effect of the solvent and H2 pressure.

Entry Solvent H2 pressure [bar] Conversion [%][a] ee [%][b]

1 DCM 50 100 97
2 DCM 10 100 99
3 DCM 3 100 99
4 MeOH 50 100 96
5 MeOH 10 100 99
6 EtOAc 50 100 95
7 EtOAc 10 100 96
8 EtOAc 3 100 99

[a] Conversion was determined by 1H NMR analysis of the crude reaction
mixture. [b] The ee value was determined by HPLC analysis on a chiral
stationary phase.

Table 3: Hydrogenation of cyclic enamides with MaxPHOX–Ir cata-
lysts.[a]

Entry Substrate Catalyst H2

[bar]
Solvent ee

[%]

1
6g
6 f

50
3

DCM
EtOAc

99
99

2
6g
6 f

50
3

DCM
EtOAc

99
99

3 6 f 3 EtOAc 99

4 6 f 3 EtOAc 99

5 6 f 3 DCM 99

6 6g 3 DCM 99

7 6g
50
3

DCM
DCM

82
99

8 6 f 3 DCM 99

9 6g 3 DCM 99

10 6g 3 DCM 99

[a] All reactions were conducted with a 1 mol% catalyst loading. Full
conversion was observed at room temperature (24 h), as determined by
1H NMR spectroscopy.
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alkene complexes rapidly isomerize, and that a minor iri-
dium–alkene isomer can lead to the major hydrogenation
product.[18] The dependence of the selectivity on the hydrogen
pressure suggests that hydrogen is involved in the enantiose-
lectivity-determining step as in the classical rhodium–diphos-
phine system.[19] In the present system, hydrogen coordination
and oxidative addition to yield an IrV complex appear to be
the steps in which the selectivity is determined.[20] However,
a full theoretical study is needed for a detailed understanding
of the present catalytic system and will be reported in the near
future.

In summary, we have shown that the MaxPHOX–Ir
catalyst system provides the highest selectivity reported to
date for the reduction of cyclic enamides derived from a- and
b-tetralones, outperforming Ru and Rh catalysts. These
results indicate that iridium catalysts can be also proficient
in the reduction of alkenes bearing metal-coordinating
groups. For the present system, selectivity was pressure-
dependent; in most cases, lowering of the hydrogen pressure
to 3 bar resulted in an increase in enantioselectivity. More-
over, the process can be carried out in environmentally
friendly solvents, such as methanol and ethyl acetate, with no
loss of selectivity. The structural diversity of the MaxPHOX
ligand template was pivotal for attaining such results.[21]
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