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ABSTRACT 

Telomeres are a cornerstone when it comes to protecting coding DNA in chromosomes. 

They consist of tandem repeats of a sequence of 6 nucleotides: (TTAGGG)n for humans. 

Their protective function prevents the ends of linear chromosomes from being 

recognized as damaged DNA and activate repair processes. However, telomeres slightly 

shorten every cell cycle due to the inability of DNA polymerase to replicate linear DNA 

completely. This fact limits the lifespan of cells. 

Some types of cells such as germ cells cannot afford this loss and have telomerase 

activity, the enzyme responsible to lengthen telomeres by adding telomeric sequences 

to one of the strands of DNA. 

Telomeres are involved in aging process as well as in some age-related diseases such as 

diabetes or cancer. Apart from hereditary factors, there are also a great number of non-

genetic external factors that can aggravate telomere shortening. Thus, the probability 

of suffering illness or even premature death is increased. 

This project reviews the structure and function of telomeres, as well as the action 

mechanism of telomerase, to better understand how they take part in certain diseases 

afterwards. 

 

RESUM 

Els telòmers són una peça clau quan es tracta de protegir l’ADN codificant dels 

cromosomes. Estan formats per repeticions en tàndem d’una seqüència de 6 nucleòtids: 

(TTAGGG)n en el cas dels humans. La seva funció protectora evita que els acabaments 

dels cromosomes lineals siguin reconeguts com a ADN danyat i s’activin processos de 

reparació. No obstant, en cada cicle cel·lular els telòmers s’escurcen una mica degut a 

la impossibilitat de l’ADN polimerasa per replicar completament ADN lineal. D’aquesta 

manera queda limitada l’esperança de vida cel·lular. 
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Alguns tipus de cèl·lules com les germinals no poden permetre’s aquesta pèrdua i tenen 

actiu l’enzim telomerasa, encarregat d’allargar els telòmers afegint seqüències 

telomèriques en una de les dues cadenes de l’ADN. 

Els telòmers estan involucrats en el procés d’envelliment, així com amb l’aparició de 

diverses malalties relacionades amb l’envelliment, com ara la diabetis o el càncer. A part 

dels factors hereditaris, també hi ha un seguit de factors externs no genètics que poden 

agreujar la pèrdua de telòmers, augmentant així la probabilitat de sofrir malalties o fins 

i tot una mort prematura. 

En aquest treball es revisa l’estructura i funció dels telòmers, així com el mecanisme 

d’acció de la telomerasa per, posteriorment, entendre millor com estan involucrats en 

certes malalties. 

 

RESUMEN 

Los telómeros son una pieza clave cuando se trata de proteger el ADN codificante de los 

cromosomas. Están formados por repeticiones en tándem de una secuencia de 6 

nucleótidos: (TTAGGG)n en el caso de los humanos. Su función protectora evita que las 

puntas de los cromosomas lineales sean reconocidas como ADN dañado y se activen 

procesos de reparación. No obstante, en cada ciclo celular, los telómeros se acotan un 

poco debido a la imposibilidad de la ADN polimerasa para replicar completamente ADN 

lineal. De esta forma queda limitada la esperanza de vida celular. 

Algunos tipos de células como las germinales no pueden permitirse esta pérdida y tienen 

la enzima telomerasa activa, encargada de alargar los telómeros añadiendo secuencias 

teloméricas en una de las dos cadenas del ADN. 

Los telómeros están involucrados en el proceso de envejecimiento, así como con la 

aparición de diversas enfermedades relacionadas con el envejecimiento, como la 

diabetes o el cáncer. Además de los factores hereditarios, también hay una serie de 

factores externos no genéticos que pueden agravar la pérdida de telómeros, 
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aumentando así la probabilidad de sufrir enfermedades o incluso una muerte 

prematura. 

En este trabajo se revisa la estructura y función de los telómeros, así como el mecanismo 

de acción de la telomerasa para, posteriormente, entender mejor cómo están 

involucrados en ciertas enfermedades. 

 

INTEGRATION OF THE DIFFERENT FIELDS 

A great part of this project deals with the structure of chromosomes’ ends, the DNA 

sequence and telomerase enzyme as well as the functioning of it, so the main scope of 

this project is Biochemistry and Molecular Biology. 

The other two scopes related to this project in a more minority way are Physiology and 

Physiopathology and Public Health. The first one is referred to the age-related diseases 

where some illnesses are briefly described, while the second one is mentioned at the 

end, when lifestyle factors are explained to have a negative effect on telomere loss. 

These non-genetic factors can be reduced or even avoided if people are aware of them, 

and it is under Public Health’s power to make society be concerned. 
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1. INTRODUCTION 

Telomeres were first noticed by Herman Müller in 1938 while analysing chromosomal 

anomalies in the fly Drosophila induced by X-rays. He discovered that natural ends of 

chromosomes were never involved in reorganizations, fusions or translocations (1). 

Three years later, in 1941, Barbara McClintock was analysing the chromosomes in the 

plant Zea mays and figured out that during mitosis, a structure called anaphase bridge 

was formed. The tension between the two centromeres caused the breakage of the 

bridge, leading the ends of the chromosomes to fusion. McClintock found that the 

natural ends of chromosomes never cooperated with these fusions (2). So, in conclusion, 

both scientists deduced that the natural ends of chromosomes must have a special 

structure that prevent them from participating in such processes. 

It was not until the 1970s when telomeres became of interest again with Elisabeth 

Blackburn and Joseph G. Gall’s research group at Yale University. They sequenced the 

ends of linear mini-chromosomes in the protozoan Tetrahymena thermophile and, in 

1978, they published the results showing that telomeres were made up of G-rich DNA 

repeated sequences (TTGGGG)n (3). From then on, the telomeres of many different 

species have been described and apparently, these sequences are greatly conserved. 

A telomere is a section of DNA located at the end of a linear chromosome. They are a 

cornerstone when it comes to protection as they confer stability to chromosomes, 

prevent coding DNA from degradation, end-to-end fusions or fraying usually observed 

in damaged DNA, either by X-rays or physical fracture (4). 

A human repetitive DNA library was constructed from randomly sheared and 

reassociated DNA and it was then screened with 32P-labeled human repetitive DNA (5). 

Two of the clones used contained copies of tandem arrays of the hexadeoxynucleotide 

sequence (TTAGGG)n. Unlike other tandem repetitive patterns which are distributed in 

different chromosomes, this sequence was present on each human chromosome 

regardless of chromosome length. The estimated quantity of (TTAGGG)n sequences in 

the human genome was 3,000 – 12,000 base pairs per chromosome. 
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1.1. Telomeres’ structure 

Like most DNA of the chromosomes, telomeres are constituted by a DNA double-strand 

of this short sequence rich in G-C deoxynucleotides and a 3’ single-strand overhang, the 

one that contains guanines. 

At the beginning, it was thought that telomeres were linear structures, but some 

investigations demonstrated that it formed a loop due to two telomeric repeat-binding 

factors, TRF1 and TRF2 (6). These studies showed how, when inhibiting TRF2, the DNA 

damage checkpoint pathway was activated. Thus, a possible way to form this structure 

was supposed (Figure 1). It was proposed that TRF1 created a loop-back structure – the 

T-loop (telomere’s loop) – and TRF2 kept it tightly joined by the insertion of the 3’ 

overhang into the double-strand DNA, which led to a triple strand called D-loop or 

displacement loop (7,8). This was the origin of the capping function of telomeres and 

how they protect themselves from being recognised as damaged DNA. 

Nowadays, more telomere-associated proteins are known. In human being, the 

protective complex or shelterin protein complex is composed of six proteins: TRF1, TRF2, 

Figure 1: Proposed structure, formation and function of T loops. Figure adapted from ref. (6). 

(A) The DNA structure at the ends of mammalian chromosomes and a description of the 

proposed configuration of t loops. 

(B) Speculative scheme depicting a possible mode of t loop formation based on the in vitro 

biochemical activities of TRF1 and TRF2. T loops are proposed to mask telomere 

termini from cellular activities that can act on DNA ends. 
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RAP1, TIN2, TPP1 and POT1 (9). They interact with each other to stabilize the loop 

structure (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

TRF1, TRF2 attach specifically straight to telomeric DNA duplex and POT1 binds only to 

the 3’ strand, either it is double-stranded or the displaced overhang forming the D-loop 

(9–12). TIN2 acts as a bridge between TRF1 and TRF2 and TPP1 binds both POT1 and 

TIN2. The amino terminus of TPP1 incorporates a domain related to the recruitment of 

telomerase (13). RAP1 is associated with TRF2 and even though it is not essential for the 

capping function, recently studies showed that it impedes telomere recombination and 

delicacy (14,15). 

The protective complex not only avoids the activation of DNA repair processes but it is 

also involved in the regulation of the enzyme responsible for the extension of telomeres 

(16). 

Figure 2: Structure of telomeres and the shelterin complex. Figure adapted from 
ref. (16). 

(A) Model of the telomere’s structure with the T-loop and the D-loop. 

(B) Representation of the different proteins forming the shelterin 

complex. 

TRF 1 and 2: telomeric repeat binding factor 1 and 2            POT1: protection of telomeres 1 

TIN2: TRF-1 interacting protein 2               TPP1                 RAP1: repressor/activator protein 1            
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1.2. The end-replication problem 

Every time a cell divides, it first replicates the 

genome with a DNA polymerase but the 

properties of this enzyme make it impossible to 

entirely copy the linear DNA molecules out to the 

extreme by the normal process (17,18). The 

requisite for a primer to start the synthesis and 

the unidirectional growth of the new strand 

cause the known as “end-replication problem”. 

DNA polymerase can only synthesize DNA in the 

5’ to 3’ direction and it also needs an RNA primer 

with a free 3’-OH group. 

Since DNA is formed with two anti-parallel 

strands, when a bubble of replication is created, 

the leading strand is synthesized without 

interruption in the same direction as the 

replication fork moves forward. However, the 

lagging strand is synthesized in the opposite 

direction discontinuously using more RNA 

primers (Okazaki fragments) (Figure 4). These 

primers are then eliminated and replaced by 

DNA, but the removal of the 5’-end primer will 

imply a loss of a small part of the telomere, as 

DNA polymerase will not have any 3’-OH group to 

start from. Furthermore, if the overhang is not 

long enough, there is an extra deterioration of 

the telomeres to ensure the t-loop can be 

formed. As a result, telomeres shorten between 50 and 200 base pairs after each 

replication cycle (Figure 3), but this is exactly why they are designed for, so that 

proliferation can take place without losing important genetic information or functions. 

Considering that, telomeres delimit the number of times a cell can divide. 

Figure 3: Explanation of the end-replication 
problem. Figure adapted from ref. (87). 
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This problem must be solved at least in 

germinal cells in order to transfer the 

complete genome through generations. It 

was seen that sperm has longer 

telomeres than somatic cells (19).  

Diverse organisms have acquired 

different methods to avoid DNA loss in 

their chromosome ends. Although most 

mammalians use a specific enzyme called 

telomerase, some human cells with 

telomerase inactivated can also maintain or extend their telomeres by alternative 

lengthening of telomeres (ALT), which consists in copying DNA sequences from one 

telomere to another (20). This mechanism would imply homologue recombination. 

 

1.3. Telomerase, the solution for the end-replication problem 

1.3.1. Structure of telomerase 

Telomerase was first discovered by Carol Greider and Elizabeth Blackburn in the ciliate 

Tetrahymena thermophile in 1985 (21), some years after Blackburn had sequenced its 

telomeres. This enzyme is a ribonucleoprotein (RNP), that is an RNA-dependent DNA 

polymerase which adds telomeric DNA sequences onto chromosome ends. Even though 

Tetrahymena’s telomerase is monomeric, 

the human telomerase is dimeric and has 

two main components: an RNA template for 

the synthesis called hTR or hTERC (22) and a 

catalytic protein with reverse transcriptase 

activity known as hTERT (23–25). There are 

also some associated proteins: dyskerin, 

NHP2, NOP10, Pontin / Reptin, GAR1 and 

TCAB1 (Figure 5). 

Figure 4: The replication fork. Figure from ref. (88). 

Figure 5. Schematic representation of telomerase 
and its associated proteins. Figure from ref. (89). 
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Figure 6. Proposed secondary structure of human telomerase RNA 
(hTR) subunits. The interaction of hTERT with hTR domains is 
indicated in grey dotted lines. Figure adapted from ref. (90). 

The heterotrimeric complex formed by dyskerin, NHP2 and NOP10 is essential for the 

stability of hTR in vivo (26). The association of this complex and GAR1 to hTR make the 

enzyme functional. Reptin and Pontin are two ATPases also needed to stabilize dyskerin 

and hTR in vivo. They interact with TERT, regulating it during the S phase of the cell cycle. 

The protein TCAB1 seems to regulate the subcellular location of telomerase (27).  

RNA template 

The phylogenetic comparative analysis of vertebrate TR showed three conserved 

domains: the CR4/CR5 domain, the pseudoknot/template core domain and a box H/ACA 

domain, each one with different functions (28) (Figure 6). 

The box H/ACA domain is necessary for TR stability, nuclear location, processing and 

telomerase activity in vivo. The pseudoknot domain is also needed for telomerase to 

work properly, as well as the CR4/CR5 domain although this is not fundamental for TR 

stability (29). These two last referred regions interact independently with hTERT. 

 

 

 

 

 

 

 

 

 

Catalytic subunit hTERT 

hTERT is a quite large protein with four main elements: the telomerase essential N-

terminal (TEN) domain, the telomerase RNA-binding (TRB) domain, the reverse 

transcriptase (RT) domain and the C-terminal extension (CTE) (30) (Figure 7). 
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The TEN domain contains the DAT (dissociates activities of telomerase) region, where 

mutations in this area stop telomere lengthening in vivo but do not affect the catalytic 

activity in vitro (31,32). TEN is therefore a key point to assemble telomerase to 

telomeres, as it has affinity for single-stranded telomeric DNA. 

The TRB domain has some conserved RNA binding sequences one of which is required 

to place hTR inside the active site of hTERT, specifically the telomerase-specific T motif 

with the CR4/5 region of hTR. 

The RT domain is considered the catalytic heart of the enzyme and it includes some 

conserved reverse transcriptase motifs (33). 

The CTE domain, similarly to TEN domain, is indispensable for in vivo lengthening of 

telomeres but it is not a requisite for in vitro activity of telomerase (34). 

 

 

 

 

 

 

1.3.2. Elongation of telomeres by telomerase 

Telomeres are known to exist in two different configurations. The “closed” state hides 

the 3’ overhang forming the T- and D- loops, preventing it from telomerase activity. The 

“open” conformation is the linear structure of telomeres, allowing the interaction with 

telomerase (35). 

Since human telomerase is dimeric, it is able to extend two telomere ends in parallel, in 

order that sister chromatids can maintain the same telomere length (36). 

Being in the open state, the lengthening of telomeres is accomplished within three steps 

(37,38): 

Figure 7. Structure of human telomerase reverse transcriptase (hTERT), 
the four key domains and some of their regions. Figure adapted from 
ref. (30). 
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Figure 8. Telomerase at work solving the DNA end replication problem. The enzyme telomerase consists 
of a protein and a short stretch of RNA that is complementary to the sequence at the overhanging 3’ end 
of telomeres. The telomerase activity is able to synthesize DNA from the RNA template whereupon the 
telomerase moves on, a step that is repeated several times. Then, the missing stretch can be filled in 5’ 
 3’ direction. Figure from ref. (91). 

 1- Substrate recognition and binding: telomerase attaches to the terminal end of 

the telomere and the nucleotides from the 3’ overhang are positioned in hTERT, 

aligning and hybridizing with the RNA template of hTR. 

 2- Elongation: a telomeric DNA repeat is synthesized by reverse transcriptase 

action, adding nucleotides complementary to the RNA template, so the overhang 

becomes longer. 

 3- Translocation or dissociation: telomerase is translocated to restart again the 

cycle, and when finished, it finally dissociates. 

Lastly, the 5’ end is completed by the conventional replication method with DNA 

polymerase. 
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Telomerase is a highly regulated enzyme in normal human cells. During embryonic 

differentiation it is repressed in most somatic cells except from some tissues, such as 

activated lymphocytes, gametes and stem cells (39,40). 

When normal mammalian somatic cells are cultured in vitro, they proliferate a limited 

number of times. The maximum possible number of divisions is known as the Hayflick 

limit (41). At that point, very short telomeres provoke a permanent growth arrest called 

replicative senescence or mortality stage 1 (M1) (42–44). If any cell cycle checkpoint 

gene as p53 is inactivated, cells can escape from senescence and continue dividing. If 

this occurs, telomeres are shortened even more and the cell reaches a second 

proliferative block or mortality stage 2 (M2) (45–47) where telomeres become 

dysfunctional and there is massive cell death. Very rare cells that evade M2 are able to 

activate telomerase leading to cellular immortalization (Figure 9). 

 

Figure 9. Two-step hypothesis of cellular senescence and immortalization. Unlike germ cells, in 

which telomere length is maintained by telomerase, most human somatic cells have lower levels 

of telomerase or are telomerase negative and experience telomere shortening with each cell 

division. Pluripotent stem cells are telomerase positive but do not maintain full telomere length. 

Telomere length shortens in stem cells at rates slower than that of telomerase-negative somatic 

cells. Critically shortened telomeres may signal cells to enter senescence at the Hayflick limit, or 

M1. This proliferative checkpoint can be overcome by inactivation of pRB/p16 or p53. Such cells 

continue to suffer telomere erosion and ultimately enter crisis, or M2, characterized by widespread 

cell death. Rare surviving cells acquire unlimited proliferative potential and stabilization of 

telomere length, almost universally by activation of telomerase. When cells are cultured in 

adequate conditions, ectopic expression of hTERT allows cells to bypass proliferation barriers and 

become immortal. Figure from ref. (92). 
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2. AIMS 

After research on telomeres and telomerase came to light to most science-unaware 

people by winning a Nobel prize, it caught my attention and became of my interest with 

the aim of learning a little bit more. 

The objectives of this project are the followings: 

 To review telomeres’ structure and their functions. 

 To analyse the structure of telomerase, the enzyme responsible for maintaining 

telomeres’ length, and how it works. 

 To study how telomeres and telomerase are involved in aging and age-related 

diseases. 

 

3. MATERIALS AND METHODS 

The methodology of this work has been based in a thorough bibliographic search and 

the subsequent synthesis of the articles found. 

The first general idea of telomeres and telomerase was obtained from Biochemistry 

books from the library of the university, but then, deeply investigation was done through 

data bases on internet. 

The main source of information has been PubMed, through the website 

www.ncbi.nlm.nih.gov/pubmed. Both full articles and reviews have been used, either 

searching general words as “structure of telomeres” or concrete papers using advanced 

research. I have used publications from a wide variety of journals such as Cell or Science. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed
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4. RESULTS 

4.1. Telomere loss with aging 

The aging process is generally known by external visible evidences in humans such as 

skin wrinkling and spotting or hair greying. However, cellular aging is implicated behind 

these signs and it is related to telomere shortening throughout humans’ life. Because of 

the end-replication problem and lack of telomerase activity in most human cells, 

telomere loss with aging is unavoidable. A review of telomere shortening in different 

human tissues was carried out (Table 1) (48). 

Table 1. Yearly reduction rates of telomere length in human tissues. 
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Mean telomere length of neonates for cerebral cortex and liver were 13.1 ± 1.1 and 13.7 

± 2.2 kbp respectively (49) and those for subjects less than 10 years old (neonates 

included) were 13.1 ± 1.8 and 13.6 ± 2.3 kbp, which do not almost vary. The respective 

values for centenarians were 13.1 ± 2.3 and 8.7 ± 1.4 kbp. The mean telomere length for 

centenarians in these and other tissues were not shorter than 6 kbp, so in that point was 

considered to be the mortality stage 1 (48). 

All this data was obtained based on one unique tissue in several people but, when 

different tissues from one individual are observed, “it was suggested that when longer 

telomeres are shown in any particular organ in a given individual, the other organs will 

also have longer telomeres” (48). 

 

4.2. Telomeres and age-related diseases 

Apart from working as a biological clock, telomere shortening is also related to several 

age-related diseases to which elder people are more sensitive. 

4.2.1. Cancer 

When telomeres are not long enough, chromosomal instability is induced leading to 

cancer initiation (50). In addition, cancer cells show a high telomerase activity (51) 

despite normal somatic cells do not have this enzyme active. Approximately 85% - 90% 

of human cancers have detectable telomerase activity (39). The molecular mechanism 

for this activation is still unclear, but it is due to the necessity of telomere stabilization 

for tumour progression (52). Henceforth, some investigators came up with studies 

inhibiting telomerase activity in those kind of cancer, and the results showed cell death 

and tumour growth inhibition (53–56). 

Trying to extend lifespan in mice, telomerase was activated by constitutive over-

expression of TERT in different tissues. The result was a lifespan up to 10% longer 

compared to wild-type mice (57). On one hand, this increased life expectancy showed a 

low rate of age-related diseases but on the other hand, both induced and spontaneous 
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tumours were also induced in higher incidence, what caused mortality in the first year 

of life (57). 

4.2.2. Cardiovascular diseases 

Atherosclerosis and heart failure are aging-related diseases and frequently can cause 

the death. The areas of arterial wall with higher haemodynamic stress are more 

susceptible to atherosclerosis. This stress is believed to result in a more rapid cell 

turnover and shorter telomeres (58). 

People with short telomeres are more probable to develop hypertension even being 

healthy, and once they are hypertensive, with shorter telomeres are more vulnerable to 

suffer from atherosclerosis (59). 

4.2.3. Diabetes 

Type 2 diabetes is significantly associated with short telomeres and it could be ascribed 

in part to the oxidative stress that suffer these patients (60,61). A study revealed that 

subjects with atherosclerosis and type 2 diabetes have shorter telomeres than those 

with only diabetes (62). 

Type 2 diabetes is characterised by peripheral insulin resistance and β-cell dysfunction. 

It was seen that young adult mice with low telomerase activity expressed impaired 

glucose tolerance, which means that short telomeres can be responsible for 

dysfunctional replicative capacity of pancreatic β-cells (63). 

In addition, short telomeres can predict all the causes of mortality in the patients with 

type 1 diabetes (64). 

4.2.4. Immune system diseases 

The immune system needs a great telomere maintenance as it is a very dynamic cellular 

system. The rapid expansion of clonal T- and B-cell populations is the key point to be a 

competent immune system, and short telomeres can cause defective immune responses 

in old people (65). 
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Telomere loss is considered one of the greatest factors affecting morbidity and mortality 

(66). The most harmful effect on the elderly is the decline in T-cell action despite both 

the innate and adaptive immune responses are debilitated in old people (67). 

Moreover, people with short telomeres are eight times more likely to die of infectious 

diseases than people with long telomeres (68). 

4.2.5. Dyskeratosis congenital 

Some human diseases related to short telomeres are caused by genetic causes such as 

mutations in the DNA repair system or defective telomeres, and dyskeratosis congenital 

(DC) is one of them (69). If the mutations are in the RNA component of telomerase, it is 

autosomal dominant DC, while mutations in the gene encoding dyskerin protein are 

caused by X-linked DC (70). 

Patients with DC show premature aging signs such as grey hair, alopecia, tooth loss, 

defective skin pigmentation, osteoporosis and deterioration of the immune system. 

 

4.3. Impact of lifestyle factors on telomeres and aging 

It is well known to everyone that some lifestyle factors may negatively affect human 

health, and accelerated telomere loss is one of these consequences. 

4.3.1. Smoking 

Smoking accelerates telomere shortening and moreover, it seems to be a relation 

between the number of smoked cigarettes and the speed of telomere loss, meaning that 

telomere shortening and smoking are dose-dependent (71). 

A study was carried out in white blood cells of women and the results showed that the 

average rate of telomeric DNA loss was “25.7 – 27.7 base pairs” per year but, if a pack 

of cigarettes is smoked daily, 5 base pairs are additionally lost (72). As a consequence, 

the erosion of telomeres by daily smoking of one pack of cigarettes for a 40-year period 

is comparable to 7.4 years of life (72). 
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Some other authors have proposed that telomere length may predict the rate of aging 

by using it as a biomarker of the oxidative damage caused by smoking, although this 

oxidative stress can be prevented by antioxidant therapy (73). 

4.3.2. Obesity 

Since the waist circumference and BMI are related to high levels of reactive oxygen 

species in plasma and urine, obesity correlates with an increase of oxidative stress (74). 

In case of lean women, their telomeres are significantly longer than those in obese 

women of the same age group (72). 

Given that accelerated telomere loss in obese people equate to 8.8 years of life, it seems 

that obesity has a worse impact on telomere length than smoking (75). 

4.3.3. Environment 

The exposure to harmful agents of the environment may affect telomeres. Telomere 

length in leukocytes was evaluated by some researchers both from traffic police officers 

and office workers (76). The pollution was measured by levels of benzene and toluene. 

In each age group, telomeres were shorter for traffic police officers than for office 

workers. Consistently, telomeres measured in lymphocytes of coke-oven workers were 

significantly shorter than the control subjects, as exposure to polycyclic aromatic 

hydrocarbons can damage DNA and cause genetic instability (77). In this case, telomere 

shortening did not correlate with subjects’ age but with the number of years the workers 

had been exposed to damaging agents. 

4.3.4. Stress 

Glucocorticoid hormones are released by the adrenal gland because of stress, which 

reduce the levels of antioxidant molecules (78) and accelerates the loss of telomeric 

sequences (79). Women exposed to stress in their daily life showed higher oxidative 

pressure, less telomerase activity and shorter telomeres in peripheral blood 

mononuclear cells in comparison to women in the control group (80). More importantly, 

the difference in telomere length in these two groups was comparable to 10 years of 
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life. Therefore, women with elevated stress levels had more risk to suffer early age-

related diseases. 

The effect of stress on telomeres can also be seen in new-borns as their telomere length 

is shorter depending on the stress levels that the mother experienced during her 

pregnancy (81). 

4.3.5. Diet 

A study carried out in a group of women showed that dietary intake of polyunsaturated 

fatty acids is negatively associated with telomere length, while a dietary intake of fibre 

correlates positively (82). An increase in longevity has also been seen with a reduction 

in protein intake, as a reduction in the protein content by 40% in rats causes a 15% 

increase in their lifespans (83,84). 

As outlined above, oxidative stress leads to telomere shortening, so the dietary intake 

of antioxidants will reduce the rate of telomere loss. This was demonstrated in a study 

where a group of subjects took antioxidant omega-3 fatty acids, and their rate of 

telomere shortening was lower compared to the control group (85). 

Moreover, not only what we eat can affect telomere length but also the quantity of food 

we consume. Dietary restriction in animals has shown to reduce oxidative burden, DNA 

damage and reduce growth rate (83). Animals were kept in a biologically younger state 

and their lifespan was increased by up to 66% (83). 

4.3.6. Exercise 

Physical activity, together with a healthy diet, is recommended to have a better health 

as it reduces fat and fastens elimination of waste products. It turns into a reduced 

oxidative stress and preventing deterioration of telomeres. 

Exercise was shown to be associated with high telomerase activity and repression of 

some apoptosis proteins such as p53 and p16 in mice (86). Furthermore, leukocytes from 

athletes had more telomerase activity in comparison to non-athletes (86). 
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5. CONCLUSIONS AND DISCUSSION 

Telomeres are a small but very important part of DNA as they are responsible for keeping 

the integrity of the genome of all living organisms. In case of mammals, telomerase is 

essential to solve the end-replication problem and to maintain telomere length for 

specie reproduction. Specifically, in humans, telomeres and telomerase have complex 

structures and this enzyme is well regulated and controlled. 

Both cell and physical aging that can be observed on the surface are caused by telomere 

shortening, and this also limits individual lifespan. 

Different genetic mutations in genes associated with telomeres and telomerase can 

cause unavoidable illnesses such as dyskeratosis congenital. Howbeit, cells have 

mechanisms to prevent DNA from damage despite not having genetic problem, such as 

senescence or apoptosis, but when telomeres are not long enough we are still more 

prone to suffer diseases as diabetes and cardiovascular diseases, among others. 

Moreover, when a cell escapes from mortality stage 2 (M2), telomerase can be activated 

and the cell becomes immortal, possibly leading to cancer. 

Various anticancer therapies targeting telomerase are being studied, and also other 

therapies where telomerase activity is stimulated, although the latter has a high risk of 

developing undesirable tumours. Much research has to be done yet, but it is clear that 

this a field with great interest and possibilities for therapy. 

However, since there are many external factors that can accelerate telomere loss, it is 

in everybody’s hands to have a healthy lifestyle. Exercising, eating healthy and less 

quantity, not smoking and reducing stress can contribute to reduce telomere shortening 

and thus avoid premature aging or age-related diseases. 
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