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Resumen en castellano

Este trabajo consta de varias partes: en la primera parte, se caracteriza una dis-
tancia de un espacio métrico. Dada una teoŕıa (de primer orden) completa T , una
relación de equivalencia tipo-definible es un tipo parcial sin parámetros E(x, y),
donde x e y son tuplas de variables de misma longitud α, tal que en cada modelo M
de T , las realizaciones de E en Mα ×Mα son una relación de equivalencia en Mα.
Se dice además que E es acotada, si existe un cardinal κ tal que en cada modelo de
T , E tiene a lo sumo κ clases. Un ejemplo t́ıpico son las relaciones de equivalencia
“tener el mismo tipo completo sobre ∅” : el cardinal κ en este caso es 2|T |+|α|.

Asociado a una relación de equivalencia tipo-definible acotada, está el con-
junto X de sus clases en un modelo suficientemente saturado M de T (“suficiente-
mente”=como mı́nimo, |x|+ + ℵ0-saturado, donde |x| es la longitud de la tupla x).
Resulta que, de la misma manera que el conjunto de los tipos completos S(∅) viene
naturalmente con una topoloǵıa profinita, tambien X viene con una topoloǵıa, esta
vez compacta Hausdorff.

Además, este espacio topológico no depende de la elección del modelo “sufi-
cientemente” saturado, es decir que dos tales modelos dan lugar a dos espacios
homeomorfos. En otras palabras, el espacio topológico X es un invariante de la
teoria T . Y si el lenguaje es numerable, esta topoloǵıa tiene una base numerable
de abiertos.

Ahora, es bien sabido que si un espacio topológico compacto Hausdorff tiene una
base numerable de abiertos, entonces es metrizable. Damos de manera expĺıcita esta
distancia en un caso particular.

Lascar y Pillay en [4] han sacado provecho de un famoso teorema de estructura
de los grupos compactos (el teorema de Peter-Weyl según el cual un grupo compacto
Hausdorff es ĺımite inversa de grupos compactos de Lie) para obtener un resultado
de eliminación de hiperimaginarios acotados en cualquier teoŕıa completa.

En la segunda parte, se pretende prescindir del teorema de Peter-Weil y pro-
bar directamente la eliminación de hiperimaginarios acotados por puros medios de
teoŕıa de modelos. No se consigue por completo, pero en el camino se introducen
nociones tales como hiperimaginarios normales o DCC, y se prueban algunas de
sus propiedades.

Una conjectura famosa dice que cada teoŕıa simple (una clase de teorias del

iii



primer orden que extiende la de las teoŕıas estables) tiene la propriedad de la bi-
furcación estable. Es decir, que si un tipo completo p sobre A bifurca sobre un
subconjunto de B de parámetros, es por culpa de una instancia δ(x, a) ∈ p de una
formula estable ϕ(x, y).

En la tercera parte, mas técnica, se prueba que si T es simple, T tiene la pro-
priedad de la bifurcación estable si y solo si T eq la tiene.

La última parte es un esbozo de una posible relación entre la teoŕıa de categoŕıas
y la teoŕıa de modelos. Por desgracia, solo son especulaciones y la intuición de que
deberia funcionar un posible enlace entre ambas, ya que no he conseguido ni siquiera
tener los primeros resultados en esta dirección. Sin embargo, si resulta que funciona
como lo intuyo, podria ser algo bastante prometedor.

Amen.
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I tried to keep the material of chapters 1 and 2 as much as possible self-consistent,
in the sense that a non-specialist of the field could follow it without being bored.
Maybe this is not a good idea: given a randomly chosen mathematician, the more
likely is that either he is a specialist in model theory, or he knows nothing about it
(even not the very basic things I suppose the reader should know, like compactness,
types, etc..). Moreover, this has a cost: diluting the real content for the specialist.
For him, let me say right from the start that he will find very few brand new results:
the very core of the material presented here is concentrated in 1.2, 2.2, 2.3, 3.2, and
maybe 1.4. If you are an expert in model theory and don’t want to lose your time, go
there. All the rest consists of (sometimes personal) presentation of already known
stuff.

As for chapters 3 and 4, the technical prerequisites are more serious.

My heart bleeds not to have been able to present more consistent work. Really.
Not because my ego would have been satisfied to be recognized and rewarded by the
mathematician community. Rather because finding out something both beautifull
and meaningfull would have been some sort of spiritual evolution: I would have
known, for myself and by myself, that my Higher Self is able to create freely. Maybe
the only thing that would have been more valuable and personal would have been
a developpement of the germs presented in chapter 4. I tried, but I didn’t succed.
Limited brain power ? lack of ambition ? poor self-esteem leading to self-sabotage ?
insensibility to the idea of being recognized by the community ? (ambition or need
to be recognized by his peers being sometimes powerful and secret motors for great
achievements). . . I don’t know but Oh Gosh ! how I wish I would ! . . . maybe one
day I’ll know . . . Anyway the wind blows . . .

dans une régate, dans une voile ouverte
j’empiette sur les loques anciennes

régime de l’organisation
applaudit

hutte dans ma liberté de voir la mer
d’arranger mon socle sur l’onde

je révise la toile
je révise surtout l’ébauche de vivacité qu’il faut pour tout permettre allègrement

je musarde
la hutte de toile offre sa magnitude

exercice de sublimation
perturbation au régime

j’étouffe les allergies, je berne les insuffisances
je crée

je grimace, mais je crée
je crée et je me crée

digne poussin de la vengance des arbitres solennels
déguisé en humanöıde, découvre sa réalité

je dérape pour moudre cette arrogance
je crée, et je suis fidèle à la vie.
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My basic conventions and notations are :

I will not use the “bar” notation for tuples : a is meant to be a possibly infinite
tuple. If sometimes I need to distinguish between elements and tuples, I will use
the bar notation a = (ai : i ∈ I) in that context. If I is an ordinal α, it is said that
a is a tuple of length α, and we note |a| = α.

I suppose some very basic knowledge of set theory (ZFC), essentially ordinal
and cardinal numbers.

Recall that if one of cardinals κ and λ is infinite, max{κ, λ} = κ + λ, and the
right hand side of the equality is the usual notation for it.

If R(x, y) is a binary relation on a set A, an antichain (of length κ) for R is a
tuple (ai : i ∈ κ), where κ is cardinal number, and ¬R(ai, aj) for all i < j < κ. For
example, if R(x, y) is an equivalence relation with κ classes, R has an antichain of
length κ, but no antichain of length > κ. If R(x, y) is not reflexive, say ¬R(a, a) for
some a ∈ A, then it has antichains of any length for trivial reasons, so we avoid this
uninteresting case, and always suppose R to be reflexive, when we talk of antichains.
Henceforth, antichains are always injective maps as tuples (no repetitions).

Again, if R(x, y) and S(x, y) are binary relations on a set, we denote by R ◦ S
their composition, i.e. (R ◦ S)(a, b) iff there exists c such that R(a, c) and S(c, b).
As usual, R ◦ · · · ◦R (n times) is denoted by Rn.

If E is an equivalence relation on a set, I will most often use the notation aE
for the E-class of a, and sometimes [a]E for typographical reasons.

I will use the same letter (M,N , etc . . . ) for a structure and its domain.

|M | stands for the cardinal number of the set M .

I will suppose the reader has a minimum knowledge of model theory, by this
I mean essentially : the notion of first-order formula, the compactness theorem,
the notion of a complete theory, of an elementary extension of a structure, of an
elementary map between sets of parameters, and of complete (and partial) types
over some parameter set. Please refer to any introductory book in model theory if
you are not familiar with those notions and concepts.

The symbols |= and ` have the usual meaning (Σ ` ψ means that the sentence
ψ is true in every model of Σ).

As usual, the basic objects we will be interested in are the models of a complete
first-order theory T in a language L, with infinite models, along with the definable
(or type-definable) sets in them.

|T | is meant to be |L| + ℵ0 (i.e. the cardinal number of the set of first-order
formulas in L).
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By very definition of a (partial) type and compactness theorem, every partial
type over A ⊆M |= T has a realization in some elementary extension of M .

And by an elementary chain construction and compactness, if two tuples a and
b from a model M have the same type, then there is an elementary extension N of
M and an automorphism σ of N such that σ(a) = b.

Among the models of T it is convenient to distinguish some kind of “universal”
ones, in the sense that there is no need to pass to an elementary extension to realize
(complete) types, or to find an automorphism as above : everything reasonable
enough to ask takes place inside the same model.

Obviously, the consistent set of formulas {x 6= a : a ∈ M} has no realization
in M , so that the best we can ask is that every complete type over some set of
parameters from M of size less than |M | is already realized in M : this is called
saturation.

If for every elementary map f between sets A,B ⊆ M of size less than |M |,
there exists an automorphism of M that extends f , M is said to be homogeneous.

Now it turns out that saturation implies homogeneity, and moreover saturation
implies that every model of T of size less than |M | is elementary embedable in M .
So clearly, saturated models are the kind of “universal” models we are looking for.

Unfortunately, saturated models of arbitrarily large size need not exist, unless
you add axioms in ZFC, or you work with special kinds of theories (for example,
ω-stable ones).

If you are willing to add axioms to ZFC, a possible choice is to add “there exist
arbitrarily large strongly inaccessible cardinals”, which is known to be consistent
with ZFC. Indeed, one can see easily with an elementary chain construction that
for any theory T and any such cardinal κ > |T |, there exists a saturated model of
T of size κ.

If you want to stick with ZFC, and at the same time work with any kind of
theory, you have to weaken a bit the notion of saturated model, and consider the
notions of κ-saturation and κ-homogeneity (κ infinite cardinal) : a model M is
κ-saturated if every complete type in finitely many variables over a set A ⊆ M of
size less than κ is (already) realized in M . And κ-homogeneous if every elementary
map between two subsets A,B ⊆M of size less than κ extends to an automorphism
of M . (beware that some authors call this κ-strongly homogeneous)

This time, κ-saturation does not implies κ-homogeneity, and we have to obtain
both of them at the same time. This is possible in ZFC, for any theory T and
any cardinal κ ≥ |T |. The construction is based on the fact that if M is a model
and κ is any infinite cardinal, there exists a κ+-saturated elementary extension
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N � M : to see this, just enumerate the set of all complete types over all subsets
of M or size ≤ κ, say {pα : α < λ}, and construct inductively an elementary chain
(Mα : α < λ) such that M0 = M , and pα is realized in Mα+1 � Mα (taking union
at limit ordinals). N =

⋃
α<λMα realizes all complete types over parameter sets

A ⊆M of size ≤ κ . This is the first step. Now using this pattern, again construct
inductively an elementary chain (Nα : α < κ+) such that N0 = M , N1 = N ,
Nα+1 � Nα realizes all complete types over parameter sets A ⊆ Nα of size ≤ κ
(taking union at limit ordinals). Clearly, by regularity of κ+, M ′ =

⋃
α<κ+ Mα is

κ+-saturated, M ′ �M , and we are done.

M ′ need not be κ+-homogeneous, so we have to perform another elementary
chain kind of construction to get κ+-homogeneity, without loosing κ+-saturation.
This is done as follows :

Construct inductively an elementary chain (Mα : α < κ+) such that M0 = M ,
andMα+1 �Mα is |Mα|+-saturated (taking union at limit ordinals). Again, because
κ+ is regular,

M =
⋃
α<κ+

Mα (∗)

is κ+-saturated. To see κ+-homogeneity, read for example [8], lemma 2.1.1. (modulo
the tipos in it ...). Since M � M is κ+-saturated and κ+ homogeneous, it is also
obviously κ-saturated and κ-homogeneous, and we have proved the original claim.

A κ-saturated and κ-homogeneous model of T is traditionaly called a (κ)-
monster model, and I will denote such model by M,N , etc. . .

Of course, since there are models of T of any arbitrarily large size, to fix a κ-
monster model is not enough, and you have to deal with the family of κ-monster
models, κ ranging through arbitrarily large cardinals : therefore, a sentence like “let
T , with monster model M”, rather means “consider generically any one of those
κ-monster models”.

If you does not feel comfortable with this dependence on κ, and would rather like
to have a unique “monster model” for T , there is something for you, but you have
to accept of course that this “monster model” be not a set (since you want among
other things that every model of T embeds in it, and there are always arbitrarily
big models in T ).

One possible framework to handle both sets and objects which are not sets (for
example, collections of sets defined by a first-order formula in ZFC) is the well-
known NBG set theory, where there are two sorts of objects : one sort for the
“sets”, and the other one for the so-called “proper classes”.

In this context, if in (∗) you let run α over the (proper class) On of all ordinals,
instead of bounding it by κ+, you get in the end a proper class

C =
⋃
α∈On

Mα

with the following features : every complete type over any set A ⊆ C of parameters
is realized in C (which implies that every model of T embeds in C), and every
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elementary map between sets A,B ⊆ C extends to an automorphism of C : this is
the unique “universal domain” you are looking for.

If you choose to strictly stay inside ZFC, and use κ-monster models M , a subset
of M of size less than κ is called a “small set” (likewise, a tuple of length less than
κ is called a “small tuple”).

If you prefer to use the proper class C, there is no need to introduce new vo-
cabulary : we already have the words “set” and “proper class” at our disposal from
the framework we work in.

I tend to be quite a bit schizophrenic in the very beginning of chapter 1, by not
choosing any of these two options for the “monster model”. This is to show the
unexperimented reader how it works in both cases, and that these are essentially
the same things, up to the difference of nature (set or proper class). Very soon I
get better mental health, and keep my position with M .

An induction on the length of tuples shows that in a κ-saturated model, not
only complete types in finitely variables (over parameter sets of size less than κ)
are realized, but also up to types in tuples of variables of length ≤ κ (over the same
kind of parameters).

A standard notation for M |= ϕ(a1, . . . , an) or C |= ϕ(a1, . . . , an) is simply
|= ϕ(a1, . . . , an).

If M |= T and ϕ(x1, . . . , xn) is a formula with parameters from M , ϕ(M) stands
for {(a1, . . . , an) ∈ Mn : M |= ϕ(a1, . . . , an)}, and the same for a set of formulas
instead of a single formula.

If the complete theory T is clear from the context, and Σ(x),Π(x) are sets of
formulas (with parameters A in some model of T ), just write Σ(x) ` Π(x) in place of
T (A)∪Σ(x) ` Π(x). Adding to the original language L a constant ā for each a ∈ A,
along with a constant ci for each variable xi appearing in the tuple x = (xi : i ∈ I),
this clearly means that in every model N of T (A), Σ(N) ⊆ Π(N).

One easily check that T (A)∪Σ(x) ` Π(x) iff Σ(N) ⊆ Π(N) for some κ-saturated
model of T (A), with |x| < κ.

If A ⊆ M |= T , a (|A| + |x|)+-saturated extension of M (in the language L)
is a |x|+-saturated model of T (A), so that we can use such model as a test for
Σ(x) ` Π(x) as above : this is another interesting feature of κ-saturated models,
and the key to fill in the proofs for the first propositions of chapter 1 (making A = ∅).

Another interesting feature of a κ-saturated model is that the projection of

xiv



a type-definable subset still is type-definable : specifically, if Φ(x, y) is a partial
type with parameters A in a κ-saturated model M , and if |x|, |y|, |A| < κ, then

the projection set X = {x ∈ M |x| | there exists y ∈ M |y| s.t. |= Φ(x, y)} is type-
definable over A by the partial type Ξ(x) = {∃y

(
ϕ1(x, y)∧· · ·∧ϕn(x, y)

)
| ϕi(x, y) ∈

Φ(x, y), 1 ≤ i ≤ n}. Ξ(M) ⊇ X is trivial, and true in any model, whereas Ξ(M) ⊆ X
is easy to prove using κ-saturation.
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Chapter 1

Bounded type-definable
equivalence relations

1.1 Introduction

Here nothing is new, I just recall basic known facts and fix terminology and nota-
tions.

1.1.1 Type-definable equivalence relations

Let E(x, y) be a partial type over ∅ , with x, y tuples of variables of the same lenght
α (possibly infinite). The following are equivalent :

1. E defines an equivalence relation in Mα, for every model M of T .

2. ∀λ > |x|+ℵ0, E defines an equivalence relation in every λ-saturated model of
T .

3. E defines an equivalence relation in some (any) (|x|+ + ℵ0)-saturated model
of T .

4. E defines an equivalence relation in C

We say that E is a type-definable equivalence relation (in T ), and call

π : Cα −→ Cα/E the canonical projection.

Observe that if E is a 0-definable equivalence relation, 1. is equivalent
to : E defines an equivalence relation in some (arbitrary) model of T (in contrast
with 3.).

For example, having the same type over ∅ is a type-definable equivalence relation,
letting E(x, y) = {ϕ(x)↔ ϕ(y) : ϕ ∈ L}. Observe in this case that on each model,
the number of classes is bounded by the number of types over ∅, which in turn is

3



bounded by 2|T |+|x|. More generally, the following are equivalent for a type-definable
equivalence relation E:

1. For some κ, the number of E-classes in every model of T is ≤ κ.

2. There is some µ > |x|+ ℵ0 s.t. for everyλ ≥ µ, every λ-saturated model of T
has < λ classes.

3. There is some µ > |x| + ℵ0 s.t. some (any) µ-saturated model of T has < µ
classes.

4. E has a small number (i.e. a set) of classes in C.

We say that E is a bounded type-definable equivalence relation.

These are immediate results. With some more work, one can show that there is
a least bounded type-definable equivalence relation in Cα, and it has
≤ 2|T |+|x| classes; therefore, one can specify what µ in item 2. above is, and item 1.
is also equivalent to :

2’. For every λ ≥ (2|T |+|x|)+, every λ-saturated model of T has < λ classes.

3’. Any (2|T |+|x|)+-saturated model of T has ≤ 2|T |+|x| classes.

4’. E has ≤ 2|T |+|x| classes in C.

The morality is : to check condition 1. above, just check that E has at most
2|T |+|x| classes in some λ-saturated (and λ-homogeneous) model M , λ > 2|T |+|x|.
Or, if you are willing to work with proper classes, check that E has at most 2|T |+|x|

classes in C.

Again, compare with the case of a 0-definable equivalence relation, where it is
enough to check that it has a finite number of classes in some arbitrary model :
then, it has the same finite number of classes in every model (just because having
n classes is expressible by a first order sentence, and T is complete).

Notation 1.1.1 The least type-definable equivalence relation (on tuples of a certain
length) is denoted by EKP . So there is one EKP for each length of tuple from the
monster model.

Certainly if E is bounded, no ϕ(x, y) ∈ E can have antichains of arbitrary finite
lenght, for if not ϕ would have antichains of arbitrary infinite lenght by compactness,
and so would have E, contradicting boundedness.

A reflexive formula ϕ(x, y) is thick if for some n < ω, ϕ has no antichain of lenght
n, so that by the previous remark a bounded type definable equivalence relation is
made of thick formulas. The converse is true, using Erdös-Rado theorem :
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Let E be a type-definable equivalence relation; then E is bounded iff each ϕ ∈ E
is thick.

Observe that we can always assume that a type-definable equivalence relation
is made of reflexive and symmetric formulas : if not, replace each ϕ(x, y) ∈ E by
ϕ(x, y) ∧ ϕ(y, x).

It is not true that moreover the formulas can be assumed to be transitive, ie
that every type-definable equivalence relation is an intersection of ∅-definable equiv-
alence relations, but however we have the following approaching result :

Lemma 1.1.2 Every type-definable equivalence relation E(x, y) is the intersection
of type-definable equivalence relations Ei of the following type :

Ei = {ϕin(x, y) : n < ω}, where each ϕin is reflexive and symmetric, and
(ϕin+1)

2 ` ϕin.

Moreover, if E is made of a countable number of formulas, it is directly of the
previous form.

Proof : Start from a representation of E by reflexive and symmetric formulas.
Let ϕ(x, y) ∈ E(x, y); using transitivity of E we get E(x, y) ∪ E(y, z) ` ϕ(x, z),
and by compactness ϕ1(x, y) ∧ ϕ1(y, z) ` ϕ(x, z), for some ϕ1 finite conjunction of
formulas of E. Repeating inductively ω times, we get a type-definable equivalence
relation of the expected form, and the intersection of all of them, ϕ running through
E, is E itself.

Now suppose we start with E countable, E(x, y) = {θn(x, y) : n < ω}; replac-
ing θn by θ0 ∧ · · · ∧ θn, we can first of all assume θn+1 ` θn, for all n; as before,
and because a finite conjunction of formulas of E is one of them by the previous
decreasing condition on θn’, θ2n1

` θ0 for some n1 ≥ 0; and we can assume n1 > 0
because if θ20 ` θ0, then also θ21 ` θ0 thanks to θ1 ` θ0. Proceeding inductively, we
get a strictly increasing sequence ni, i < ω, such that θ2ni+1

` θni , and thereby the
result. �

1.1.2 The logic topology

In a κ-saturated model, κ ≥ |x| + ℵ0, the set of classes of E(x, y) = “x ≡ y′′ is in
one-one correpondence with Sx(∅), the set of types over ∅ in variables x. Under this
correspondence, the classical profinite topology of Sx(∅) translates as follows :

A set of classes Y is closed iff π−1(Y ) is type-definable over ∅, and a base of
clopen is given by {[ϕ] : ϕ ∈ L}, where [ϕ] = {aE : ∀a′ s.t. E(a, a′), |= ϕ(a′)}.

More generally, one can endow the set of classes X = Cα/E of a bounded type-
definable equivalence relation E with a compact Hausdorff topology, the so called
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logic topology, but if we want to get Hausdorffness we have to introduce parameters
in the types :

by definition, a set of classes Y ⊆ X is closed if π−1(Y ) is type-definable
with (set) parameters in C.

Since E is itself type-definable, a subset Y ⊆ X is closed iff Y = π(Σ(C)), for
some partial type with parameters Σ(x).

Lemma 1.1.3 This defines a compact Hausdorff topology on the set X of classes.

Proof : The intersection of an arbitrary family of closed sets is obviously a
closed set, so this defines a topology.

To check compactness we need to get the finite intersection property for closed
sets, which is an immediate consequence of logical compactness.

Hausdorffness is as follows : let aE 6= bE ; for some ϕ ∈ E, |= ¬ϕ(a, b); as in
the proof of previous lemma , ϕ′2 ` ϕ (∗) for some ϕ′ ∈ E. Let O1 = {cE : cE ⊆
ϕ′(a,C)} and O2 = {cE : cE ⊆ ϕ′(b,C)}; then, π−1(X \ O1) is the partial type
∃y(E(x, y) ∧ ¬ϕ′(a, y)), so that O1 is an open set, and so is O2 (here we see why
we need types with parameters to get Hausdorffness); obviously, aE ∈ O1, bE ∈ O2,
and O1 ∩ O2 = ∅ thanks to (∗). �

As in the case of x ≡ y, we have a base of open sets for the logic topology, given
by formulas (with parameters) :

Lemma 1.1.4 The family of sets of the form

[ψ(x)] = {aE : ∀a′ s.t. E(a, a′), |= ψ(a′)}

where ψ(x) is a formula with parameters in C, is a base for the logic topology.

Proof : First of all, X \ [ψ] is closed, as in the proof of previous lemma.

Let O be an open set, π(x) a partial type defining X \O, and aE ∈ O; suppose
for each χ(x) ∈ π(x), some representative c′ of cE satisfies |= χ(c′); then, by (logi-
cal) compactness, some representative c′ of cE satisfies |= π(c′), but by definition of
closed sets in X, aE ⊆ π(C), in contradiction with aE ∈ O. Thus, let χ(x) ∈ π(x)
such that aE ⊆ ¬χ(C); aE ∈ [¬χ], and we are done. �

We can be even more precise about a base of open sets, and choose the formula
ψ(x) of the form ϕ(x, a) for ϕ(x, y) ∈ E(x, y), but before another definition :

For ϕ(x, y) ∈ E(x, y), let

[[ϕ(x, aE)]] = {cE : ∀a′, c′ s.t. E(a, a′), E(c, c′), |= ϕ(c′, a′)}

(clearly an open set in X), so that [[ϕ(x, aE)]] ⊆ [ϕ(x, a)] (∗∗).
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Lemma 1.1.5 For each class aE ∈ X, {[ϕ(x, a)] : ϕ ∈ E} is a base of (open)
neighbourhoods of aE, and likewise {[[ϕ(x, aE)]] : ϕ ∈ E}.

Proof : Clearly [ϕ(x, a)] and [[ϕ(x, aE)]] are open sets containing aE . Let
O be an open set containing aE , and [ψ] ⊆ O containing aE by lemma 1.1.4; by
hypothesis, E(x, a) ` ψ(x), so by (logical) compactness ϕ(x, a) ` ψ(x), for some
ϕ ∈ E, which means precisely [ϕ(x, a)] ⊆ [ψ].

The corresponding result for [[ϕ(x, aE)]] is just because (∗∗). �

We note respectively 〈ϕ(x, a)〉 and 〈〈ϕ(x, aE)〉〉 for the closed sets
X \ [ϕ(x, a)] and X \ [[ϕ(x, aE)]].

This topological space X = M/E is in fact an invariant of the complete theory
T : if N is another λ-saturated model of T , λ > 2|T |+|x|, M/E is homeomorphic to
N/E.

To see this, first note that it is enough to prove it when N is an elementary
extension of M ; in this case, every E-class in N has a representative in M : suppose
not, and let (ai : i ∈ I) be a complete set of representatives of E-classes in M ; there

would be b ∈ N |x|, and a familly (ϕi(x, y) : i ∈ I) of formulas in E(x, y) such that
N |= ¬ϕi(b, ai), for all i ∈ I.

Then, {¬ϕ(x, ai) : i ∈ I} would be a partial type over a set of parameters of size
less than the saturation of M (only a finite sub-tuple of each ai appears in ϕi, and
I is of size less than the saturation of M by hypothesis of boundedness) , and so
would be realized in M : contradiction with the fact that (ai : i ∈ I) is a complete
set of representatives of E-classes in M .

The conclusion is that the map f : M/E → N/E, aME 7→ aNE , is a bijection.

This bijection is an homeomorphism : if [a]E ∈ M/E belongs to the basic
open set [ψ(x)], [a]E ⊆ ψ(M), which means E(x, a) ` ψ(x) because M is enough
saturated, and so [a]E ⊆ ψ(N) also, ie [a]E also belongs to [ψ(x)] as an element of
N/E.

The same argument using the saturation of N proves that f([ψ(x)]) = [ψ(x)], so
that f−1 is continuous, and even an homeomorphism since the spaces are compact
Hausdorff.

Remark 1.1.6 A slight modification of the arguments above gives a compact Haus-
dorff topology on the set of classes of a 0-type-definable equivalence relation E(x, y)
on the realizations of a partial type (without parameters) Σ(x) in C.

Lemmas 1.1.4 and 1.1.5 go through, as well as the fact that this topological space
is an invariant of T in the sense given above.
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1.1.3 The countable case

From now on (except in section 3), we assume moreover that E(x, y) is made of a
countable number of formulas (which is obviously the case if L and |x| are count-
able). By Lemma 1.1.2, we can assume E(x, y) = {θn(x, y) : n < ω}, with θn
reflexive and symmetric, and θ2n+1 ` θn (in particular, θn+1 ` θn).

In that case we know more about the logic topology :

Lemma 1.1.7 The logic topology has a countable base of open sets.

Proof : For fixed n, use topological compactness to get a finite covering

X = [θn(x, an0 )] ∪ · · · ∪ [θn(x, ankn)] from the open covering
⋃
aE∈X [θn(x, a)].

Let’s check that {[θn(x, ani )] : n < ω, 0 ≤ i ≤ kn} is a base of open sets.

Let O be an open set, and bE ∈ O; by Lemma 1.1.5, there is some n < ω such
that bE ∈ [θn(x, b)] ⊆ O; let an+1

i such that bE ∈ [θn+1(x, a
n+1
i )] (finite covering);

easily, [θn+1(x, a
n+1
i )] ⊆ [θn(x, b)], and we are done. �

A well known result of topology says that a compact Hausdorff space is metriz-
able iff it has a countable base of open sets (an easy corollary of the so-called
metrization theorem of Urysohn, see [6] for example).

I will caracterize such a distance model-theoretically, at least for some particular
case.

1.2 The distance

The context is that of 1.1.3. Refer to preliminaries if you don’t know what a thick
formula is, and recall (c.f. discussion after 1.1.1) that a type-definable equivalence
relation is bounded iff it consists of thick formulas.

In the sequel I will use the following abuse of notation : |= ϕ(aE , bE) stands for
|= ϕ(a′, b′), for every representatives a′, b′ of aE , bE respectively. Other expressions
like |= ϕ(a, bE) are self-explicit.

Lemma 1.2.1 Let θ be a thick formula, and k ≥ 2 such that there is an antichain
for of length k for θ, but no antichain of length k + 1.

Then the transitive closure of θ is θ2k+1.

Proof : I will prove θ2(k+1) ` θk+1, which is what we need to prove. Let
|= θ2(k+1)(a, b), and let l be the smallest integer such that θl(a, b).

Suppose l > 2k + 1, and a0, . . . , a2k+2, . . . , al such that |= θ(ai, ai+1) for all
0 ≤ i ≤ l − 1. The property of k, applied to the sequence a0, a2, . . . , a2(k+1),
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implies that for some 0 ≤ i < j ≤ k+ 1, |= θ(a2i, a2j), contradicting the minimality
condition of l.

Therefore, l ≤ 2k + 1. �

Observe that in the previous Lemma, if θ has no antichain at all, then |=
∀x, y θ(x, y), and θ is already an equivalence relation, so that the transitive clo-
sure of θ is θ itself.

Altogether, this means that if θ(x, y) is thick, some θi is an equivalence relation.
Let r ≥ 1 be the smallest integer j such that θj = θj+1. Call this integer rn for θn.

We can assume the r′ns are not bounded : if not, rn ≤ r fore some r, and
therefore by compactness

⋂
n θ

r
n ⊆ Er = E. But obviously on the other hand

E ⊆ θn ⊆ θrnn = θrn for all n, so that E ⊆
⋂
n θ

r
n. Therefore, E =

⋂
n θ

r
n, and E is

the intersection of definable equivalence relations.

But that case is easily solved :

Lemma 1.2.2 Let E(x, y) =
∧
n χn(x, y), where each χn(x, y) is a 0-definable

equivalence relation.

Then, the map{
d(aE , bE) = 0 if aE = bE

d(aE , bE) = 1/2n if aE 6= bE and n is the least integer k such that |= χk(aE , bE) (min ∅ = −1)

defines an ultrametric on X = M
α
/E, whose topology is the logic topology.

Proof : Taking χ′n = χ0 ∧ · · · ∧ χn, we can assume the χn are definable
equivalence relations with χn+1 ` χn.

Symmetry of d is obvious, since each χn is symmetric.

Since by definition d(aE , bE) = 0 if aE = bE , it is clearly enough to prove the
ultrametric inequality for pairwise distinct aE , bE , cE .

Then, let d(aE , bE) = 1
2n and d(bE , cE) = 1

2m . If n = −1 (i.e. |= ¬χ0(a
′, b′)

for some representatives a′, b′ of aE , bE) or m = −1, clearly we have d(aE , cE) ≤
max{d(aE , bE), d(bE , cE)} since d is bounded by 2 by definition.

We can assume therefore that |= χn(aE , bE) and |= χm(aE , bE), with n ≥ m, so
that |= χn(aE , bE) and |= χn(bE , cE). Since χ is transitive, this implies χn(aE , cE),
i.e. d(aE , cE) ≤ 1

2n = max{d(aE , bE), d(bE , cE)}.
Finally, if aE 6= bE , |= ¬χn(a′, b′) for some representative a′, b′ of aE , bE , and

therefore d(aE , bE) 6= 0.

Clearly we have for each n ≥ 0 and a, b : |= χn+1(aE , bE) iff d(aE , bE) < 1
2n .

Therefore, [[χn+1(x, a)]] = Bd(aE ,
1
2n ).

Since the open balls {Bd(aE , 1
2n ) : n ≥ 0} and the open sets {[[χn(x, a)]] : n ≥ 0}

form a neighborhood basis of aE for respectively the topology of d and the logic
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topology, these two topologies agree. �

The remaining of the section treats the case where the r′ns are not bounded. In
that case, some subsequence (rf(n)) is strictly increasing, and clearly still we have
E =

⋂
n θf(n). Therefore, we can suppose that the r′ns are strictly increasing.

Our goal is to define in some way or another a distance (or distances) on the
set of equivalence classes under E.

Observe first that if one defines a map δ : X × X → R+ (X any set), that is
symmetric and fullfils the triangular inequality, then the map :{

d(x, x) = 0

d(x, y) = δ(x, y) if x6= y

is a semi-distance on the set X.

Now let us fix our attention on some level n, and define δn as follows :

{
δn(aE , bE) = min{i : |= θin(aE , bE)}, if this set is not empty

δn(aE , bE) = rn + 1 if for some (all) representatives a′, b′ of aE , bE , |= ¬θrnn (a′, b′)

The above equivalence between“for all” and “for some” is just because θrnn is an
equivalence relation, and E ⊆ θn ⊆ θrnn .

Observe that the values of δn are in the finite set {1, 2, 3, ..., rn + 1}.
Now we obviously have (1) :

– |= θin(aE , bE) implies δn(aE , bE) ≤ i.
– If 1 ≤ i ≤ rn : |= ¬θin(a′, b′) for some representaives a′, b′ of aE , bE implies

δn(aE , bE) > i

In particular, if 1 ≤ i ≤ rn : δn(aE , bE) ≤ i⇐⇒ θin(aE , bE).

From this we get triangular inequality for δn :

Suppose first δn(aE , bE) = r, δn(bE , cE) = s, with both r, s ≤ rn, and let a′, c′

be representatives of aE , cE . Then |= θrn(a,′ b) and |= θsn(b, c′), hence |= θr+sn (a′, c′),
and therefore δn(aE , cE) ≤ r + s.

Now suppose δn(aE , bE) = rn + 1. Then δn(aE , cE) ≤ rn + 1 ≤ (rn + 1) +
δn(bE , cE) = δn(aE , bE) + δn(bE , cE).

Symmetry for δn is obvious, since θn, and therefore also each θin, is symmetric .

Let δ′n =
δn
2n

.
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Note that for all a, δ′n(aE , aE) = 1
2n , but thanks to a previous observation, we

can make δ′n into a distance dn.

Now what are the relations between the dn’s ?

To see this we use the fact that θ2n+1 ` θn, which gives θ2in+1 ` θin, for all i.

Using (1), it implies immediately :

If 1 ≤ 2i ≤ rn+1 and dn+1(aE , bE) ≤ i

2n
=

2i

2n+1
, then dn(aE , bE) ≤ i

2n
(2)

This in turn implies that, on a fixed couple (aE , bE), the d′is cannot decrease a
lot when passing from level n to level n+ 1 :

Lemma 1.2.3 For every a, b and every integer n

dn+1(aE , bE) ≥ dn(aE , bE)− 1

2n+1

Proof : Since the r′ns are strictly increasing, a subsequence (rf(n)) can be
extracted with the property rf(n+1) ≥ 2rf(n). Henceforth, since still E =

⋂
n θf(n),

we can assume that

rn+1 ≥ 2rn (3)

Suppose dn(aE , bE) = i
2n , with i ≥ 2. Then dn(aE , bE) > i−1

2n , but thanks to
(3), 1 ≤ 2(i− 1) ≤ rn+1, so we can apply (2) to get dn+1(aE , bE) > i−1

2n .

But between i−1
2n and i

2n there is only one intermediate value of dn+1, so that
dn+1(aE , bE) ≥ dn(aE , bE)− 1

2n+1 .

The case dn(aE , bE) = 1
2n is obvious, since dn+1 takes its values in

{ 1
2n+1 , . . . ,

rn+1+1
2n+1 }. �

Corollary 1.2.4 For every a, b and every integers n, k

dn+k(aE , bE) ≥ dn(aE , bE)− 1

2n
(
1− 1

2k
)

Proof : An iteration of Lemma 1.2.3 gives

dn(aE , bE)− dn+k(aE , bE) ≤ 1

2n+1
+ · · ·+ 1

2n+k
=

1

2n
(
1− 1

2k
)

. �
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Proposition 1.2.5 For fixed a, b, the sequence (dn(aE , bE))n<ω is convergent in
R = R ∪ {+∞,−∞}.

Proof : To simplify notation call the sequence (dn)n<ω.

I will prove that two adherent values of (dn) in R must be equal, which will
clearly prove that the sequence converges.

Suppose c < c′ ∈ R are such adherent values, and let (df(n)) and (dg(n)) be
subsequences converging to c and c′ respectively.

Let ε = c′−c
2 > 0, and n0 such that for all n ≥ no, df(n) belongs to the intervall

of center c′ and radius ε
2 .

Let N be such that 1
2N
≤ ε

2 , and n1 with N − 1 ≤ g(n1), so that if k =
max (n0, n1), we get dg(k) > c′ − ε

2 and N ≤ g(k) + 1.

Now we have
1

2g(k)
≤ 1

2N
≤ ε

2
, and applying Corollary 1.2.4 we get

dg(k)+r ≥ dg(k) −
1

2g(k)
(
1− 1

2r
)

and since
1

2g(k)
(
1− 1

2r
)
≤ ε

2
and dg(k) > c′ − ε

2
, we obtain

dg(k)+r > c′ − ε

2
− ε

2
= c′ − ε > c for all r ≥ 0

contradicting the fact that (df(n)) converges to c.

The remaining case c′ = +∞ is treated the same way without difficulties. �

Proposition 1.2.6 d′(aE , bE) = limndn(aE , bE) is a distance with values in R ∪
{+∞}

Proof : Since each dn has symmetry and triangular inequality, passing to the
limit gives symmetry and triangular inequality for d′.

If aE = bE , dn(aE , bE) = 0 for all n, hence d′(aE , bE) = 0.

If aE 6= bE , |= ¬θn(a, b) for some integer n, so that dn(aE , bE) ≥ 2
2n . Apply-

ing Corollary 1.2.4, this implies dn+k(aE , bE) ≥ 1
2n for all k ≥ 0, and therefore

d′(aE , bE) = limndn(aE , bE) = limkdn+k(aE , bE) ≥ 1
2n > 0. �

If we define d = min (1, d′), we get a real-valued distance, whose topology τ is
the same than that of d′.

Proposition 1.2.7 For every n and a, Bd(aE ,
1
2n ) ⊆ [θn(x, a)]. So the logic topol-

ogy is coarser than τ .

Proof : Let bE ∈ Bd(aE ,
1
2n ), i.e. limndn(aE , bE) < 1

2n . Then there exists
some N such that dk(aE , bE) < 1

2n for all k ≥ N (∗).
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Suppose bE /∈ [θn(x, a)], i.e. |= ¬θn(a, b′) for some representative b′ of bE . This
implies that dn(aE , bE) ≥ 2

2n = 1
2n−1 , and applying again Corollary 1.2.4, we see

that dk(aE , bE) > 1
2n for all k ≥ n, contradicting (∗).

Since the open balls {Bd(aE , 1
2n ) : n ≥ 0} form a neighborhood basis of each

point aE for τ , and the open sets {[θn(x, a)] : n ≥ 0} also form a neighborhood ba-
sis of each point aE for the logic topology (c.f. 1.1.2), we get that the logic toplogy
is coarser then τ . �

As we know, the type of any type-definable equivalence relation can be put into
the form

∧
n θn(x, y), where each θn is symmetric and reflexive, and θ2n+1 ` θn for

all n ≥ 0.

If moreover θn ` θ2n+1 (i.e. θ2n+1 ≡ θn) for all n, then the topology τ of the
distance d defined above is the logic topology :

Proposition 1.2.8 Suppose θ2n+1 ≡ θn for all n ≥ 0.

Then, for every n and a, [[θn+1(x, a)]] ⊆ Bd(aE ,
1
2n ). So the logic topology is

finer than τ .

Proof : First I claim that for each aE , bE , the sequence (dn(aE , bE)) is de-
creasing : indeed, this is obvious if aE = bE (the sequence is constant = 0), and if
aE 6= bE , let dn(aE , bE) = i

2n . In particular, |= θin(aE , bE), and by the hypothesis
we get |= θ2in+1(aE , bE), which implies dn+1(aE , bE) ≤ 2i

2n+1 = i
2n = dn(aE , bE).

Let bE ∈ [[θn+1(x, a)]], i.e. |= θn+1(aE , bE), and bE 6= aE . Then, dn(aE , bE) =
1

2n+1 , and since (dn(aE , bE)) is decreasing, limndn(aE , bE) = d′(aE , bE) ≤ 1
2n+1 <

1
2n . And since d′(aE , bE) ≤ 1, d(aE , bE) = inf(d′(aE , bE), 1) = d′(aE , bE) < 1

2n , and
we are done. �

All the examples of section 1.4 can be put into the form where the hypothesis
θ2n+1 ≡ θn holds.

Is it true for every bounded type-definable equivalence relation which is not an
intersection of definable equivalence relations ?

1.3 Compact group associated with a bounded type-
definable equivalence relation

Here I come back to known material, and drop the assumption of countable lan-
guage.

Again, nothing is new, except maybe the alternative treatment of the so-called
Galois group along with the Galois correspondence, avoiding the use of the (quasi
compact) Lascar group Aut(M)/Autf(M). However, I give in the Appendix B
a motivation (among others) for the introduction of the Lascar group as a pure
group-theoretic (regardless any topological structure on it) invariant of T .
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In order to simplify notation, call Y the power M
α

on which the type-definable
equivalence relation E is defined, where M is any sufficiently saturated model of
T (ie λ-saturated, λ > 2|T |+|x|). As noticed in 1.1.6, all the following results and
arguments generalize very easily when Y is just a 0-type-definable set in M

α
, and

E is a 0-type-definable equivalence relation on Y .

As seen in section 1, with a bounded type-definable equivalence relation E in
a theory T is associated a topological invariant of T , namely the homeomorphism
class of the compact Hausdorff space X = Y/E.

One can go further, and associate to E another invariant which is a compact
Hausdorff topological group with continuous action on X. Given the importance
of compact groups (and compact group actions) throughout mathematics, and the
extensive amount of knowledge about them (see for example [1]), this is far from
beeing insignificant. In the next chapter we will refer to one possible way of taking
advantage of it, making use of the structural result that every compact Hausdorff
group is a projective limit of compact Lie groups.

First observe that Aut(M) acts on X in the more natural way : σ . aE = (σa)E
(this definition is sound, because since E is type-definable, E(a, b) iff E(σa, σb)).

So we can consider the permutation group of this action, namely the image of
the group morphism associated with the action ρ : Aut(M)→ S(X), where S(X)
is the group of permutations of the set X. Let’s call GX this image group.

GX acts on X, and we want to endow it with a compact Hausdorff topology that
makes this action continuous, as well as the group multiplication and the inverse
function.

Still call ρ : Aut(M)� GX = ρ(Aut(M)).

Clearly, each element of GX is an homeomorphism of the topological space X
(the inverse image of the solution set of a type under an isomorphism of M is again
the solution set of a type), so that

GX ⊆ Homeo(X) ⊆ Cont(X,X) ⊆ XX

(with transparent notations).

Now X is compact Hausdorff, so by Tychonov, so is XX endowed with the
product topology. In general, given a compact Hausdorff space X, there is no reason
why Cont(X,X), or even Homeo(X), should be closed (or equivalently compact)
sets in XX with the product topology. But here the context makes possible the fact
that GX be a closed subset of XX .

To see this, let us first characterize closed sets in XI , for a small set I : let
π : Y → X be the canonical projection, and δ = πI : Y I → XI be the application
given by the universal property of the product XI , namely δ((yi : i ∈ I)) = ([yi]E :
i ∈ I). Given an application f ∈ XI , an application f̂ ∈ Y I such that δ(f̂) = f is
called a lifting of f .

In the sequel, the only topology I will consider on a set of the form XI will be
the product topology.
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Lemma 1.3.1 Let X be any topological space, I a set, and C ⊆ XI . The following
are equivalent :

1. C is closed

2. There exist a set J , a map g : J → I and a closed subset F ⊆ XJ such that
C = {f ∈ XI : f ◦ g ∈ F}

Proof : 1⇒ 2 : take J = I, g = IdI, and F = C.

2⇒ 1 : it is clearly enough to show that XI → XJ : f 7→ f ◦ g is a continuous
map for the product topologies : so let U = {h ∈ XJ : h(j1) ∈ O1, . . . , h(jk) ∈ Ok}
be a basic open set of XJ , with O1, . . . ,Ok open sets of X. Then, f ◦ g ∈ U iff
f ◦ g(j1) ∈ O1, . . . , f ◦ g(jk) ∈ Ok, iff f ∈ V = {ϕ ∈ XI : ϕ(i1) ∈ O1, . . . , ϕ(ik) ∈
Ok}, with i1 = g(j1), . . . , ik = g(jk), showing that the preimage of U is the (basic)
open set V . �

Lemma 1.3.2 Let I be a small set, and C ⊆ XI . The following are equivalent :

1. C is a closed subset of XI

2. δ−1(C) is type-definable with small parameters

3. There exists a partial type Φ(yi : i ∈ I) with small parameters such that
C = {f ∈ XI : for every (some) lifting f̂ of f, |= Φ(f̂)}

4. There exist a small set J , a map g ∈ IJ , and a partial type with small param-
eters Φ(yj : j ∈ J), s.t.

C = {f ∈ XI : for every (some) lifting f̂ ◦ g of f ◦ g, |= Φ(f̂ ◦ g)}

Proof :

1⇒ 3

Let U = {f ∈ XI : f(i1) ∈ O1, . . . , f(ik) ∈ Ok} be a basic open set of XI , with
ir’s ∈ X, and Or’s open sets in X. Then, X \ Or is a closed set in X, given say by
the partial type Πr(y), with (small) parameters from M (cf 1.1.2). A closed set C
is the intersection of closed sets of the form XI \ U . To each such basic closed set
corresponds the partial type (with small parameters) Π1(yi1) ∨ · · · ∨ Πk(yik). Let
Φ(yi : i ∈ I) be the union of the partial types corresponding to the basic closed sets
intervening in the intersection.

Now, using the fact that aE ∈ X \Or iff |= Πr(a) (the very definition of a closed
set in the logic topology), one sees easily that if f belongs to C, then every lifting
f̂ satisfies |= Φ(f̂); and that if f in XI has some lifting f̂ such that |= Φ(f̂), then
f belongs to C. So we get C = {f ∈ XI : for every (some) lifting f̂ of f, |= Φ(f̂)}.

It remains to argue that Φ(yi : i ∈ I) can be defined over a small set of parame-
ters. If κ < λ is the number of E-classes, then Φ is the union of at most 2κ partial
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types with small parameters (there are at most 2κ basic closed sets in X). So, if we
choose the degree of saturation λ of M to be an inaccessible cardinal, we are done.

3⇒ 2

Since f̂ ∈ δ−1(C) iff f̂ is a lifting of some f ∈ C, δ−1(C) is defined by the same
partial type Φ(yi : i ∈ I) as one easily checks.

2⇒ 1

An element of Y I can be thougth of as an element of M
I×α

, i.e. a small tuple
since both α and I have size less than λ. On these tuples, define a 0-type-definable
equivalence relation EI by EI((yi : i ∈ I), (y′i : i ∈ I)) iff |=

∧
iE(yi, y

′
i). Since E

has a small number of classes, so is EI , and we can consider the compact Hausdorff
topological space Y I/EI with the logic topology.

Let µ : Y I � Y I/EI be the canonical surjection. Clearly, EI(y, y
′) iff δ(y) =

δ(y′), henceforth δ factorizes through µ by a bijection δ : Y I/EI → XI :

Y I XI

Y I/EI

δ

µ

δ

∼

Transporting via δ the logic topology, we get a compact Hausdorff topology τ
on XI . By the same argument as in 1⇒ 3, one sees easily that each closed set for
the logic topology on XI is closed for τ , i.e. the logical topology is finer than τ .
But both topologies are compact Hausdorff, so that they coincide.

Now let C ⊆ XI such that δ−1(C) is type-definable with small parameters.
Since δ = δ ◦ µ, this means that C is the image of a closed set in Y I/EI , (namely

C = δ(δ
−1

(C))), so C is closed in τ , and C is closed in the logic topology since both
topologies coincide.

Once we know that 1⇔ 3, 3⇔ 4 follows immediately from the previous Lemma.
�

Corollary 1.3.3 GX is closed (so compact) in XX .

Proof : We use item 3 of Lemma 1.3.2, with I = X. Fix (bx : x ∈ X) a tuple
such that bx is a representative of the class x, for every x in X. Let Φ(yx : x ∈ X)
be tp(bx : x ∈ X).

If f belongs to GX , f = ρ(σ), for some σ ∈ Aut(M). Then, (σbx : x ∈ X) is a
lifting f̂ of f , and |= Φ(f̂).

Conversely, suppose f in XX has a lifting f̂ = (cx : x ∈ X) with |= Φ(f̂). Then,
by homogeneity of M , the elementary map bx 7→ cx extends to an element σ of
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Aut(M), and clearly f = ρ(σ). �

So we have a compact Hausdorff topology on GX , and we have to check that it
makes GX into a topological group, with continuous action on X. First, here is an
intermediate weaker result :

Lemma 1.3.4 Fix a ∈ X and g ∈ GX . The maps

GX → X

f 7→ f . a = f(a)

and

GX → GX

f 7→ f ◦ g

are continuous.

Proof : The first map : Let C be a closed subset of X, given by the partial type
Φ(ya). Clearly, {f ∈ GX : f(a) ∈ C} = {f ∈ GX : for every lifting f̂ , |= Φ(f̂(a))}.
Considering Φ(x) as a partial type in the variables Φ(yi : i ∈ X), this set is also
{f ∈ GX : for every lifting f̂ , |= Φ(f̂)}, which is a closed subset of GX by lemma
1.3.2, implying that the map is continuous.

The second map : as in the proof of Lemma 1.3.1, the map XX → XX :
f 7→ f ◦ g is continuous, and the map we are looking at is a restriction of it. �

Corollary 1.3.5 GX endowed with the restriction of the product topology is a topo-
logical group, and the action on X is continuous.

Proof :

The product map GX ×GX → GX is continuous :

let f, g ∈ GX and U be a basic open neighborhood of f ◦ g, U = {h ∈ GX :
h(b1) ∈ O1, . . . , h(bk) ∈ Ok}. Since the open sets of the form [[ψ(x, a)]], where
ψ(x, y) ∈ E(x, y), is a base of open sets in X, we can suppose each Oi is [[ψi(x, f ◦
g(bi)]] for some ψi(x, y) ∈ E(x, y).

Let ψ′i(x, y) ∈ E(x, y) be such that (ψ′i)
2 ` θi, U

′ = {h ∈ GX : h(b1) ∈
[[ψ′1(x, f ◦ g(b1)]], . . . , h(bk) ∈ [[ψ′k(x, f ◦ b(bk)]]}, and V = {f ′ ∈ GX : f ′ ◦ g ∈ U ′}.
By Lemma 1.3.4, V is an open set, and by definition it contains f .

Let W = {g′ ∈ GX : g′(b1) ∈ [[ψ′1(x, g(b1)]], . . . , g
′(bk) ∈ [[ψ′k(x, g(bk)]]}, a basic

open neighborhood of g.

Now let f ′ ∈ V and g′ ∈ W . Since f ′ = ρ(σ′) for some σ′ ∈ Aut(M), and
g′(bi) ∈ [[ψ′i(x, g(bi))]] for all i, we get f ′ ◦ g(bi) ∈ [[ψ′i(x, f

′ ◦ g′(bi))]] for all i.
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On the other hand, f ′ ◦ g(bi) ∈ [[ψ′i(x, f ◦ g(bi))]] for all i by definition of V .

Henceforth, f ′ ◦ g′(bi) ∈ [[ψi(x, f ◦ g(bi))]] for all i, and we have proved that
V ×W is mapped into U .

The inverse map GX → GX is continuous :

As for the product, let f ∈ GX , and U = {h ∈ GX : h(b1) ∈ [[ψ1(x, f
−1(b1)]], . . . , h(bk) ∈

[[ψk(x, f
−1(bk)]]} be a basic open neighborhood of f−1, with ψi ∈ E.

Let V = {h ∈ GX : h(f−1(b1)) ∈ [[ψ1(x, b1)]], . . . , h(f−1(bk)) ∈ [[ψk(x, bk)]]} (an
open neighborhood of f).

Then, V is mapped into U .

The action GX ×X → X is continuous :

Let f ∈ GX , a ∈ X, and (without lost of generality) O = [[ψ(x, f . a)]] a basic
open neighborhood of f . a = f(a) in X.

Let ψ′ ∈ E with (ψ′)2 ` ψ, V = {f ′ ∈ GX : f ′ . a ∈ O} (an open set in GX
by Lemma 1.3.4, containing f by definition of O), and U = [[ψ′(x, a)]] (an open
neighborhood of a in X).

Then, V × U is mapped into O. �

Now we go a little bit further, and characterize closed subsets of GX . Recall the
epimorphism ρ : Aut(M)→ GX .

Corollary 1.3.6 Let C ⊆ GX , and b = (bx : x ∈ X) be a tuple such that each bx is
a representative of x. The following are equivalent :

1. C is closed for the topology induced on GX by the product topology on XX

2. There exist a (small) tuple (bj : j ∈ J) ∈ Y J and a partial type with small
parameters Φ(yj : j ∈ J) s.t.
ρ−1(C) = {σ ∈ Aut(M) : |= Φ(σ(bj) : j ∈ J)}

3. There exist a (small) tuple a in M , and a partial type with small parameters
Φ(x) s.t. lg(a) = lg(x) and
ρ−1(C) = {σ ∈ Aut(M) : |= Φ(σ(a))}

4. {σ(b) : σ ∈ ρ−1(C)} is type-definable with small parameters

Proof :

1 ⇔ 2 is a direct consequence of characterization 4. of closed subsets of XX

given by Lemma 1.3.2, and the fact that if g ∈ XJ and (bj : i ∈ J) is a lifting of g
in Y J , then for every σ ∈ Aut(M), the tuple (σ(bj) : j ∈ J) is a lifting of ρ(σ) ◦ g.
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For 1 ⇔ 4, let’s use characterization 2. of a closed set of XX given by Lemma
1.3.2.

First, suppose δ−1(C) is type-definable by the partial type Φ(yx : x ∈ X), and
let p(yx : x ∈ X) = tp(b). We will check that A = {σ(b) : σ ∈ ρ−1(C)} is the
solution set B of the type Φ(yx : x ∈ X) ∧ p(yx : x ∈ X).

A ⊆ B is obvious, for if σ ∈ ρ−1(C), σ(b) is a lifting of ρ(σ) ∈ C.

Suppose now (cx : x ∈ X) lies in B, i.e. |= Φ(cx : x ∈ X)∧ p(cx : x ∈ X). Then,
on one hand, there is some σ ∈ Aut(M) such that for all x ∈ X, σ(bx) = cx, and
on the other hand there are some f ∈ C, and a lifting f̂ of f , such that cx = f̂(x)
for every x ∈ X. But this means ρ(σ) = f ∈ C, and B ⊆ A.

Secondly , suppose {σ(b) : σ ∈ ρ−1(C)} is the solution set of Ψ(yx : x ∈ X).
It is then immediate to check that δ−1(C) is the solution set of the partial type

∃(zx : x ∈ X)
(

Ψ(zx : x ∈ X)
∧
xE(zx, yx)

)
.

2⇒ 3 is obvious.

3 ⇒ 2 : Let ā = (ai : i ∈ I), ai ∈ M . For each i, choose any tuple
bi = (bri : r < α) ∈ M

α
such that b0i = ai, and complete the partial type Φ(x)

with corresponding dummy variables. Then, you get 2. �

Recall (c.f. discussion after Lemma 1.1.5) that X = M
α
/E is a topological

invariant of T : if N �M is a κ-saturated elementary extension, with κ > |x|+ℵ0,
then aME 7→ aNE is an homeomorphism between M

α
/E and N

α
/E.

With no surprise, GX is also an invariant of T :

Proposition 1.3.7 Let E(x, y) be a type-definable equivalence relation.

Let M [resp. N ] be a κ-saturated and κ-homogeneous [resp. λ-saturated and
λ-homogeneous] model of T , with λ > κ > |x|+ ℵ0 and M ≺ N .

Let X ≈ Z be the compact spaces M
|x|
/E and N

|x|
/E.

Then GX is isomorphic to GZ as compact groups.

Proof : First of all, define a map f : GX → GZ : let g = ρ(σ) ∈ GX , with
σ ∈ Aut(M). By λ-homogeneity of N , extend σ to some τ ∈ Aut(N).

Claim : ρ(τ) ∈ GZ does not depend on the choice of σ or τ .
Proof : Suppose g = ρ(σ) = ρ(σ′), τ extends σ, and τ ′ extends σ′. Let

h = ρ(τ), h′ = ρ(τ ′) ∈ GZ , and let bE ∈ Z. Then, bE = aE , for some tuple a from
M . Therefore, we have h(bE) = h(aE) = [τ(a)]E = [σ(a)]E , and likewise h′(bE) =
h′(aE) = [τ ′(a)]E = [σ′(a)]E . But since σ and σ′ define the same permutation of
GX , M |= E(σ(a), σ′(a)), therefore alsoN |= E(σ(a), σ′(a)), so that h(bE) = h′(bE),
and h = h′. �

Define thus f(ρ(σ)) = ρ(τ), where τ is some extension of σ.
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The fact that f : GX → GZ be a group morphism is an immediate consequence
of the fact that, if τ [resp. τ ′] is an extension of σ [resp. σ′], then ττ ′ is an extension
of σσ′.

• Kerf = 1 : an immediate consequence of the fact that every bE ∈ Z has a
representative in M .

• f is surjective : suppose h = ρ(τ) ∈ GZ , with τ ∈ Aut(N). Let b = (bx : x ∈
X) be (as in Corollary 1.3.6) a tuple of representatives of the E-classes in X.
Since every E-class in Z has a representative in M , τ induces a permutation
τ̂ of {bx | x ∈ X} defined as follows :

N |= E(τ(bx), bτ̂(x))

Then, the tuple (τ(bx) : x ∈ X) satisfies in N the partial with small parameters
in M

Ψ(y) = p(yx : x ∈ X)
∧
x∈X

E(yx, bτ̂(x))

where p(y) is the type of b over ∅.
By κ-saturation of M , Ψ(y) is satisfied in M , say by a tuple c.

Then, b ≡ c, and by κ-saturation of M , there exists σ ∈ Aut(M) such that
σ(bx) = cx for every x ∈ X.

Let g = ρ(σ) ∈ GX , τ ′ an extension of σ to Aut(N), and bE = [bx]E ∈ Z.
Then

f(g)
(
[bx]E

)
= [τ ′(bx)]E = [σ(bx)]E = [cx]E = [τ(bx)]E = h([bx])

and therefore h = f(g).

• f is an homeorphism : using item 4 of the characterization given by Corollary
1.3.6 of closed sets in GX , it is immediate to see that the image of a closed set
in GX is a closed set in GZ , so that f−1 is continuous, and even bi-continuous
since the spaces are compact Hausdorff.

�

If we apply the previous results to the particular case of EKP on M
ω
, we get

a one-one correspondence ( “ à la Galois ” ) between closed subgroups of GKP
and definably closed sets of bounded hyperimaginaries, where GKP is GX with
X = M

ω
/EKP .

First of all, since EKP is the least bounded type-definable equivalence relation
on tuples of countable length, and every (bounded) hyperimaginary is equivalent to
a tuple of (bounded) countable hyperimaginaries (c.f. 2.1 of the next chapter if you
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don’t know about hyperimaginaries), fixing all the classes in M
ω
/EKP is the same

as fixing all bounded hyperimaginaries for an element of Aut(M).

Consequently, the action of Aut(M) on the set of bounded hyperimaginaries on
one hand, and on M

ω
/EKP on the other hand, have the same kernel Γ1, so that

GKP acts faithfully on the set of bounded hyperimaginaries by ρ(σ) . aF = [σa]F
(σ ∈ Aut(M) and aF bounded hyperimaginary).

In order to show the “Galois correspondence” we need first to set some prelim-
inary results :

Lemma 1.3.8 Let H ⊆ Aut(M) be a subgroup, and a be a small tuple. The fol-
lowing are equivalent :

1. H = Fix(aE) for some type-definable equivalence relation E

2. Fix(a) ⊆ H and the orbit of a under H is type-definable (with small parame-
ters)

Proof : See [4] Lemma 1.9. �

Proposition 1.3.9 Let H ⊆ GKP be a subgroup. Then H is closed iff H = Fix(e)
for some bounded hyperimaginary e.

Proof : Let b be a tuple as in Lemma 1.3.6. By Proposition 1.3.7, GKP is an
invariant of T , so let µ be its size, and M be a µ+-saturated and µ+-homogeneous
model of T .

First suppose that H = Fix(e) for some bounded hyperimaginary e. Let σ ∈
ρ−1(H). Then, σ(e) = e, so that tp(b/e) = tp(σ(b)/e), and {σ(b) : σ ∈ ρ−1(H)} is
type-definable (over any representative of e). By lemma 1.3.6, H is closed in GKP .

Now suppose H is closed. Let K = ρ−1(H) ⊆ Aut(M). If an automorphism of
M fixes b, it fixes every x ∈ X, so that Fix(b) ⊆ K. On the other hand, {σ(b) : σ ∈
K} is type-definable by Lemma 1.3.6. Using Lemma 1.3.8, we see that K = Fix(bF ),
for some type-definable equivalence relation F , and so also H = Fix(bF ). The fact
that b/F be bounded follows immediately from the fact that the quotient group
Aut(M)/Γ1 ≈ GKP has size less than the degree of saturation/homogeneity µ+ of
M (hence, so is the set of cosets Aut(M)/K, since Γ1 ⊆ K ⊆ Aut(M)).

In fact, as seen in Appendix B, the size µ of GKP is at most 2|T |, so that one
can always take as monster models κ-saturated and κ-homogeneous models with
κ > 2|T |. �

Call bdd(∅) the set of bounded hyperimaginaries.

Equipped with this proposition, one sees immediately that

H 7→ Fix(H) = {e ∈ bdd(∅) | g · e = e for every g ∈ H}
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and

A 7→ Fix(A) = {g ∈ GKP | g · e = e for every e ∈ A}

are inverse isomorphisms between the lattice of closed subgroups of GKP and the
dual of the lattice of definably closed subsets of bdd(∅).

1.4 Examples

Here I present some ways of representing the classic groups On(R), SOn(R) and
Un(C) as groups of the form GX . Let me put those examples in perspective: it is
already known (c.f. [10]) that any compact group is isomorphic to some GX . But
in those particular cases of compact (Lie) groups, I provide alternative and more
direct constructions than in the general case.

1.4.1 Around the circle and orthogonal groups

S1, embedded in R2

The basic structure M1 is (S1;Rn : n < ω), where Rn(r, s) means d(r, s) < 1
2n , and

d is the restriction of the Euclidian distance on S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Clearly Rn is symmetric and reflexive, and R2

n+1 ` Rn by triangular inequality;
therefore, in T1 = Th(M1) there is a type-definable equivalence relation E(x, y)
given by the partial type {Rn(x, y) : n < ω}, meaning x and y are “infinitely close”.

Moreover it is clear that each Rn is thick in T1, so that E is bounded.

Observe that M1 is 0-definable in (R; +,−, . , <, 0, 1), so we can take the mon-
ster model M of T1 as the corresponding definable structure in a κ-saturated κ-
homogeneous elementary extension R∗ of R.

One can define a type-definable equivalence relation F in the theory of (R; +,−, ., <
, 0, 1) quite the same way as was done with S1 : F (x, y) iff |x, y| < 1

2n , for all i < ω
(being infinitely close).

An element a ∈ R∗ is said to be bounded if m ≤ a ≤ n for some m,n ∈ Z.

Lemma 1.4.1 1. If a ∈ R∗ is bounded, then aF has a unique real representative.

2. Let a, b, a′, b′ ∈ R∗ s.t. |= F (a, a′) and |= F (b, b′); then |= F (a+ b, a′ + b′).

If moreover a, b are bounded, |= F (aa′, bb′).

Proof :

1. Let a+ = {q ∈ Q : a < q}, and a− = {q ∈ Q : q ≤ a}. These sets are non-void
by hypothesis, so (a+, a−) is a rational cut; let r ∈ R be the associated real
number, and suppose |a− r| ≥ 1

2n for some n < ω (∗).
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Suppose moreover r > a (the case r < a is treated the same way); let q be a
rational number such that q < r and s− q < 1

2n+1 , ie q > s− 1
2n+1 . (∗) reads

−a ≥ 1
2n − s, and summing up the two inequalities leads to q − a ≥ 1

2n+1 > 0,
so that q ∈ a+, in contradiction with q < r.

Therefore, |r − a| < 1
2n for all n < ω, ie |= F (r, a).

2. Let n < ω, M ∈ N such that |a|, |b| ≤M , and k < ω with M
2k
< 1

2n .

|ab−a′b′| = |a(b−b′)−b′(a′−a)| ≤ |a||b−b′|+|b′||a′−a| ≤M(|b−b′|+|a′−a|) ≤
M
2k

, the last inequality since |b− b′|, |a′ − a| < 1
2k+1 by hypothesis.

The addition case is similar.

�

Lemma 1.4.2 Each E-class in M contains a unique representative in S1.

Proof :

If r, s ∈ S1 are such that E(r, s), then clearly r = s, whence uniqueness.

Recall that the universe of M is {(a, b) ∈ (R∗)2 : a2 + b2 = 1}; since R |=
∀x∀y (x2 + y2 = 1 → (−1 ≤ x ≤ 1) ∧ (−1 ≤ y ≤ 1)), every (a, b) ∈ C has bounded
components a and b.

Use Lemma 1.4.1 to get r, s ∈ R with F (a, r) and F (b, s).

By hypothesis, a2 + b2 − 1 = 0, and again Lemma 1.4.1 gives F (r2 + s2 − 1, 0),
ie r2 + b2 − 1 = 0, and (r, s) ∈ S1.

To finish we have to prove that |= E((a, b), (r, s)), but this is easily done ob-
serving that F (a, r) and F (b, s) imply respectively (applying again Lemma 1.4.1)
F (a− r, 0), F (b− s, 0) and F ((a− r)2, 0), F ((b− s)2, 0).

Therefore, d((a, b), (r, s)) =
√

(a− r)2 + (b− s)2 < 1
2n for all n < ω. �

S1, with the intrinsic metric

Here the model is M2 = (S1;Sn : n < ω), where Sn(r, s) means d′(r, s) < 2π
2n , and d′

is the distance on S1 given by the shortest arc lenght between a and b.

As before, the fact that d′ is a metric translates into the facts that the Sn’s are
symmetric and reflexive, and S2

n+1 ` Sn, and there is in T2 = Th(M2) a bounded
type definable equivalence relation E′(x, y) =

∧
n<ω Sn(x, y).

But the particular form of the metric space (S1, d′) implies, in contrast with
M1 :

For all m ≥ 1, n ≥ 0 : S1 |= Smn (r, s) iff d′(r, s) < 2π.m2n , (∗)
where Smn means the usual m-times composition Sn ◦ · · · ◦ Sn.
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In particular, for all m, p ≥ 1, n, q ≥ 0, the following are axioms for T2 :

S2
n+1 ≡ Sn
∀x∀y∀z Smn (x, y) ∧ Spq (y, z)→ S2qm+2np

n+q (x, z) (∗∗)

Lemma 1.4.3 The structure M2 is 0-definable in (R; +,−, . , <, 0, 1).

Proof : The universe is defined by the the formula x2 + y2 = 1, and the
relations Sn by the following observation: if A = (x, y), A′ = (x′, y′) are in S1,
d(A,A′) < 2π/2n iff there is σ in the special orthogonal group of R2, of measure less
than 2π/2n in the canonical (othonormal) base, such that σ(A) = A′, or σ(A′) = A.

Writing sn for the real number sin(2π/2n), this amounts to say, for n ≥ 2, and

using the matrix representation

(
a −b
b a

)
of σ in the canonical base :

there exists a, b such that a2+b2 = 1,

(
a −b
b a

)(
x
y

)
=

(
x′

y′

)
or

(
a −b
b a

)(
x′

y′

)
=

(
x
y

)
,

0 ≤ a, 0 < b < sn,

which is obviously a formula (with parameters sn) in the real field.

To see this formula is in fact without parameters, use the formulae

cos(2α) = cos2(α)− sin2(α) , sin(2α) = 2 sin(α) cos(α), to get sn+1 and cn+1 :=
cos(2π/2n+1) as an expression of sn and cn using only rational numbers and root
extractions, and an induction on n from s2 = 1, c2 = 0.

The remaning cases S0 and S1 are obvious :

S0 is always true, so definable, and S1 is definable by A 6= −A′. �

We can therefore take as a monster model M of T2 the corresponding definable
structure in a κ-saturated κ-homogeneous elementary extension of R∗ of R.

In the common universe for the monster models of T1 and T2, the relations Rn
and Sn behave as follows :

|= Sn → Rn−3, for n ≥ 3, and |= Rn → Sn

This is just because they behave so in S1, the reason being the following:

for r, s ∈ S1, r 6= s, d(r, s) < d′(r, s) < 4d(r, s).

The first inequality is obvious, and the second is justified by the following draw-
ing :
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s

The conclusion is that in the common universe of the monster models of T1 and
T2, E = E′, so that as in the case of T1, there is in M a unique real representative
for each E′-class.

This provides a bijection f : S1 → X = M/E′, f(r) = rE′ .

Observe that since the Sn’s are reflexive, Sn ` Smn for all m ≥ 1, n ≥ 0, and
therefore E′ is also given by the partial type {Smn (x, y) : m ≥ 1, n ≥ 0}.

Lemma 1.4.4 Let r, s ∈ S1.

1. Suppose |= Smn (r, s); then, |= Smn (a, b) for all a, b s.t. E′(r, a) and E′(s, b).

2. Suppose d′(r, s) > m
2n ; then, |= ¬Smn (a, b) for all a, b s.t. E′(r, a) and E′(s, b).

Proof :

1. The hypothesis means d′(r, s) < m
2n ; let i

2j
be such that d′(r, s) < i

2j
< m

2n , and

let p
2q be

(
m
2n −

i
2j

)
/2.

If d′(x, r) < p
2q and d′(s, y) < p

2q , then
d′(x, y) ≤ d′(x, r) + d′(r, s) + d′(s, y) < p

2q + i
2j

+ p
2q = m

2n .

This means (by (∗)) : S1 |= ∀x∀y Spq (x, r) ∧ Spq (y, s) → Smn (x, y), and the
same holds in the elementary extension M , whence the result.

2. Let p
2q be such that 0 < p

2q <
(
d′(r, s) − m

2n

)
/2. Let x and y be such that

d′(r, x), d′(y, s) < p
2q ; then, d′(r, s) ≤ d′(r, x) + d′(x, y) + d′(y, r), d′(x, y) ≥

d′(r, s)− (d′(r, x) + d′(y, s)), and d′(x, y) > m
2n by choice of p

2q .

Again, this means S1 |= ∀x∀y Spq (x, r) ∧ Spq (y, s) → ¬Smn (x, y), whence the
result.

�
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Proposition 1.4.5 The bijection f : S1 → X is an homeomorphism.

Moreover, f(B(r, 1
2n )) = [Sn(x, r)], and f(B(r, 1

2n )) =< Sn(x, r) >.

Proof : Fisrt, check f(B(r, 1
2n )) = [Sn(x, r)] (this will ensure that f is an

homeomorphism, since the sets B(r, 1
2n ) and [Sn(x, r)], r ∈ S1, n < ω, are respec-

tively bases of open sets of S1 and X ) :

If sE′ ∈ [Sn(x, r)], then |= Sn(r, s), ie d′(r, s) < 1
2n , so [Sn(x, r)] ⊆ f(B(r, 1

2n )).

Conversely, suppose d′(r, s) < 1
2n , ie |= Sn(r, s); then, by Lemma 1.4.4, |=

Sn(r, b) for every representative b of sE′ , so that sE′ ∈ [Sn(x, r)], and f(B(r, 1
2n )) ⊆

[Sn(x, r)].

To prove f(B(r, 1
2n )) = 〈Sn(x, r)〉, first observe that since f is an homeorphism

and B(r, 1
2n ) is the topological closure of B(r, 1

2n ) (this is not true in every metric
space), we have

f(B(r, 1
2n )) = f(B(r, 1

2n )) = [Sn(x, a)] ⊆ 〈Sn(x, r)〉, since [Sn(x, r)] ⊆ 〈Sn(x, r)〉
and 〈Sn(x, r)〉 is closed.

The converse : let sE′ ∈ 〈Sn(x, r)〉, ie |= Sn(r, b) for some representative b of
sE′ ; then, d(r, s) ≤ 1

2n by Lemma 1.4.4, and we are done. �

Via the bijection f , every elementary permutation σ of X (ie a permutation
induced by an automorphism of M , or an element of GX) induces a permutation σ
of S1.

Proposition 1.4.6 For every elementary permutation σ of X, σ is an isometry of
(S1, d′).

Proof : Let rE′ , sE′ ∈ X, where r, s ∈ S1, and let u, v ∈ S1 be representatives
of σ(rE′) and σ(sE′) respectively (so that u = σ(r) and v = σ(s)). If d′(r, s) ≥ m

2n ,
ie |= ¬Smn (r, s), then also
|= ¬Smn (σ(r), σ(s)) because σ is an automophism of M (here we make the abuse of
notation of writing σ for an automorphism, and also for the elementary permutation
it induces on the set of classes X). By Lemma 1.4.4, |= ¬Smn (u, v) also holds, ie
d′(u, v) ≥ m

2n .

Applying the same argument to σ−1, we get d′(r, s) ≥ m
2n iff d′(u, v) ≥ m

2n .

Because the dyadic numbers are dense in R, this implies that d′(r, s) and d′(u, v)
have the same rational cut, whence d′(σ(r), σ(s)) = d′(u, v) = d′(r, s). �

The orthogonal group O2(R) acts on S1.
The kernel of this action is trivial (if σ ∈ O2(R) and u ∈ R2 are such that

σ(u) 6= u, then also σ
( u

‖u‖
)

=
1

‖u‖
.σ(u) 6= u

‖u‖
, and

u

‖u‖
∈ S1), and the image is

the set of isometries of (S1, d′) (see appendix A ).

Moreover, the isometries of S1 are also exactly the automophisms of the structure
M2.
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Therefore, an isometry of S1 extends to an automorphism of M (and so to an
elementary permutation of X), and we have just seen that conversely an elementary
permutation of X induces an isometry of S1.

Resuming we have proved :

Proposition 1.4.7 σ 7→ σ is an isomorphism of groups :
GX → Isom(S1, d′) ∼= O2(R).

Moreover this isomorphism is continuous, making GX and O2(R) isomorphic
compact groups.

Here is a proof of continuity:

Recall there is a direct description of the topology of O2(R) independent of the
choice of a basis, avoiding the passage to matrices : it is indeed well known that if
(E, ||.||) is a normed vectorial space, then |||f ||| = sup{f(x) : ||x|| = 1} is a norm
on the vector space Lc(E) of continuous endomorphisms of E.

If E is finite dimensional, then Lc(E) = L(E).

Applying to E = R2 with ||.|| = ||.||2 (the Euclidian norm), we get a norm |||.|||2
for L(R2), and moreover the sup is here a max since the unit sphere for ||.||2 is
compact in that case.

The toplogy on O2(R) ⊆ L(R2) is then the restriction of the topology of the
norm |||.|||2 on L(R2).

Specifically, using the definition of |||.||| above, this topology is given by the
following distance D on O2(R) :

D(f, g) = max {||f(r)− g(r)||2 : r ∈ S1}

Since f 7→ fdS1 is an isomorphism of groups : O2(R) → Isom(S1, d2), one can
transport the topology of O2(R) to Isom(S1, d2) = Isom(S1, d′). Clearly this topol-
ogy on Isom(S1, d′) is given by the distance D′ :

D′(f, g) = max {d2(f(r)− g(r)) ; r ∈ S1}

Also recall that O2(R) has two connected components: SO2(R) and O2(R) \
SO2(R). Therefore, each of these connected components is a clopen set, and it is
enough to check the continuity on each one of these.

Let f ∈ Isom(S1, d′). Recall the isomorphism in question is f 7→ ρ(σ), where
σ ∈ Aut(M) is an extension of f and ρ : Aut(M)→ GX is the action of Aut(M) on
X.

• Continuity on SO2(R): Let f ∈ Isom(S1, d′) be a rotation, and let n < ω. We
want to prove that the image of Of = BD′(f,

1
2n )∩{ rotations } is an open set

in GX . The crucial observation is that if g is another rotation, ||f(r)− g(r)||2
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does not depend on r ∈ S1. Fix r0 ∈ S1. Then g /∈ Of iff ¬Sn(f(r0), g(r0)).
Call Cf the image of the complementary of Of in the rotations by the iso-
morphism. Then ρ−1(C) = {σ ∈ Aut(M) : |= ¬Sn(σ(r0), f(r0))} (use Lemma
1.4.4). By Corollary 1.3.6, this is a closed set in GX and we are done.

• Continuity on O2(R) \ SO2(R): This connected component consists precisely
of the axial symmetries. The proof is exactly the same, using the same crucial
fact as in the case of rotations (this is a bit less obvious than in the case of
rotations, but make a drawing and you will be convinced !).

Generalization to Sn with the intrinsinc metric

All the results of the previous section generalize with very slight modification to
(Sn, δ), where δ is the intrinsinc metric. Here the structure is

M = (Sn;Sn : n ∈ ω)

where Sn(r, s) means δ(r, s) < 2π
2n . Again, M is definable without parameters in

(R,+,−, ·, <, 0, 1), and we can take as monster of T = Th(M) the correponding
definable structure M in a κ-saturated and κ-homogeneous elementary extension
R∗ of R with κ > |M | = 2ℵ0 . Let again X = M/E′.

Still we have GX isomorphic to On(R) as compact groups, for the same reasons
(using Appendix A, and the fact that On(R) has SOn(R) and On(R) \ SOn(R) as
connected components for the continuity).

1.4.2 Extension of the previous examples and SOn(R)

Recall that there is a notion of oriented basis in a R-vector space E of finite di-
mension n: just fix an arbitrary basis e = (e1, . . . , en) of E and call another basis
(e′1, . . . , e

′
n) direct or directly oriented if dete(e′1, . . . , e

′
n) > 0. This cuts the basis

into two disjoint classes: the direct and the indirect ones.

Recall also that for any linear map f ∈ L(E) and any tuple (e′1, . . . , e
′
n), a funda-

mental property of determinants gives dete(f(e′1), . . . , f(e′n)) = dete(e′1, . . . , e
′
n).detf .

Applied in the case where f ∈ GL(E) and (e′1, . . . , e
′
n) it immediately implies that

f ∈ GL(E) sends direct basis to direct basis if and only if detf > 0.

In particular, f ∈ On(R) sends direct orthonormal basis to direct orthonormal
ones if and only if f ∈ SOn(R). (∗)

Add a new n+ 1-ary predicate P , and consider the structure

M = (Sn;Si : i < ω, P )

where Si as the same meaning as before, and M |= P (r1, . . . , rn+1) iff (r1, . . . , rn+1)
is a direct orthonormal basis of Rn+1.
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It is clear that M is definable without parameters in (R,+,−, ·, <, 0, 1), so that
we can take as a monster model M for T = Th(M) the corresponding definable
structure in a κ-saturated and κ-homogeneous elementary extension model R∗ � R.

The bounded type-definable equivalence relation E′ in T is the same as before:
E′(x, y) =

∧
n<ω Sn(x, y), therefore the bijection f : r 7→ eE′ between Sn and X =

M/E′ is still valid.

As before, an automorphism σ of Aut(M) induces through f a permutation σ
of Sn. Proposition 1.4.6 tells us that such a permutation of Sn is in fact an isometry
of (Sn, δ).

But we also have the following:

Lemma 1.4.8 Let (r1, . . . , rn+1) be an orthonormal basis, seen as a tuple from Sn.
Let (a1, . . . , an+1) be a tuple from M such that E′(ai, ri) for all 1 ≤ i ≤ n+ 1.

Then, |= P (r1, . . . , rn+1) iff |= P (a1, . . . , an+1).

Proof : Since det : (Rn+1)n+1 → R is continuous, there exists N such that

M |= ∀x1, . . . ,∀xn+1

( ∧
1≤i≤n+1

SN (ri, xi)→ (P (x1, . . . , xn+1)↔ P (r1, . . . , rn+1)
)

The same formula is thus thus true in M , whence the result. �

We conclude that σ above is an isometry of (Sn, δ) that respects P . Call such
an isometry a positive isometry, and the set of such isometries Isom+(Sn, δ).

The map σ 7→ σ is consequently an isomorphism of groups GX → Isom+(Sn, δ).

Lemma 1.4.9 The map g 7→ gdSn is a group isomorphism SOn(R)→ Isom+(Sn, δ).

Proof : This is clear, using both Appendix A and (∗). �

The outcome is that GX is isomorphic to SOn(R). And it can be proved that
moreover this isomorphism is continuous, so that GX and SOn(R) are isomorphic
as compact groups.

1.4.3 Unitary groups

Consider an n-dimensional vector space E over C, equipped with an Hermitian
scalar product < , >. Denote q the associated quadratic form q(x) =< x, x >, and
||.|| the associated norm ||x|| =

√
q(x).

Denote ER the restriction of scalars of E to R. If (e1, . . . en) is a basis for E,
then (e1, ie1, . . . , en, ien) is a basis for ER, hence dimR(ER) = 2n.
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Observe that q is also a quadratic form of a scalar product on ER (in the sense
of real vector spaces): indeed, if the C-basis (e1, . . . , en) is orthonormal, then via
this basis q on E is given by (z1, . . . , zn) 7→

∑
1≤i≤n |zi|2. Consequently, via the R-

basis (e1, ie1, . . . , en, ien), q on ER is given by the map (x1, . . . , x2n) 7→
∑

1≤i≤2n x
2
i ,

which is certainly the quadratic form of a scalar product on ER.

Henceforth, the Hermitian scalar product on E induces a scalar product on ER
and we can talk about O(ER) without ambiguity.

Since the quadratic forms for E and ER are the same map q on the common
underlying set, and since a C-linear map is obviously R-linear, every f ∈ U(E)
belongs to O(ER). And U(E) ⊆ O(ER) is characterized easily as follows:

Lemma 1.4.10 Let f ∈ O(ER). The following are equivalent:

1. f ∈ U(E)

2. f is C-linear

3. For every x ∈ E, f(ix) = i.f(x)

Proof : 1.⇔ 2. is obvious, again having in mind that q is the quadratic map
for both E and ER.

2.⇒ 3. is obvious.

3. ⇒ 2. by hypothesis, f is R-linear. Let z = a + ib, and x ∈ E. Then,
f(zx) = f(ax+ ibx) = f(ax) + f(ibx) = f(ax) + i f(bx) by 3.

= af(x) + ibf(x) by R-linearity

= z.f(x). �

Apply the previous results to the case E = Cn, equipped with the standard
Hermitian scalar product < (z1, . . . , zn), (w1, . . . , wn) >=

∑
i ziwi.

Then ER = R2n, and {x ∈ Cn | q(x) = 1} is clearly S2n−1 ⊆ R2n.

Appendix A says that f 7→ fdS2n−1 is an isomorphism of groups O2n(R) →
Isom(S2n−1, δ). The following result characterizes the image of Un(C) inside Isom(S2n−1, δ).
Denote IsomC(S2n−1, δ) this image.

Observe that scalar multiplication by i in Cn induces a permutation g on S2n−1 =
{x ∈ Cn | q(x) = 1}, since q(x) = 1 iff q(i.x) = |i|2q(x) = 1.

Lemma 1.4.11 Let f ∈ Isom(S2n−1, δ). Then, f ∈ IsomC(S2n−1, δ) if and only if
f(g(r)) = g(f(r)) for every r ∈ S2n−1.

Proof : If f = f̂dS2n−1 for some element f̂ of Un(C), then certainly f(g(r)) =
f(ir) = if(r) = g(f(r)) since f̂ is C-linear.

Conversely, if f is an isometry with this property, extend it by Appendix A to
an element f̂ of O2n(R). Let x 6= 0 ∈ Cn. Then
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f̂(ix) = f̂(i||x|| x

||x||
) = ||x||f̂(i

x

||x||
) by R-linearity of f̂

= ||x||.if̂(
x

||x||
) by hypothesis on f and since

x

||x||
∈ S2n−1

=
||x||
||x||

.if̂(x) = if̂(x) again by R-linearity of f̂ .

By Lemma 1.4.10, f̂ belongs to Un(C). �

Introduce the structure

M = (S2n−1;Si : i < ω, g)

where Si(x, y) has the same meaning as in 1.4.1, and g is as scalar multiplication
by i as above.

It is clear that M is definable without parameters in (R,+,−, ·, <, 0, 1), so that
we can take as a monster model M for T = Th(M) the corresponding definable
structure in a κ-saturated and κ-homogeneous elementary extension model R∗ � R.

The bounded type-definable equivalence relation E′ in T is the same as before:
E′(x, y) =

∧
n<ω Sn(x, y), therefore the bijection f : r 7→ eE′ between S2n−1 and

X = M/E′ is still valid.

As before, an automorphism σ of Aut(M) induces through f a permutation σ
of S2n−1. Proposition 1.4.6 tells us that such a permutation of S2n−1 is in fact an
isometry of (S2n−1, δ).

But we have the following

Lemma 1.4.12 Let r ∈M and a ∈M . Then, M |= E′(r, a) iff M |= E′(g(r), g(a)).

Proof : Since g is bicontinuous on S2n−1, for every n < ω there exists N such
that M |= ∀x

(
SN (r, x)→ Sn(g(r), g(x))

)
. Since the same holds in the elementary

extension M , we get the result. �

As a consequence of this Lemma, σ above is in fact an isometry that respects
g, i.e. an element of IsomC(S2n−1, δ) (or equivalently an element of Aut(M)).

Jointing all together, the conclusion is that σ 7→ σ̂ is an isomorphism between
GX and Un(C). Again, it can be shown that moreover it is continuous, i.e. an
isomorphism of compact groups.
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Chapter 2

Normal Hyperimaginaries

This chapter is an attempt to completely avoid the use of knowledge about compact
Hausdorff groups in the proof of elimination of bounded hyperimaginaries as given in
[4]. I didn’t succeed in it, but I reduced the proof of elimination of hyperimaginaries
to a model-theoretic condition called Peter-Weyl condition. Moreover, I fixed an
error in the proof of the original paper [4].

Another approach of these issues would be sort of an opposite one: take account
of the use of knowledge on compact groups to prove some result of elimination of
hyperimaginaries, but go further, trying to see the appearance of compact objets as
a particular case of a vaster framework, and take advantage of that wider context
to prove other results of elimination of hyperimaginaries. This is the spirit of
Chapter 4.

2.1 Background : hyperimaginaries, bounded hyper-
imaginaries

I will present here rapidly some facts, mainly without proofs. For detailed back-
ground on hyperimaginaries, please refer to [5]

2.1.1 Imaginaries and algebraic imaginaries

Fix a 0-definable equivalence relation in some complete theory T in language L,
defined by a formula without parameters E(x, y) with x, y finite tuples of variables
of the same length n. An imaginary is a class of E inside some arbitrary model M
of T , i.e. an object of the form aE , where a is a tuple from M .

Can such object be considered as an element of some first-order structure in
some language (which has a “reasonable” relation with the original language L) ?
the answer is yes, and this is the famous T eq construction of S.Shelah. Please refer to
Appendix C for an exposition of that construction and motivations for considering
definable equivalence relations if you are not used to it.
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Now if instead of fixing a definable equivalence relation, you fix an arbitrary
model M of T , and let vary the definable equivalence relations of T , to each such
relation E corresponds an interpretation SME of the sort SE in M , namely the
quotient set Mn/E, so that the disjoint union of the SME ’s as E vary is the (multi-
sorted) structure M eq in the language Leq, model of the complete theory T eq. And
every model of T eq is isomorphic to some M eq with M |= T (again c.f. Appendix
C).

Moreover, M |= T is κ-saturated and κ-homogeneous iff M
eq |= T eq is so, which

is a direct consequence of the fact that Leq keeps a “reasonable” relation with L.
Henceforth, the monster models of T eq are very well described in terms of those
of T , and inside such a model one can take advantage of the general machinery
(the fact that one works within multi-sorted logic does not change almost nothing
compared with the usual “one-sorted” logic). For example (and essentially) :

• if A ⊆ M
eq

has size less than κ, then the orbit of a small tuple a from M
eq

under Aut(M
eq
/A) (isomorphic to Aut(M/A), c.f. Appendix ) is exactly the

set of realizations of tp(a/A) in M
eq

(which is κ-homogeneity).

• Again if A ⊆M eq
has size < κ, an element a ∈M eq

satisfies a formula (in Leq)
with parameters from A with just one [respectively finitely many] solution in
M

eq
iff the orbit of a under Aut(M

eq
/A) = Aut(M/A) is a singleton [resp.

finite] (which is a direct consequence of κ-homogeneity and κ-saturation).

Again, let me insist that those properties are not specific to the eq-construction:
they are true in any κ-saturated and κ-homogeneous structure M in any (one-
sorted or multi-sorted) language. They allow, inside such a structure, to express
model-theoretic notions (making intervening formulas of the language) in terms of
the action of groups of the type Aut(M/A) on some M

α
(avoiding any reference to

formulas).

The properties the second item above characterizes are called definability [resp
algebraicity] over A. More precisely, we say in that case that a is definable [resp
algebraic] over A (in the case of the language of rings, think of an element of an
extension L/K of fields which is algebraic over K in the classical sense of theory
of fields to understand the terminology). And that a formula (with parameters) is
algebraic if the definable set it defines is finite.

Inside a structure which is not κ-saturated and κ-homogeneous (or if the struc-
ture is κ-saturated and κ-homogeneous, but the subset A has size ≥ κ), we can
also talk of an element a algebraic over a subset A. But in that case, we just have
to come back to the model-theoretic characterization in terms of formulas over A.
Let aclM (A) be the set of elements of M algebraic over A [resp. dclM (A) the ele-
ments definable over A]. acleq and dcleq are often used in the particular case of the
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language Leq.Using the definition of algebraicity in terms of algebraic formulas, it
is easy to see that for every A ⊆ M , aclM (aclM (A)) = aclM (A) [and likewise for
dclM ]. This is a crucial property of aclM and dclM , which along with the trivial
properties A ⊆ aclM (A), A ⊆ B implies aclM (A) ⊆ aclM (B) [and likewise for dclM ],
says that aclM [resp. dclM ] is a closure operator on M .

Moreover, still using the definition with algebraic formulas, we see immediately
that |aclM (A)| ≤ |A| + |T |. Consequently, if κ > |T |, M is a κ-saturated and κ-
homogeneous model, and A ⊆M has size < κ, then still aclM (A) has size < κ. As
we will see in the next subsection, this will not be the case for bddM .

Suppose M ≺ N (any language, arbitrary structures), a ∈ M and A ⊆ M .
Then clearly (using the only possible definition of algebraicity in the general case,
i.e. with algebraic formulas) a is algebraic over A in M iff a is algebraic over A in
N . Also, if b ∈ N is algebraic over A, then b ∈M , so that aclM (A) = aclN (A) (∗),
and we can drop the dependence on the model, writing simply acl and dcl in place
of aclM and dclM . Observe that acl(A) = aclM (A) is a sub-structure of M (not
elementary sub-structure in general however !).

Henceforth, one can always use, if he or she wishes, the characterization of alge-
braicity by automorphisms, taking N as a sufficiently saturated and homogeneous
elementary extension of M (specifically |A|+-saturated and -homogeneous), which
is always possible as well known.

Another consequence of (∗) is that in a complete theory T , since every two
models always elementary embed in a third one, and since the image of aclM (A) by
an isomorphism f : M → N is clearly aclN (f(A)), two sub-structures aclM (∅) and
aclN (∅) from two arbitrary models M,N of T are isomorphic. The outcome is that
acl(∅) is an invariant of T (and more generally acl(A) is an invariant of TA).

Observe that if A ⊆M , then

|acl(A)| ≤ |T |+ |A| (∗∗)

This is just because an algebraic formula over A has by definition only a finite
number of solutions in M , and there is at most |T |+ |A| formulas over A.

In particular, (∗∗) is true for acleq, but as we will see below, this is not true
anymore for bdd, although quite.

An algebraic imaginary is by definition an imaginary which is algebraic over ∅.
Observe that imaginaries and algebraic imaginaries can be defined as equivalence

classes inside arbitrary models of T , although it is certainly very usefull to consider
only those defined inside a monster model of T for all the reasons discussed above.

This will not be the case for hyperimaginaries : these objects have to be defined
as equivalence classes inside certain saturated and homogeneous models, and it
makes no sense to define them in arbitrary models.
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2.1.2 Hyperimaginaries and bounded hyperimaginaries

If, instead of considering just 0-definable equivalence relations, you also want to
consider 0-type definable equivalence relations (see Appendix C.3. for motivations
to do that), what happens ? you could add, for each such equivalence relation
E(x, y), a new sort SE of a multi-sorted language, as well as a symbol pE , aimed
to be interpreted as the projection M |x| →M |x|/E for an arbitrary model M |= T
(just as was done in the case of imaginaries).

The problem here is that you lose the “reasonable” relationship with the original
language L. For example, there is no way of expressing in the original language that
two elements aE , bE in the “sort” SME are distinct, since the negation of a type is
no longer a type.

Consequently, you have to forget to introduce a new language, and have to stick
with the original language L in that case. But recall that in a “big” saturated and
homogeneous model, most of the model-theoretic notions can be rephrased without
the use of the language, just in terms of the action of the automorphism group on
the tuples.

Henceforth, the only possibility we are left with is to hope, if we are lucky, that if
M is not an arbitrary model, but a κ-saturated and κ- homogeneous model M , then
the action of Aut(M) on the disjoint union of the SME ’s have some model-theoretic
significance of one kind or another. But certainly we have to restrict to those type-
definable equivalence relations of tuples less than κ if we have to expect anything in
that direction, so that we are forced to consider the disjoint union of the SME ’s, where

E(x, y) is a type-definable equivalence relation with |x| < κ. Call this union M
heq

.

An hyperimaginary is an element belonging to some M
heq

. Another way of saying
it : an hyperimaginary is an equivalence class aE of some type-definable equivalence
relation E(x, y) in T , where a is a tuple in some κ-saturated and κ-homogeneous
model and |x| < κ.

Observe the difference with M eq : first of all, we defined M eq for an abitrary

model M , while here we define M
heq

only for “monster” models M . And second,
the whole set of definable equivalence relations where taking into account in each
M eq, while only some of the type-definable equivalence relations are taking into

account to define M
heq

; a type-definable equivalence relation E(x, y) with |x| ≥ κ
will be taken into account, but in another monster model, specifically any λ-monster
model, with |x| < λ.

Clearly Aut(M) acts on M
heq

. Now given h, e = aE ∈M
heq

, the hope I refered
to above is that the orbit of e under Aut(M/h) would have some model-theoretic
meaning in the language L. It turns out that it is true: there exists a partial type
Φ(x) (in L) over some representative of h such that for every bE ∈ SME : bE = σ(e)
for some σ ∈ Aut(M/h) if and only if |= Φ(b). This is an easy exercise using
compactness, see This partial type in L is called for obvious reasons the type of e
over h (in M), tpM(e/h). Using the explicit expression of Φ, it is immediate to see

that if N � M is another monster model, then tpM(e/h) = tpN(e/h), which is not
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a surprise of course, since it is the case for ordinary complete types. The notation
for this type is tp(e/h), and we note, as usual, e ≡h e′ when tp(e/h) = tp(e′/h) (as
sets of L-formulas over the same representative of h).

Of course, in the case of imaginaries M
eq

, and since we have at our disposal the
language Leq and M

eq
is κ-saturated and κ-homogeneous as an Leq-structure, Φ(x)

is just tp(e/h), a complete type over h in the language Leq.

Why having considered only orbits under Aut(M/h) for h ∈ M
heq

, and not

under Aut(M/A), for A ⊆ M
heq

with |A| < κ, as would have been expected ?
This is because the latter can be reduced to the former: we can indeed assume,
since regular cardinals are ubiquitous in ZFC, that κ is regular. In that case,
enumerate A as a small tuple (ei : i < µ) (µ < κ). Each ei is of the form [ai]Ei ,
where ai is a tuple (aji : j ∈ µi) of length µi < κ. Let I =

⋃
i<µ{i} × µi, a set

of size < κ by regularity of κ. Let E((xi : i ∈ I), (yi : i ∈ I)) be the 0-type
definable equivalence relation

∧
i<µEi((xj : j ∈ {i} × µi), (yj : j ∈ {i} × µi)). Let

b = (bi : i ∈ I) be the “concatenation” of the tuples ai, namely b(i,j) = aji . Then

clearly, Aut(M/A) = Aut(M/bE).

In the next definitions, I will also only use a single hyperimaginary of M
heq

as
parameter set, but keep in mind that it also takes into account parameter sets of
hyperimaginaries of size less than κ as the discussion above explains.

Now recall that in a κ-monster model M , an element a is definable [resp alge-
braic] over A (|A| < κ), iff it has a one-element [resp a finite] orbit under Aut(M/A).
In particular, an imaginary e ∈M eq

is definable [resp algebraic] over another imag-
inary h iff it has a one-element [resp finite] orbit under Aut(M/h). And by κ-
saturation, if e is not algebraic over h, the orbit of e under Aut(M/h) has size
≥ κ.

However, if an hyperimaginary e ∈ M
heq

does not have a finite orbit under

Aut(M/h) (h ∈ Mheq
), it does not have necessarily an orbit ≥ κ: for example in

1.4.1, for any two elements r, s ∈ M1 there exists f ∈ Aut(M1) such that f(r) = s
(for example a rotation of S1) so that r ≡ s. Therefore, in any monster model
M �M1, the orbit of an E-class under Aut(M) is {rE : r ∈M1}, of size 2ℵ0 (recall
that every E-class in M has a representative in M1). This proves that if M is
κ-saturated with κ > 2ℵ0 , this orbit has size less than κ, but is not finite.

This phenomenon guides us to define the following :

LetM be κ-saturated κ-homogeneous and e = aE , h = bF ∈M
heq

(E(x, y), F (x′, y′)).
The hyperimaginary e is bounded over h if its orbit under Aut(M/h) has size < κ.

We have to check however that this definition is model-theoretic in nature, i.e.
that it does not depend on the choice of M . By this I mean that if N �M is another
λ-saturated and λ-homogeneous model with |x|, |x′| < λ, then aE (in N) still has
an orbit under Aut(N/h) of size less than λ. We will see indeed that the map

xME 7→ xNE is a one-one correspondence between the orbit of aME under Aut(M/bMF )

and the orbit of aNE under Aut(N/bNF ). Let Φ(x) = tpM(aME /b
M
F ) = tpN(aNE /b

N
F ).
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Enumerate a set of representatives (ci : i < µ) of the elements of the orbit of e

under Aut(M/h) (so by hypothesis, µ < κ). Suppose there exists dNE in the orbit of

aNE under Aut(N/bNF ), distinct of all the [cNi ]E ’s. Then, N |= Φ(d)∧
∧
i<µ ¬ϕi(ci, d)

for some ϕi(x, y) ∈ E(x, y), so that Φ(x) ∧
∧
i<µ ¬ϕi(ci, x) is a partial type over

(ci : i < µ). By κ-saturation of M , and since µ < κ, this type would be realized in
M , in contradiction with the fact that (ci : i < µ) is a complete set of representatives
of the elements of the orbit of e under Aut(M/h).

The same kind of result holds for the notion of being definable over h instead of

being bounded in the following sense: e ∈Mheq
is definable over h ∈Mheq

if e has
a one-element orbit under Aut(M/h), i.e. Aut(M/h) ⊆ Aut(M/e).

For a fixed M and h ∈ Mheq
, call bddM (h) the set of all e ∈ Mheq

which are

bounded over h, and dclheq
M

(h) the set of all e ∈Mheq
which are definable over h.

As we saw above, a fundamental property of acl and dcl (in particular acleq and
dcleq) is that, in any structure M , it defines a closure operator on P(M), essentially
meaning that acl(acl(A)) = acl(A). The problem with bddM is that it cannot be

composed twice inside M
heq

: the formal reason is that bddM (e) ⊆ M
heq

always
has size ≥ κ (for every α < κ, the unique class of the trivial equivalence relation
on tuples of length α given by E((xi : i < α), (yi : i < α)) iff x0 = x0, belongs to

bddM (e)), so that a tuple enumerating bddM (e) is not an element of M
heq

, and
cannot be applied bddM again. However, the essential feature of the property is
preserved:

e ∈ bddM (h) implies that bddM (e) ⊆ bddM (h) (and the same for dclheq
M

) (∗∗)

Two elements e, f of M
heq

are said to be interdefinable or equivalent, noted
e ∼ f , if e is definable over h and h is definable over e, i.e. Aut(M/e) = Aut(M/f).

An hyperimaginary e is said to be finitary if e ∼ aE with a finite tuple, and
countable if e ∼ aE with a countable tuple. Equivalently (see [4] Lemma 1.9.), an
hyperimaginary e is finitary if there exists a finite tuple a such that e ∈ dclheq(a).

If N �M is a λ-saturated and λ-homogeneous model with κ < λ and h = bF ∈
M

heq
, the discussion above says that e = aE ∈ M

heq
belongs to bddM (bF ) implies

that aNE ∈ N
heq

belongs to bddN (bNF ). Consequently, there is a map aME 7→ aNE from
bddM (h) to bddN (h), obviously injective. But some elements of bddN (h) does not

belong to the image (elements of N
heq

of the form dG ∈ bddN (h), with κ ≤ |d| < λ).

This contrasts with the case of imaginaries, where aME 7→ aNE is a one-one cor-
respondence between acleqM (bMF ) ⊆M eq and acleqN (bNF ) ⊆ N eq, for every M ≺ N and
b tuple from M (The reason is that in that case we have the language Leq at our
disposal, that M ≺ N implies aME 7→ aNE is an elementary embedding from M eq

into N eq in the language Leq, and that in any language, an elementary embedding
f sends acl(A) onto acl(f(A))).

But Proposition 1.1.2 immediately implies that every hyperimaginary e ∈Mheq
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is equivalent to a family (ei : i ∈ I) of countable hyperimaginaries (observe that
in each equivalence relation Ei only appear a countable set Xi of variables, and
that |= E(a, σ(a)) iff |=

∧
iEi(adXi , σ(adXi)) for every automorphism σ) , and (∗∗)

implies that if moreover e belongs to bddM (h), so does the ei’s.

The outcome is that in a sense, all the information contained in bddM (h) is
already present in bddM (h) ∩A, where A is the set of countable hyperimaginaries,

and A is contained in every M
heq

for M κ-saturated and κ-homogeneous model
such that κ > ℵ0.

Consequently, we will drop the dependence of M , and simply write bdd(h) [resp.

dclheq(h)] in place of bddM (h) [resp. dclheq
M

] for h ∈Mheq
.

As observed a few line above, bdd(aE) has always size ≥ κ in M
heq

although a is
a small tuple, in contrast with the case of acleq, where |A| < κ implies |acleq(A)| < κ
(c.f. 2.1.1). But using again countable hyperimaginaries allows to show that, in a
certain λ-saturated and λ-homogeneous elementary extension N � M , there exist

some e ∈ N
heq

such that every automorphism of N that fixes e fixes bddN (aNE )
(provided that λ satisfies some strong conditions, adapt proof of 15.18 in[5] to the
present context).

Thus, this feature of acl is in a sense also preserved in the context of bdd.

A last word: there is a more elegant presentation of hyperimaginaries, bdd and
dclheq, avoiding this apparent dependence on the model M , and taking into account
just one automorphism group of a certain structure, and not the various Aut(M).
Indeed, consider the monster model C |= T as a proper class in BNG instead of
sets of ZFC (c.f. Preliminaries). Define a hyperimaginary as an object of the form
aE , where a is a tuple in C indexed by a set, and E is a 0-type-definable equivalence
relation on T , and Cheq =

⋃
E Cα/E, as E runs through such equivalence relations

(a proper class). In this context, define “e bounded over h” if the orbit of e under
Aut(C/h) is a set. It is easy to see that this presentation is equivalent to the other
one, basically because every tuple a from C indexed by a set lies into an elementary
κ-saturated and κ-homogeneous (some κ) sub-structure M ≺ C which is indeed a
set. And vice versa. But C is not a canonical object associated to T , while the
class of models of T in ZFC, as a whole, is a such a canonical object. This is why
the important thing, in the end, is what happens at the level of models of T in
ZFC, and that the use of C could fool a beginner who is not fully aware of the
whole picture. However, although C is not a canonical object associated to T , it
can be proved that two such proper classes are isomorphic (just as two saturated
structures in ZFC are isomorphic), so that it is not so bad in the end, and certainly
a much more elegant framework to present all those notions, again at the condition
of being aware of the whole picture. The only cost of it is, in order to avoid any
problem of foundation, to know about the axiomatic of BNG, and to check that all
the constructions involved are valid in this context. But nothing is free.

In the sequel we fix a κ-saturated and κ-homogeneous model of a complete
theory T , with κ regular > 2|T |.
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For a hyperimaginary e, let Fix(e) = Aut(M/e) be the group of automorphisms
of the monster model M fixing e. Thus, a hyperimaginary d is definable over e
if f(d) = d for all f ∈ Fix(e). If A is a set of hyperimaginaries of size less that
κ, e ∼ A means that e ∼ d for a sequence d enumerating A as explained above.
In some cases we will be interested in automorphisms fixing A set-wise. We write
e

sw∼ A to mean that Fix(e) is the set of all automorphisms f such that f(A) = A
(set-wise). If (Ai : i ∈ I) is a sequence of sets, we write e

sw∼ (Ai : i ∈ I) meaning
that Fix(e) is the set of all automorphisms f such that f(Ai) = Ai for all i ∈ I.

As explained above, there is a single hyperimaginary e which is interdefinable
with bdd(∅), in the sense that dcl(e) = bdd(∅). For any index set I, the relation
≡bdd(∅) of having the same type over bdd(∅) restricted to I-tuples is the smallest
bounded (i.e., with a number of classes less than κ) 0-type-definable equivalence
relation on I-tuples. It is also called the Kim-Pillay equivalence relation and its
classes are called KP-strong types. The set of all KP-classes of α-tuples is M

α
/KP.

Lascar and Pillay proved in [4] that every bounded hyperimaginary is equivalent
to a sequence of finitary hyperimaginaries. Their proof rely on an application of
the Peter-Weyl theorem on the structure of compact Hausdorff groups according
to which each such group is an inverse limit of compact Lie groups. We seek a
purely model-theoretical proof of the same result, avoiding the use of the Peter-
Weyl theorem. There are particular cases where the existence of such a sequence
of finitary hyperimaginaries is easy to guarantee: normal hyperimaginaries and
KP-classes (see Proposition 2.2.9 and Lemma 2.3.4 below)

2.2 Normal hyperimaginaries

Recall from the discussion before Lemma 1.3.8 that Aut(M) acts on X = M
ω
/EKP

as well as on bdd(∅)

Aut(M) Aut(bdd(∅))

GX

ζ

ρ ∼

and that those actions have a common kernel Γ1 = kerρ = kerζ.

Consequently the group G = GX acts faithfully on bdd(∅).
Also recall from 1.3 that G is made a compact Hausdorff group, whose closed

subgroups are precisely of the form FixG(e) under this action on bdd(∅), namely
FixG(e) = {g ∈ G | g · e = e}, for some e ∈ bdd(∅). According to the Peter-
Weyl theorem, there is a family (Gi : i ∈ I) of normal closed subgroups Gi of
G such that

⋂
i∈I Gi = {1} and each G/Gi is a compact Lie group. A compact
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group is a Lie group if and only if it has the descending chain condition (DCC)
on closed subgroups. Each Gi is of the form FixG(ei) for some ei ∈ bdd(∅). Let
Fix(ei) = ρ−1(FixG(ei)) be the corresponding subgroup of Aut(M). Note that
FixG(e) is a normal subgroup of G if and only if Fix(e) is a normal subgroup of
Aut(M). Moreover

⋂
i∈I Fix(ei) = Aut(/bdd(∅)) and therefore (ei : i ∈ I) ∼

bdd(∅). The DCC of G/Gi translates as follows: there is no strictly descending
chain (Gi,j : j < ω) of closed subgroups Gi,j+1 ≤ Gi,j of G extending Gi. A
descending chain of subgroups of G of the form FixG(ej) is strict if and only if
the corresponding descending chain of subgroups Fix(ej) of Aut(M) is strict. This
explains the following definitions:

Definition 2.2.1 A hyperimaginary e is normal if Fix(e) is a normal subgroup
of Aut(M). A hyperimaginary e is DCC if there is no sequence (en : n < ω) of
hyperimaginaries en ∈ dcl(e) such that en ∈ dcl(en+1) and en+1 6∈ dcl(en) for each
n < ω.

The Peter-Weyl theorem provides a sequence (ei : i ∈ I) of normal DCC hyper-
imaginaries ei ∈ bdd(∅) such that (ei : i ∈ I) ∼ bdd(∅). We will see that normal
hyperimaginaries are bounded and that normal DCC hyperimaginaries are finitary.
We will show that in order to prove the Lascar-Pillay theorem it is in fact enough
to find a sequence (ei : i ∈ I) of finitary normal hyperimaginaries ei such that
(ei : i ∈ I) ∼ bdd(∅).

Definition 2.2.2 Call Peter-Weyl condition the statement that there is a sequence
(ei : i ∈ I) of finitary normal hyperimaginaries ei such that (ei : i ∈ I) ∼ bdd(∅).

I have not found a proof of the Peter-Weyl condition avoiding the use of the
Peter-Weyl theorem, but I can offer an easy-to-follow proof of the Lascar-Pillay
theorem assuming this condition.

Lemma 2.2.3 Let G a group acting on a set X, and a ∈ X. The following are
equivalent:

1. The isotropy subgroup Fix(a) is normal in G

2. For any a′ in the orbit G · a, Fix(a′) = Fix(a)

3. For any a′ in the orbit G · a, Fix(a′) ⊇ Fix(a)

4. Fix(a) = Fix(G · a)

5. Fix(a) = Fix(G · b) for some b ∈ X

Proof : Immediate, keeping in mind that for every g ∈ G and a ∈ X,
Fix(g · a) = g Fix(a) g−1, and that for every subgroup H ⊆ G,

⋂
g∈G gHg

−1 is a
normal subgroup in G (the largest normal subgroup in G contained in H). �
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Proposition 2.2.4 The following are equivalent for any hyperimaginary e:

1. e is normal.

2. For any e′ ≡ e, e′ ∈ dcl(e).

3. e ∼ (f(e) : f ∈ Aut(M))

4. e is equivalent to a sequence enumerating an orbit of a hyperimaginary.

Proof : A direct application of the previous Lemma. �

Remark 2.2.5 Normal hyperimaginaries are bounded.

Proof : Let e be normal. If (ei : i < κ) is a long enough sequence of different
conjugates of e, then we can find i < j < κ with ei ≡e ej . Since ei, ej are definable
over e, ei = ej , a contradiction. �

Proposition 2.2.6 A hyperimaginary e is normal if and only if for any index set
I, the equivalence relation ≡e on I-tuples is 0-type-definable.

Proof : Let (ej : j ∈ J) be a (bounded) orbit equivalent to e. Then ≡e =≡(ej :j∈J),
which is clearly invariant and type-definable, hence 0-type-definable.

If ≡e is 0-type definable, then also ≡e as a relation between hyperimaginaries
is 0-type-definable. Let f ∈ Fix(e) and g ∈ Aut(M) such that g(e) = e′. Then
e′ ≡e f(e′). If we apply g−1 we see that e ≡e g−1f(e′) and hence g−1f(e′) = e. If
we apply g we conclude that f(e′) = g(e) = e′. Therefore e′ ∈ dcl(e). �

Remark 2.2.7 If each ei is normal, then (ei : i ∈ I) is normal.

Lemma 2.2.8 Let e = aE be normal.

1. e ∼ a≡e.

2. For any tuple m enumerating a model, e ∼ m≡e.

Proof : 1. If e is normal, then ≡e is 0-type-definable and a≡e is a hyperimaginary.
Assume first f ∈ Fix(e). Then a ≡e f(a) and therefore f(a≡e) = a≡e . For the other
direction, assume now f(a≡e) = a≡e . Then f(a) ≡e a. Since aE = e, f(aE) = e,
that is, f(e) = e.

2. Assume m enumerates a model. Clearly, m≡e ∈ dcl(e). On the other hand, if
f fixes m≡e then m ≡e f(m) and there is some g ∈ Fix(e) such that g(m) = f(m).
It follows that fg−1 fixes point-wise a model and it is a strong automorphism, which
implies it fixes every element of bdd(∅). Hence f(e) = fg−1g(e) = fg−1(e) = e. �

Proposition 2.2.9 Every normal hyperimaginary is equivalent to a sequence of
finitary hyperimaginaries.
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Proof : Let e be normal. By the previous lemma, ≡e is type-definable over ∅ and
e ∼ a≡e for some tuple a. Let a = (ai : i < κ) and for each finite X ⊆ κ let EX be
defined for κ-tuples b, c by

EX(b, c)⇔ b � X ≡e c � X.

If eX = aEX , then each eX is finitary and e ∼ (eX : X ⊆ κ finite ). �

Lemma 2.2.10 Every normal DCC hyperimaginary is finitary.

Proof : Let e be normal DCC. Choose, like in the proof of Proposition 2.2.9, a
tuple a = (ai : i < κ) such that e ∼ a≡e and define EX and eX as in that proof.
Clearly, eX ∈ dcl(e) and if X ⊆ Y , then eX ∈ dcl(eY ). Since e is DCC, there is
some finite X such that for all finite Y ⊇ X, eY ∈ dcl(eX). It follows that e ∼ eX

and hence e is finitary. �

Proposition 2.2.11 1. For any 0-type-definable equivalence relation on κ-tuples
F , for any hyperimaginary e, if E =≡e, then the relational product E ◦ F =
F ◦ E = E ◦ F ◦ E is an equivalence relation.

2. Given normal e and d ∈ bdd(∅), there are a κ-tuple m and a 0-type-definable
equivalence relation F on κ-tuples such that, if E is the 0-type-definable equiv-
alence relation ≡e on κ-tuples, then mE ∼ e, mF ∼ d and mE◦F ∼ inf(e, d).

Proof : 1. We must check symmetry and transitivity of E ◦ F . For symmetry,
assume a ≡e bFc and choose an automorphism f such that f(e) = e and f(a) = b.
Let c′ be such that f(c′) = c. Then ac′ ≡ bc and therefore F (a, c′). Hence c ≡e c′Fa.
Using now symmetry, for transitivity it is enough to prove that if a ≡e bFc ≡e d,
then aE ◦ Fd. Choose f ∈ Fix(e) such that f(c) = d. Then a ≡e f(b)Fd.

2. Let d = aG for a tuple a, and extend a to a tuple m = (mi : i < κ)
enumerating a model. Let I ⊆ κ be such that a = (mi : i ∈ I) and define F by

F (x, y)↔ G(x � I, y � I).

It is a 0-type-definable equivalence relation andmF ∼ d. Let E =≡e. By Lemma 2.2.8,
mE ∼ e. It is clear that mE◦F ∈ dcl(mE) ∩ dcl(mF ). Now we assume e′ ∈
dcl(mE)∩dcl(mF ) and we check that e′ ∈ dcl(mE◦F ). For this purpose, let f be an
automorphism fixing mE◦F . Then E◦F (m, f(m)) and by symmetry F ◦E(m, f(m)).
Let b be such that F (m, b)∧E(b, f(m)). Since b ≡e f(m), there is an automorphism
g ∈ Fix(e) such that g(b) = f(m). Then F (g(m), g(b)), that is F (m, g−1f(m)). Let
h = g−1f . Since h fixes mF , h(e′) = e′. Since g ∈ Fix(e), m ≡e g(m) and hence g
fixes mE and g(e′) = e′. Therefore f(e′) = gh(e′) = g(e′) = e′. �

Remark 2.2.12 To prove the Peter-Weyl condition it is enough to prove that for
every finitary bounded hyperimaginary e there is a family (ei : i ∈ I) of finitary
normal hyperimaginaries ei such that e ∈ dcl(ei : i ∈ I).
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Proof : There is a normal e such that e ∼ bdd(∅). Since e is equivalent to a family
of finitary bounded hyperimaginaries and each finitary bounded hyperimaginary is
definable over a family of finitary normal hyperimaginary, we conclude that e is
definable over a family (ei : i ∈ I) of finitary normal hyperimaginaries. It follows
that e ∼ (ei : i ∈ I). �

Corollary 2.2.13 (Lascar-Pillay) Every bounded hyperimaginary is equivalent to
a sequence of finitary hyperimaginaries.

Proof : (Assuming the Peter-Weyl condition) Let d be a bounded hyperimaginary
and choose a family (ei : i ∈ I) of finitary normal hyperimaginaries such that
(ei : i ∈ I) ∼ bdd(∅). Let κ ≥ |I|, |d|, |T |, and for each i ∈ I let Ei be the equivalence
relation ≡ei on κ-tuples. Let E be the Kim-Pillay equivalence relation ≡bdd(∅) on
κ-tuples. We may assume that the family is closed under finite composition (that is,
for any i, j ∈ I there is some k ∈ I such that ek ∼ eiej), which implies E =

⋂
i∈I Ei.

Choose with Proposition 2.2.11 a 0-type-definable bounded equivalence relation F
on κ-tuples and some κ-tuple m such that d ∼ mF , ei ∼ mEi and inf(ei, d) ∼ mEi◦F .
Since ei is finitary, inf(ei, d) is finitary too. We claim that d ∼ (inf(ei, d) : i ∈ I).
Notice that F = E ◦ F . Hence d ∼ mE◦F and it is enough to check that mE◦F ∈
dcl(mEi◦F : i ∈ I). Let f be an automorphism fixing each mEi◦F . Then for each
i ∈ I there is some ai such that

Ei(m, ai) ∧ F (ai, f(m)).

By compactness there is some a such that E(m, a) ∧ F (a, f(m)). Hence f fixes
mE◦F . �

Remark 2.2.14 The Galois correspondence provides another proof of Corollary
2.2.13 in terms of groups. Let d be a bounded hyperimaginary and let (ei : i ∈ I)
be a family of finitary normal hyperimaginaries such that (ei : i ∈ I) ∼ bdd(∅).
As above, we may assume that the family is closed under finite composition. Let
Hi = Fix(ei), a closed normal subgroup of the Galois group of T . Under the Galois
correspondence, the conditions on the ei’s means that

⋂
iHi = {1}, and for each i, j

there is some k such that Hi ∩Hj = Hk. Let H = Fix(d), and consider Li = H.Hi,
a closed subgroup of the Galois group. Again, the Galois correspondence tells us
that Li = Fix(hi) for some bounded hyperimaginary hi, and certainly hi is finitary
since ei is. Now

⋂
i Li =

⋂
iH.Hi = H.

⋂
iHi = H (c.f. Lemma 2.2.15 below),

which means that d ∼ (hi : i ∈ I).

This has at least the virtue to fix an error in the proof of 2.2.13 in the original
paper [4]: at line 11 of the proof of 4.15, it is claimed that⋂

{Dn : n ∈ ω} ⊆ Li (∗)

If you note D′n = Aut(M/an) ⊆ Aut(M) (so that Dn = µ(D′n)), the hypothesis on
the an’s says that µ(

⋂
nD
′n) ⊆ Li. Henceforth (∗) is equivalent to

⋂
n µ(D′n) ⊆

µ(
⋂
nD
′
n). This in turn is equivalent (applying µ−1) to see that

⋂
n Γ1 · D′n ⊆
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Γ1 ·
⋂
nD
′
n in Aut(M). This inclusion is certainly true for closed subgroups in a

compact group according to Lemma 2.2.15 , but Aut(M) is not such a group, so
that there is no chance this inclusion holds.

Lemma 2.2.15 Let G be a compact group, H be a closed subgroup, and H = {Hi :
i ∈ I} be a family of closed subgroups such that K,L ∈ H implies that there is some
M ∈ H with M ⊆ K ∩ L.

Then ⋂
i

H.Hi = H.
⋂
i

Hi

Proof : The only non obvious inclusion is
⋂
iH.Hi ⊆ H.

⋂
iHi. So let g ∈

⋂
iH.Hi,

and i1, . . . , in ∈ I. By induction on the hypothesis, there is some Hj ∈ H such
that Hj ⊆ Hi1 ∩ · · · ∩ Hin . Then g ∈ H.Hj , i.e. g = aj .hj for some aj ∈ H
and hj ∈ Hj . Therefore g.h−1j = aj , and g.Hj ∩ H 6= ∅, which implies that
(g.Hi1 ∩ H) ∩ · · · ∩ (g.Hin ∩ H) 6= ∅. Since the family {g.Hi ∩ H : i ∈ I} of
closed subsets of G has the finite intersection property and G is compact, it has a
non-void intersection. Let h ∈

⋂
i g.Hi∩H =

(⋂
i g.Hi

)
∩H. Then h ∈ H and for ev-

ery i, h = g.hi for some hi ∈ Hi, or equivalently h−1.g ∈
⋂
iHi, i.e. g ∈ H.

⋂
iHi. �

In the particular case where H is normal closed, or the family H consists of
normal closed subgroups, then the products H.Hi also are normal closed subgroup.
In the general case of closed subgroups, the H.Hi’s are just closed subset of G.

2.3 Local types of hyperimaginaries

Definition 2.3.1 Let e, d be hyperimaginaries. The orbit of e over d is the set
O(e/d) of all hyperimaginaries e′ such that e ≡d e′.

Remark 2.3.2 Notice that for an automorphism f , the condition f(O(e/d)) =
O(e/d) is equivalent to the conjunction of e ≡d f(e) and e ≡d f−1(e).

The next lemma is due to Buechler, Pillay and Wagner (Lemma 2.18 in [15]).
It basically says that we can consider O(e/d) as a hyperimaginary if e ∈ bdd(d). In
Proposition 2.3.6 below I have generalized this fact to any closed set in a Kim-Pillay
space. I apply this to some closed sets Oϕ(e/d) obtaining thus some hyperimagi-
naries hp,ϕ,d. For d ∈ bdd(∅) and p(x) = tp(e/∅) one can understand tp(e/hp,ϕ,d)
as an approximation to the ϕ-type of e over d.

Remark 2.3.3 If e ∈ bdd(d), then O(e/d) is
sw∼-equivalent to some hyperimaginary

h, in the sense that the automorphisms of the monster model fixing h is the set of
automorphisms fixing set-wise O(e/d).

Lemma 2.3.4 If e = (ai : i < ω)KP and en = (ai : i ≤ n)KP, then e ∼ (en : n < ω).
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Proof : For every automorphism f , f ∈ Fix(e) iff (ai : i < ω) ≡bdd(∅) (f(ai) : i <
ω) iff (ai : i ≤ n) ≡bdd(∅) (f(ai) : i ≤ n) for all n < ω iff f(en) = en for all n < ω. �

Proposition 2.3.5 If d ∈ bdd(∅), then d
sw∼ (O(e/d) : e ∈ M

ω
/KP) and d

sw∼
(O(e/d) : e ∈Mn

/KP, n < ω)

Proof : If f ∈ Fix(d), then f permutes every orbit O(e/d).

Assume f permutes every O(e/d) for every countable KP-class e ∈ M
ω
/KP.

It is well known that each hyperimaginary is equivalent to a sequence of count-
able hyperimaginaries. Hence d ∼ (di : i ∈ I), where every di is a countable
hyperimaginary. Choose an ω-tuple ai and a bounded 0-type-definable equivalence
relation Ei such that di = aiEi . By hypothesis, f(aiKP) ∈ O(aiKP/d) and therefore
f(aiKP) = gi(aiKP) for some gi ∈ Fix(d). Note that di is a union of KP-classes of
ω-tuples. Since gi fixes di, f permutes these KP-classes and then f(di) = di. Since
f fixes each di, f(d) = d.

Assume now f permutes every O(e/d) for every finitary KP-class e ∈Mn
/KP.

We show that f permutes O(e/d) for every countable KP-class e ∈ Mω
/KP. Let

e = (ai : i < ω)KP and let en = (ai : i ≤ n)KP. Since en ≡d f(en) for all n < ω,
(en : n < ω) ≡d (f(en) : n < ω). Choose g ∈ Fix(d) such that g(en : n < ω) =
(f(en) : n < ω). Then f−1g(en) = en for all n < ω and by Lemma 2.3.4 f−1g(e) = e.
It follows that e ≡d f(e) and hence f permutes O(e/d). �

Proposition 2.3.6 Every closed set C in a Kim-Pillay space is
sw∼-equivalent to a

hyperimaginary hC , that is, the automorphisms of the monster model fixing set-wise
C are the automorphisms fixing hC .

Proof : Let E be a bounded 0-type-definable equivalence relation on α-tuples
and let X = M

α
/E be the corresponding Kim-Pillay space. If C ⊆ X is closed,

then for some partial type π(x, z), for some tuple b, π(M, b) = {a : aE ∈ C}. For
each formula θ(x, y) ∈ E(x, y) there is a maximal length n = nθ < ω of a sequence
of tuples (ai : i < n) such that aiE ∈ C and |= ¬θ(ai, aj) for all i < j < n. Let
(aθi : i < nθ) witness it, let Σθ(z, z

′) be the partial type

∃(xi : i < nθ)(
∧

i<j<nθ

¬θ(xi, xj) ∧
∧
i<nθ

π(xi, z) ∧
∧
i<nθ

π(xi, z
′))

and

F (z, z′) =
∧
θ∈E

Σθ(z, z
′)

Claim: For every automorphism f , f(C) = C if and only if |= F (b, f(b)).

Proof : From left to right it is straightforward. For the other direction,
assume |= F (b, f(b)) and choose (cθi : i < nθ, θ ∈ E) witnessing it. Let aE ∈ C.
Then |= π(a, b), and hence |= π(f(a), f(b)). By maximality of nθ, for every θ ∈ E
there is some i < nθ such that |= θ(f(a), cθi ). By compactness, E(f(a), x) ∪ π(x, b)
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is consistent and therefore f(aE) ∈ C. This shows that f(C) ⊆ C. By the same
reason, f−1(C) ⊆ C, that is, C ⊆ f(C). �

It follows from the claim that F defines a 0-type-definable equivalence relation
on realizations of p(x) = tp(b). By standard arguments it can be extended to a
0-type-definable equivalence relation defined for all tuples of the length of b. The
hyperimaginary bF satisfies the requirements. �

Definition 2.3.7 Let e, d be hyperimaginaries. If ϕ(x, y) ∈ L, |= ϕ(e, d) means
that |= ϕ(a, b) for some representatives a, b of e, d respectively. Notice that e ≡d e′
iff |= ϕ(e, d) ⇔|= ϕ(e′, d) for all ϕ(x, y) ∈ L. Let Oϕ(e/d) = {e′ : e′ ≡ e and |=
ϕ(e′, d)}. Let p(x) = tp(e) and assume e ∈ bdd(∅). Then e = aE for some tuple a
and some bounded 0-type-definable equivalence relation E. The set of all E-classes
is a Kim-Pillay space and Oϕ(e/d) defines a closed subset. By Lemma 2.3.6 there
is some hyperimaginary hp,ϕ,d such that

hp,ϕ,d
sw∼ Oϕ(e/d).

The equivalence relation E(e, e′) defined by |= ϕ(e, d) ⇔|= ϕ(e′, d) is not, in
general, type-definable. This is the reason why an adequate treatment of local
types (or ϕ-types) is missing in the model theory of hyperimaginaries. The following
results show that the types tp(e/htp(e),ϕ,d) are (for e bounded) a substitute for the ϕ-
type of e over d and we apply this in Corollary 2.3.10 to obtain a new decomposition
of a bounded hyperimaginary in terms of orbits.

Remark 2.3.8 Let d be a hyperimaginary, e ∈ bdd(∅), p(x) = tp(e) and ϕ(x, y) ∈
L.

1. If e′ ≡hp,ϕ,d e then |= ϕ(e, d)⇔|= ϕ(e′, d).

2. hp,ϕ,d ∈ dcl(d).

Proof : Clear. �

Proposition 2.3.9 Let d be a hyperimaginary, e ∈ bdd(∅) and p(x) = tp(e). For
any e′ |= p:

e′ ≡d e if and only if e′ ≡hp,ϕ,d e for every ϕ(x, y) ∈ L

Proof : By Remark 2.3.8. �

Corollary 2.3.10 If d ∈ bdd(∅), then d
sw∼ (O(e/htp(e),ϕ,d) : e ∈ M

n
/KP, n <

ω, ϕ ∈ L).

Proof : Let d ∈ bdd(∅). If f ∈ Fix(d), then f fixes htp(e),ϕ,d and permutes

O(e/htp(e),ϕ,d). On the other hand, if e ∈ Mn
/KP and f permutes all the orbits

(O(e/htp(e),ϕ,d), then e ≡htp(e),ϕ,d f(e) for all ϕ and by Proposition 2.3.9 e ≡d f(e).

Similarly, e ≡d f−1(e). It follows that f permutes O(e/d). By Proposition 2.3.5,
f(d) = d. �
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Chapter 3

Stable Forking in T eq

The main result of this chapter is that a simple theory T has the stable forking
property if and only if T eq has.

As usual we fix a monster model C of T (or a κ-saturated and κ-homogeneous
model M if you prefer, my schizophrenia is coming back. . . ), and consider only sets
– not proper classes – of parameters (in particular, models) inside C (resp. only
subsets of M of size less than κ).

3.1 Introduction : stable formulas, local types and
canonical bases

A formula ϕ(x, y) (x and y disjoint tuples of variables) has the order property in
some complete theory T if for some model M |= T , and some tuples (ai : i < ω),
(bi : i < ω) from M , holds

M |= ϕ(ai, bj) if and only if i < j

Or equivalently, if this property holds for some tuples from C. Such a tuple
(ai, bi : i < ω) is called an ω-ladder for ϕ(x, y). n-ladders for n < ω are defined the
same way.

For a formula ϕ(x, y), denote ϕ−1(y, x) the formula ϕ(x, y) with variables y in
the first place, and variables x in second place.

A formula is stable if it does not have the order property in T . T is stable if
every formula is stable in T .

Lemma 3.1.1 Let ϕ(x, y), ψ(x, y) ∈ L be formulas, and T be a complete theory.

1. Let z be a tuple of variables containing y, and disjoint from x. Then, ϕ(x, y)
is stable if and only if ϕ(x, z) is stable.
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2. ϕ(x, y) is stable in T if and only if for some n < ω, and some (any) model
M |= T , there is no n-ladder for ϕ in M .

3. ϕ(x, y) is stable if and only if ϕ−1(y, x) is stable.

4. ϕ(x, y) is stable if and only if ¬ϕ(x, y) is stable.

5. If ϕ(x, y) and ψ(x, y) are stable, then ϕ ∧ ψ and ϕ ∨ ψ are stable.

6. Any boolean combination χ(x; y1, . . . , yn) of stables formulas of the form ϕi(x, yi)
where yi are pairwise disjoint tuples of variables, is stable.

Proof : 1. is obvious by the very definition of the order property.

2. is by compactness.

3. is using 2., since if (a0b0, . . . , an−1bn−1) is an n-ladder for ϕ−1(y, x), then
(an−ibn−i : 0 ≤ i ≤ n− 1) is an n-ladder for ϕ(x, y).

4. is using 2. again, since if (a0b0, . . . , an−1bn−1) is an n-ladder for ¬ϕ(x, y), then
(an−ibn−i−1 : 0 ≤ i ≤ n− 2} is an (n− 1)-ladder for ϕ(x, y).

5. Suppose (ai, bi : i < ω) is an ω-ladder for ϕ(x, y)∧ψ(x, y). Then, by Ramsey’s
theorem, there exists an infinite I ⊆ ω such that (ai, bi : i ∈ I) is an ω-ladder for
ϕ(x, y) or ψ(x, y). The case of disjunction is likewise.

6. is immediate using 1., 4. and 5. �

As discussed in Appendix C.3., the characterization of forking in terms of de-
finability of types does not hold anymore in simple theories, but a substitute for it
is given by canonical bases:

a |̂
A

B if and only if Cb(a/B) ⊆ bdd(A) (∗)

However, at the local level of δ-types (local types) for δ(x, y) stable formula,
the characterization of forking in terms of definability of types holds in any theory,
in particular in a simple theory. As forking behave particularly well in a simple
theory, this interplay between global properties of forking (for example (∗)) and
local properties of forking (at the level of δ-types for δ stable) is crucial.

This is the bottom line of the results in the next section. To be more specific, I
will explain briefly the treatment of local types for stable formulas.

The definition of definability of types in Appendix C.3. has a “local” flavor.
Indeed, define a local ϕ-type over A (ϕ(x, y) ∈ L) to be a maximal consistent set of
formulas of the form ϕ(x, a) or ¬ϕ(x, a) (a tuple from A).

Define such a ϕ-type q to be definable over B if {a ∈ Am : ϕ(x, a) ∈ q} is
definable over B (∗).

If p(x) ∈ S(A) and ϕ(x, y) ∈ L, define pdϕ to be the ϕ-type over A

{ϕ(x, a) : ϕ(x, a) ∈ p} ∪ {¬ϕ(x, a) : ¬ϕ(x, a) ∈ p}
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Then you can see immediately that p = p(x) ∈ S(M) is definable over A ⊆ M
(in the sense of Appendix C.3.) if and only if pdϕ is definable over A for every
ϕ(x, y) ∈ L.

Appendix C.3. also says that if every formula ϕ(x, y) is stable in T , then every
type over a model is definable. But you could wonder if this remains true at the
local level of δ-types, for δ(x, y) stable, for an arbitrary theory T . Again, the as-
tonishing answer is yes (in fact, the properties of types in a stable theory presented
in C.3. can be deduced from the local properties of δ-types in any theory as below,
c.f.[12] Chapter 1 section 2):

Fact 1 : Let T be an arbitrary complete theory, and let δ(x, y) be a stable
formula in T . Then, any δ-type over a model M is definable (over M).

Moreover, a definition can be taken as a positive boolean combination of in-
stances of δ−1, i.e. formulas of the form δ(m, y) for some tuple m ∈ M . The
notation for this formula ψ(y) defining p is dpxδ(x, y).

Again, see [12], Lemma 2.2. for a proof, or [5] Lemma 2.10. for a more trans-
parent proof of this fundamental fact.

But beware: although the above definition of a ϕ-type is very natural, it does
not fit all the needs of a local treatment. Specifically, such a local type over an
algebraically closed set A in T eq can have various A-definable extensions over a
model M eq ⊇ A. This is certainly not desirable, since in a stable theory, every
complete type p ∈ S(A) has a unique A-definable extension to any model M eq ⊇ A
(c.f. C.3.).

In order to recover this essential feature in the context of local types, we have
to enlarge a little bit the ϕ-types, and take as definition the following:

Definition 3.1.2 Let A ⊆ C be a set of parameters in an arbitrary theory T , and
ϕ(x, y) ∈ L. A ϕ-type is a maximal consistent set of A-formulas of the form ψ(x, a),
where a is a tuple from A, and ψ(x, a) is equivalent to a boolean combination of
formulas of the form ϕ(x, b), b tuple from C.

Note Sϕ(A) for the set of ϕ-types over A.

First of all, observe that the apparent dependence of C in this definition (by the
use of tuples b from C) is a false one, since if A ⊆M ≺ C, taking parameters b from
M instead of C gives the same set of A-formulas.

Secondly, a ϕ-type according to this new definition clearly contains a ϕ-type
according to the first definition, but those two partial types need not to be equivalent
in general.

However, the two definitions give rise to equivalent partial types if A = M a
model.
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Also, still is true that p ∈ S(M) is definable over A ⊆ M iff pdϕ is definable
over A for every ϕ, where pdϕ = {ψ(x, a) : ψ(x, a) ∈ p and ψ(x, a) as in 3.1.2}, and
definability is defined exactly as in (∗).

But now, the essential feature remains true in the local treatment with the new
definition of local types:

Fact 2 : Let T be a theory, δ(x, y) be a stable formula in T , and A be an
algebraically closed set in T eq. Then, for any δ-type p over A, and every model
M eq ⊇ A, p has a unique extension to a δ-type over M eq that is definable over A.

Moreover, the same formula over A can serve for all models containing A to
define these extensions. Again, denote this formula by dpxδ(x, y).

Refer to [12], Corollary 2.9. for detailed proof.

For a p ∈ Sδ(A), A algebraically closed in T eq, call Cb(p) a canonical parameter
for his definition dpxδ(x, y) (c.f. Appendix C.2. if you don’t know about canonical
parameters).

For δ-types over arbitrary sets of parameters, define a notion v as follows:

Definition 3.1.3 Let T be an arbitrary theory and δ(x, y) be a stable formula in
T . Let A ⊆ B, p ∈ Sδ(A) and q ∈ Sδ(B).

Then p v q if

1. p ⊆ q

2. For some (every) extension q′ of q to Sδ(acleq(B)), q′ is definable over acleq(A).

The equivalence between “some” and “every” in the definition above is an im-
mediate consequence of a general and easily proved fact: namely, if p ∈ S(A),
two extensions q, q′ of p to complete types over acl(A) are conjugate over A (i.e.
σ(q) = q′ for some σ ∈ Aut(C/A)).

An easy consequence of Fact 2 is that p v q and q v r implies p v r (transitivity
of v).

Two types p ∈ Sδ(A) and q ∈ Sδ(B) with A,B algebraically closed sets in T eq

are said to be parallel (p // q) if for some (every) model M eq ⊇ A,B, there exists
r ∈ Sδ(M eq) such that p v r and q v r. Again using Fact 2, one sees immediately
that p // q iff p and q have equivalent definitions.

The key result which is used in the sequel is the characterization of this notion
v in terms of the notion of dividing formulas:
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Proposition 3.1.4 Let T be a theory, and δ(x, y) be a stable formula in T . Let
A ⊆ B, p ∈ Sδ(A), q ∈ Sδ(B). Let also a |= q. The following are equivalent:

1. p v q

2. Cb(a/acleq(B)) ∈ acleq(A).

3. For every ψ(x, b) ∈ q, and every A-indiscernable sequence (bi : i < ω) in
tp(b/A), {ψ(x, bi) : i < ω} is consistent. (i.e. ψ(x, b) does not divide over A)

Proof : 1 ⇔ 2 is immediate using the property of canonical parameters in
terms of minimal definably closed set of definition (c.f. C.2.).

1⇔ 3: see [12], Lemma 2.16. �

For technical reasons, the notion of dividing is not convenient for all purposes,
and we rather work with a looser notion called forking : if a formula divides over
some parameter set A, then it forks over A. In general the two notions are not
equivalent, but in a simple theory they turn out to be equivalent. In a simple
theory, this notion of forking (dividing) gives rise to a relation |̂ = |̂ div = |̂ fork
with very nice properties (which I will not explicit here, c.f. [5] Chapter 12 for
example).

In particular, if you assume B = M is a model of a simple theory in Definition
3.1.3, you get p v q iff Cb(p) ∈ acleq(A) iff q does not fork over A (i.e. no formula
in q forks over A).

And since the notion of non-forking for types is expressed formula by formula, if
a |̂

A
B (i.e. tp(a/B) does not fork over A), then certainly tpϕ(a/B) = tp(a/B)dϕ

does not fork over A either.

3.2 Weak stable forking, stable forking property in T

and T eq

In a stable theory, all formulas ϕ(x, y) are stable by definition, and therefore holds
the following property of types :

Definition 3.2.1 T is said to have stable forking property if whenever A ⊆ B
and p(x) ∈ S(B) forks over A, then there exists an instance of a stable formula
δ(x, b) ∈ p(x) which forks over A.

A famous conjecture says that it holds also for simple theories.

If we allow the stable formula δ(x, y) in the previous definition to have param-
eters in the base set of parameters A, we get the following :

Definition 3.2.2 T is said to have weak stable forking property if whenever A ⊆ B
and p(x) ∈ S(B) forks over A, then there exists an instance δ(x, b) of a stable
formula δ(x, y) ∈ L(A), such that δ(x, b) ∈ p(x) and which forks over A.
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An obvious obstruction to the equivalence between “stable forking” and “weak
stable forking” is that if δ(x, y; z) ∈ L and δ(x, y; a) is stable, then δ(x, yz) is not
stable in general.

But even if one tries to be a little bit finer, there is no reason why there should
exists a formula ν(z) ∈ tp(a) such that δ(x, yz) ∧ ν(z) be stable :

For example, consider the following structure M : 2 unary relations E,P , one
ternary relation R(x, y, z). The universe is the disjoint union ωω

∐
ω, ME = ωω,

MP = ω. If f, g ∈ ME and n ∈ MP , then R(f, g, n) iff f(n) = g(n) so that for
fixed z, R(x, y, z) defines and equivalence relation on ME . Take

δ(x, yz) = E(x) ∧ E(y) ∧ P (z) ∧R(x, y, z)

Observe that every two elements z, z′ ∈ MP have the same type over ∅ since the
identity map on ME and any permutation on PM which sends z to z′ clearly define
an automorphism of M . Henceforth, for every a ∈ PM and every ν(z) ∈ tp(a),
δ(x, yz) ∧ ν(z) ≡ δ(x, yz). Now fix a ∈ MP . Since δ(x, ya) is an equivalence
relation on ME , it is stable (no 3-ladder by transitivity). But δ(x, yz) is not stable,
as the following ω-ladder (ci , biai)i<ω testify it:

ci(j) =

{
1 if 0 ≤ j ≤ i
j + 1 if j > i

bi(j) =

{
0 if j 6= i

i+ 1 if j = i

ai = i

Question (weak stable forking conjecture):

Does every simple theory has weak stable forking property ?

Lemma 3.2.3 Let δ(x, y) be a stable formula, χ(x, z), θ(v, x) be arbitrary formu-
las, and n an integer.

1. If χ(x, a) ≡ δ(x, b), then for some ν(z) ∈ tp(a), χ(x, z) ∧ ν(z) is stable.

2. δ′(v, y) = ∃x
[(
θ(v, x) ∧ ∃=nx θ(v, x)

)
∧ δ(x, y)

]
is a stable formula.

Proof :
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1. Suppose for every ν(z) ∈ tp(z), χ(x, z) ∧ ν(z) is unstable. By compactness,
there is some (ciai : i < ω) such that ai ≡ a for all i, and |= χ(ci, aj) if and
only if i < j. Let bi be such that biai ≡ ba; then, χ(x, ai) is equivalent to
δ(x, bi) for all i, so that we have : i < j if and only if |= χ(ci, aj) if and only
if |= δ(ci, bj), contradicting δ(x, y) beeing stable.

2. Suppose δ′(v, y) unstable, i.e. there exists (dibi : i < ω) such that |= δ′(di, bj)
if and only if i < j. For each i, choose an enumeration (a1i , . . . , a

n
i ) of the

solution set of θ(di, x). By hypothesis, for each couple (i, j) with i < j, there
is some 1 ≤ k ≤ n such that |= δ(aki , bj), which gives an application from
the 2-elements subsets of ω on {1, . . . , n}. By Ramsey’s theorem, there is an
infinite subset I ⊆ ω such that all 2-elements subsets of I are sended to the
same element k0 by this application.

In particular, if i, j ∈ I we have : i < j if and only if |= δ(ak0i , bj), a contra-
diction with δ(x, y) stable.

�

It is enough to check the stable forking property for types over models :

Lemma 3.2.4 Suppose for every model M , every A ⊆M , and every p(x) ∈ S(M)
which forks over B, there exists an instance of a stable formula ϕ(x, b) ∈ p(x)such
that ϕ(x, b) forks over A.

Then, T has stable forking property.

Proof :

Let A ⊆ B ⊆M , and p(x) ∈ S(B) that forks over A. Let p′(x) ∈ S(M) be a non
forking extension of p to M . Then p′ forks over A, and by hypothesis there exists a
stable formula δ(x, y) and a tuple b ∈M such that δ(x, b) ∈ p′(x) and δ(x, b) forks
over A. Therefore, q(x) = p′dδ ∈ Sδ(M) forks over A, and by hypothesis q does not

fork over B (since p′ does not fork over B).

By transitivity of v (c.f. 3.1), qdB forks over A, so that there exists χ(x, c) ∈ qdB
that forks over A. But χ(x, c) is equivalent to a boolean combination of instances
of stable formulas, and by Lemma 3.1.1 such a boolean combination is itself an
instance of a stable formula. By Lemma 3.2.3, χ′(x, y) = χ(x, y) ∧ ν(y) is stable,
for some ν(y) ∈ tp(c). Now χ′(x, c) ≡ χ(x, c), and obviously qdB = pdδ, so that
χ′(x, c) ∈ p(x), and we are done. �

Proposition 3.2.5 If T has stable forking property, then T eq has stable forking for
complete types over real parameters.

Proof : Let cE 6 |̂ AB be a forking relation, with A ⊆ B ⊆ C, and E a definable
equivalence relation.

Choose a (|A|+ + ℵ0)-saturated model M containing B and c, and a represen-
tative c′ of cE such that

c′ |̂
cE

M (∗)
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Then since cE ∈ dcleq(c′), c′ 6 |̂
A
B, and by hypothesis there exists some stable

formula δ(x, y) such that for some tuple b in B, |= δ(c′, b), and δ(x, b) forks over A.

Consider p(x) = tpδ(c
′/M), and his δ−definition dpxδ(x, y). Being a boolean

combination of instances (in M) of δ−1, dpxδ(x, y) is an instance of a stable formula.

Now (∗) implies that p does not fork over cE , i.e. dpxδ(x, y) is definable over
acleq(cE), so that there exists dF ∈ acleq(cE) and an Leq−formula χ(w, y) such that
dpxδ(x, y) ≡ χ(dF , y).

By lemma 3.2.3 , χ(w, y)∧ ν(w) is a stable formula, for some ν(w) ∈ tp(dF ), so
that without lost of generality, χ(w, y) is stable.

Since |= δ(c′, b) and χ(dF , y) is a definition for p, |= χ(dF , b).

Let q(w) = tp(dF ).

Claim 1 : q(w) ∪ {χ(w, b)} divides over A.

Proof :

Suppose q(w) ∪ {χ(w, b)} does not divide over A, and let (̂bi : i ∈ ω) be an A-
indiscernable sequence in tp(b/A). By saturation hypothesis of M , the sequence can
be choosen in M . Then, q(w)∪{χ(w, b̂i) : i ∈ ω} is consistent, and by the saturation
hypothesis of M , is satisfied by d̂F ∈ dcleq(M) let’s say. Now we have d̂F ≡ dF , and
|=
∧
i χ(d̂F , b̂i). If (bi : i ∈ ω) is such that d̂F (̂bi : i ∈ ω) ≡ dF (bi : i ∈ ω), we have

|=
∧
i χ(dF , bi). Again by saturation of M , and since dF ∈ dcleq(M), the sequence

(bi : i < ω) can be choosen in M .

But since χ(dF , y) is a definition of p, and (bi : i ∈ ω) is a sequence in M , this
means |=

∧
i ϕ(c′, bi), or again by conjugation : |=

∧
i ϕ(ĉ, b̂i), where c′(bi :∈ ω) ≡

ĉ(̂bi : i ∈ ω).

Since (̂bi : i ∈ ω) is an arbitrary A-indiscernable sequence in tp(b/A), this means
ϕ(x, b) does not divide over A, and since T is simple, ϕ(x, b) does not fork over A:
a contradiction. �

Therefore, for some µ(w) ∈ q(w) and some integer k, χ′(w, b) = µ(w) ∧ χ(w, b)
k-divides over A. Obviously, χ′(w, y) still is stable.

Choose an algebraic formula θ0(cE , w) with n solutions, such that dF is one of
them, and let θ(v, w) = θ0(v, w) ∧ ∃=nw θ0(v, w). Let χ′′(v, y) = ∃w

(
θ(v, w) ∧

χ(w, y)
)
, so that in particular |= χ′′(cE , b). By lemma 3.2.3, χ′′(v, y) is stable.

Claim 2 : χ′′(v, b) (n(k − 1) + 1)-divides over A.

Proof : Suppose not, and let l = n(k − 1) + 1 : there exists gE such that

|=
∧

0≤i≤l−1
χ′(gE , bi) (∗∗)
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Let Y be the set consisting of the n solutions of θ(gE , w). For each i < l, we
can choose by (∗∗) aiF ∈ Y such that |= χ(aiF , bi)

But the application i 7→ aiF from l to Y has a fiber of size at least k (if not,
l ≤ n(k − 1)), so there exist aF ∈ Y , and I ⊆ l, #I ≥ k, such that

|=
∧
i∈I

χ(aF , bi)

a contradiction with the hypothesis. �

This completes the proof of the proposition. �

Proposition 3.2.6 If T eq has stable forking property for complete types with real
parameters, then T eq has stable forking property.

Proof :

By Lemma 3.2.4, it is enough to check stable forking in T eq for types over
models.

So let c 6 |̂
A
M , with A ⊆ dcleqM = M eq and c ∈ Ceq. Let A′ ⊆ C be a set of

representatives of the elements of A such that

A′ |̂
A

cM (∗)

Then clearly A ⊆ dcleq(A′) (∗∗) and c 6 |̂
A′
M .

By hypothesis, there exists a stable δ(v; yz) and tuples m, a′ respectively from
M and A′ such that |= δ(c;ma′) and δ(v;ma′) forks over A′. Now let N be a model
containing MA′ such that

c |̂
MA′

N (∗ ∗ ∗)

Then δ(v,ma′) ∈ p(v) = tpδ(c/N), so that p(v) forks over A′, hence the canonical
base cδ of p does not belong to acleq(A′). By (∗∗), cδ /∈ acleq(A).

Note that (∗) implies c |̂
AM

A′ and so c |̂
M
A′ because clearly A |̂

M
cA′.

Hence, thanks to (∗ ∗ ∗), c |̂
M
N , and q(v) := tpδ(c/M) is parallel to p, so that

both have the same canonical base cδ, and q(v) forks over A since cδ /∈ acleq(A).

Let ψ(v, a) a formula in q responsable for forking over A. Then by Lemma 3.2.3,
an equivalent formula ψ′(v, a) is an instance of a stable formula and we are done.
�

Combining the two previous propositions gives the following :
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Theorem 3.2.7 For T simple, T has stable forking property if and only if T eq has.

The only thing of this theorem that remains to be proved in that T eq has stable
forking implies T has, but this is obvious : if B ⊆ C, a complete type p over B in L
extends to a unique complete type p̂ over B in Leq; now if p forks over A, so does p̂,
and applying the hypothesis we find an instance δ(x, b) of a stable formula δ(x, y)
in Leq, which belongs to p̂, and forks over A.

By a well known fact (see Appendix C) , and since x and y are real tuples of
variables, there exists an L-formula δ∗(x, y) such that Ceq |= δ(c, d) if and only if
C |= δ∗(c, d).

Therefore, δ∗(x, b) ∈ p, δ∗(x, y) is stable, and δ∗(x, b) forks over A, and we are
done.

The proof of this theorem might appear unnessesarily intricated, and I would
have liked to find a more direct one.

For example, the obvious thing that comes in mind when trying to prove 3.2.5
is, starting from δ(x, y) (same notation as in the proof), to consider the Leq-formula

φ(v, y) = ∃x
(
v = πE(x) ∧ δ(x, y)

)
Then, we do have |= φ(cE , b), as well as φ(v, b) forks over A, but the stability

of φ(v, y) fails for quite obvious reasons. For those who doubt of it, here is a
counterexample :

Example 3.2.8 The universe is ω × ω. The language has two binary relations
E,F , which interpret as equivalence relations : E has ω clases, which are presicely
the sections ω × {n}, n < ω. F also has ω classes F0, . . . , Fn, . . . , Fω, which are:
F0 = {(0, 0)}, F1 = {(1, 0), (1, 1)}, . . . , Fn = {(n, 0), . . . , (n, n)}, . . . , Fω = the rest
of it.

Being an equivalence relation, F (x, y) is a stable formula (it has no ladder of
height 3 by transitivity).

Nethertheless, the Leq-formula φ(v, y) = ∃x
(
v = πE(x) ∧ F (x, y)

)
is unstable,

as the sequences ([(0, i)]E : i < ω) and ((i, 0) : i < ω) testify it.

The same kind of problems arise with φ′(v, y) = ∀x
(
v = πE(x) → δ(x, y)

)
in

place of φ(v, y).
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Chapter 4

A Dream . . .

I had a dream: and if the “Galois correspondence” presented in Chapter 1 (which
was the tool allowing elimination of bounded hyperimaginaries in favor of finitary
ones, along with some structural result of compact groups) were just a local piece
of a vaster picture ?

Indeed, in ACF0, the general theory specializes as the classical Galois corre-
spondence between the closed subgroups of Aut(Q/Q) and the subfields of Q. But,
as A.Grothendieck observed in the 60’s, this is a fragment of a more general frame.

Let’s see why first of all.

4.1 Seeing the classical Galois correspondence as part
of a more general result

Let K ⊆ L be a Galois extension of fields. The classical Galois correspondence is
an isomorphism between the lattice of closed subgroups of Gal[L : K] (with the
profinite Krull topology), and the dual of the lattice of subfields of [L : K].

As well known, a preorder is made a (small) category, where the objects are the
elements of the preorder, and there is at most one arrow between two objects a and
b, iff a ≤ b. And a functor between two such categories is just a monotone map
between the preorders.

Interpreting the previous lattices as small categories, the Galois correspondence
just says that these two categories are isomorphic.

Let’s look at the precise form of this isomorphism. It sends an intermediate
field K ⊆ M ⊆ L to the (closed) subgroup Gal[L : M ] 6 Gal[L : K]. This very
definition of this subgroup needs the fact that M be a subfield of L : what if M
were a Galois extension of K, not included in L ? It is not clear at first sight how
would it be possible to define an object similar to Gal[L : M ] in this case.

The trick is the following : change your perspective, and consider the bijection
between the subgroups of a group G and the quotients of the G-set G (acting as
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usual on the left by left translation), or equivalently the equivalence relations on G
compatible with the structure of G-set of G.

This bijection is just H 6 G 7→ (g ∼ g′ iff g−1g′ ∈ H) in one way, and ∼ 7→ [1]∼
in the other.

Now call G = Gal[L : K], and look at the object H = Gal[L : M ] 6 G associated
with M , as a quotient of the G-set G (i.e. the set G/H of left cosets gH).

Observe that HomK(M,L) is a G-set, the action being (σ, f) 7→ σ ◦ f (σ ∈ G,
f ∈ HomK(M,L)). Moreover, there is an epimorphism of G-sets

G HomK(M,L)

given by restriction to M , that factors through the quotient G→ G/H

G HomK(M,L)

G/H

∼

by an isomorphism of G-sets : G/H −→ HomK(M,L).

But the object HomK(M,L) is now defined without any reference of M being
included in L, which is the key of the following generalisation :

Definition 4.1.1 Let K ⊆ L be a Galois extension of fields.

A (commutative with unit) K-algebra A is split by L if

1. A is algebraic over K

2. For every a ∈ A, the minimal polynomial of a over K splits in L, with simple
roots.

Of course, the minimal polynomial of an element of A need not be irreducible as
in the case of fields, but it is well defined because K[X] is a principal ideal domain.

In the sequel, I will state a few results without proof. Refer for example to [6]
for details (although it might be not the best reference for that first algebraic part),
and [2] for the categorical background.

Proposition 4.1.2 Let K ⊆ L be a Galois extension of fields.

If A is a K-algebra split by L, then the set HomK(A,L) is the inverse limit
of all HomK(B,L), B running through the finite dimensional sub-algebras of A.
Therefore, HomK(A,L) is naturally equipped with a profinite topology.
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In the previous discussion, it is easy to check that everything took place not only
in the category of G-sets, but in the category of G-profinite spaces (i.e. profinite
spaces with a continuous action of the profinite group G).

This is the natural category to consider also in the generalized frame :

Proposition 4.1.3 Let K ⊆ L be a Galois extension of fields and A a K-algebra
split by L.

The action of G = Gal[L : K] on HomK(A,L) given by (σ, f) 7→ σ ◦ f is
continuous, so that HomK(A,L) is a G-profinite space.

Notation 4.1.4 Let K ⊆ L a Galois extension of fields. Note SplitK(L) for the
category of K-algebras split by L (a full sub-category of the category of K-algebras),
and PGal[L:K] the category of profinite Gal[L : K]-sets.

The generalized theorem is then :

Theorem 4.1.5 Let K ⊆ L be a Galois extension of fields.

The functor F : A 7→ HomK(A,L) from SplitK(L) to PGal[L:K], is a contravari-
ant equivalence of categories (the arrow-part of this functor being the obvious one).

One easily sees that restricting this functor to the sub-category of SplitK(L)
given by the intermediate field extensions K ⊆ M ⊆ L, with the inclusion maps
(isomorphic to the small category “lattice of intermediate fields”), gives back (up
to isomorphism) the classical Galois correspondence, which in turn can be seen as
a “local piece” of the functor F .

4.2 Going on extending the algebraic context : Galois
descent morphisms and internal groupoids

Now, what was so special about a Galois extension of fields K ⊆ L ? could it would
be replaced by certain kinds of ring morphisms σ : R→ S ? This kind of morphisms
are called Galois descent. Without entering the technicalities of the definition, let
me say that the inclusion K ⊆ L of a Galois extension of fields is such a morphism,
along with other relevant classes of ring-morphisms.

4.2.1 Morphisms of Galois descent

The important thing to keep in mind for further generalization is that the definitions
of an “R-algebra split by S” and of a Galois descent morphism lie on an adjunction
S a C between the dual category Rop of commutative rings and the category P of
profinite spaces.

The object part of these functors are as follows :

63



S(A) is the space of ultrafilters of the Boolean algebra of idempotents of the
ring A.

C(X) is the ring of continuous functions : X → Z, where Z is given the discrete
topology.

With some work, it can be seen that S is right adjoint to C and induces, for
every ring R, an adjunction SR a CR from the dual of the category of rings below
R (i.e. the dual of the category of R-algebras), to the category P/S(R) of profinite
spaces above S(R).

Now the definitions are as follows (recall that if σ : R → S is a morphism of
rings and A is an R-algebra, S ⊗R A is an S-algebra, the “extension of scalars to
S”) :

Definition 4.2.1 Let σ : R → S be an arbitrary ring morphism. Let η be the unit
of the adjunction

(S-Alg)op P/S(S)
SS

CS

discribed above.

An R-algebra A is split by σ if ηS⊗RA : CSSS(S ⊗R A) −→ S ⊗R A is an iso-
morphism (for the sake of commodity arrows in Ringop are written as arrows in
Ring).

The definition of a morphism of Galois descent is in term of the functor S⊗R−
of extension of scalars, along with the adjunction SS a CS :

Definition 4.2.2 A morphism of rings σ : R→ S is of Galois descent if

1. The functor S ⊗R − reflects isomorphisms

2. For every pair
A B

v

u

such that

S ⊗R A S ⊗R B
1⊗R v

1⊗R u

is

a split equalizer, there exists an equalizer of the pair (u, v) that is is preserved
by the functor S ⊗R −

3. For every object (X,ϕ) of P/S(S), the R-algebra CS(X,ϕ) is split by σ

Observe that the first two items of the preceding definition can be easily formu-
lated for an arrow f : X → Y in any category C with pullback as follows :
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The functor “pullback along f” : f∗ : C/Y → C/X given by the following
pullback diagram

B A

X Y

has the properties :

1. f∗ reflects isomorphisms

2. Every parallel pair (u, v) of arrows of C/Y such that (f∗u, f∗v) has a split
coequalizer in C/X, has a coequalizer that is preserved by f∗

Indeed, the category Ring of commutative rings with unit has pushouts defined
by

A B

C B ⊗A C

so that the dual category Ringop has pullback, and if we specialize these condi-
tions to Ringop, we get the two first items of the previous definition. This remark
is made in order to prepare a further generalization (outside the algebraic context)
in the next section, which could have (as I have the feeling) a possible link to model
theory.

4.2.2 Internal groupoids, internal presheaves

Still there is a last bunch of definitions before stating the Galois theorem for com-
mutative rings.

Recall that the notion of a category can be seen as a generalization of that of a
monoid. Indeed, a monoid is nothing more than a (small) category with one object.

As a group is a monoid in which all elements are invertible, a groupoid is a
category with all arrows invertible, and a group is nothing but a (small) groupoid
with one object.

Also recall that among the various equivalent formal presentations of the notion
of a category, one is as follows (in first-order context — think of the first-order
definition of ZFC — ) :

A category consists of a 2-sorted universe (O,A), O being the “object sort”,
and A the “arrow sort”. The language consists of unary function symbols
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A O

d0

n

d1

d0 and d1 stand for the domain and codomain of an arrow f , and we write as
usual f : d0(f)→ d1(f).

n stands for the neutral arrow (identity arrow) of an object a, and we write as
usual n(a) as 1a.

The composable arrows A×O A is the subcollection of A×A consisting of
those pairs (f, g) such that d1(f) = d0(g).

And the language contains a binary function symbol m : A×O A→ A, standing
for composition (multiplication) of composable arrows.

As usual, we write g ◦ f for m(f, g).

It is then straightforward to express as first order sentences TCat in this language
the classical axioms for a category.

Observe that a small category is nothing but a model of TCat inside ZFC, i.e.
with A,O sets, and d0, d1, n,m functions.

More remarkably, the first order sentences of TCat can be entirely replaced by
diagrammatic schemes in the category Set, so that a small category can also be
seen as an “internal category” inside the category Set.

Here is how this “arrow-fashion” translation is done :

• A and O are objects of Set, d0, d1, n are arrows in Set.

• Observe that A×O A can be defined in the category Set (up to isomorphism,
as always with universal constructions in a category) as the pullback

A×O A A

A O

p1

p0

d1

d0

where A×O A = {(a, a′) | d1(a) = d0(a
′)}, and p0, p1 are the restrictions of

the projections to, respectively, the first and second coordinate. (this data is
well known to be a pullback of (d1, d0) in the category Set).

• If
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A×C B A

B C

D

ϕ

ψ

β

α

where (in any category) A×CB is a pullback of (ϕ,ψ), call the (unique) dashed

arrow

(
α
β

)
.

• Then, considering the objects and arrows in Set

C2 C1 C0

p0

m

p1

d0

n

d1

where C0 is the set O, C1 is A, C2 is A×O A, the following properties in Set
express the axioms that (O,A) is a category :

(C1) The square

C2 C1

C1 C0

p0

p1

d0

d1

is a pullback.

(C2) The triangles

C0 C1 C0 C1

C0 C0

n

d1

n

d0

are commutative.

(C3) The squares
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C2 C1

C1 C0

C2 C1

C1 C0

m

p0 d0

d0

m

p1 d1

d1

are commutative.

(C4) The triangles

C1 C2 C1 C2

C1 C1

(
n ◦ d0
1C1

)

m

(
1C1

n ◦ d1

)

m

are commutative.

(C5) Considering further the pullback

C3 C2

C2 C1

g0

g1

p0

p1

the diagram

C3 C2

C2 C1

(
p0 ◦ g0
m ◦ g1

)
(
m ◦ g0
p1 ◦ g1

)
m

m

is commutative.

(C1) is just the definition of A×O A.

(C2) says that 1A is an arrow from A to A.
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(C3) says that if α ∈ Hom(A,B) and β ∈ Hom(B,C), then β ◦ α ∈ Hom(A,C).

(C4) says that each 1A is neutral (left and right)

(C5) says that the composition law is associative (observe that C3 is the set “com-
posable triples”).

‘

Likewise, a small groupoid can be defined entirely in terms of commutative
diagrams in Set : just add an arrow τ : C1 → C1, intended to mean the function
that inverts arrows, along with a pair of diagrammatic conditions (C6) and (C7)
that I won’t write here not to be too long.

Observing that all we needed to know about Set to express conditions (C1), . . . , (C7)
was to have pullbacks, this allows to define more generally :

Definition 4.2.3 Let C be a category with pullbacks.

An internal groupoid in C consists of a data of the form :

C2 C1 C0

p0

m

p1

d0

n

d1

fulfilling conditions (C1) to (C7) above.

The object C0 is called the “objects of the internal groupoid”, and the object C1

the “arrows”.

Remark 4.2.4 In the category Top of topological spaces [resp. CH of compact
Hausdorff topological spaces, P of profinite spaces] , an internal groupoid with C0 =
{∗} is just a topological group [resp a compact group, a profinite group] (the reason
is that a map · → {∗} or {∗} → · is automatically continuous, so that you don’t
have to care about the continuity of d0, d1, n in this case).

But beware that an internal groupoid in Top [resp CH, P] is more than just a
family (Gi)i∈C0 of topological groups [resp compact groups, profinite groups] with a
family of homeomorphisms between them satisfying certain diagrammatic conditions
(namely, if f : i → j, where f ∈ C1, i, j ∈ C0, the homeomorphism Gi → Gj
g 7→ f ◦ g ◦ f−1). Because one you’ve said that (which is true a can be checked
easily), you’ve said nothing about the continuity of the maps d0, d1, n.

Remark 4.2.5 Let G be a group, and G the one-oject category associated to G
(denote ∗ this unique object)

If X is a G-set with external law (g, x) 7→ g·x, associate the following presheaf F over G
(i.e. the functor F : G→ Set) :
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• F(∗) = X

• F(g) = x 7→ g · x ∈ XX

The fact that X be a G-set ensures that F is a functor.

Conversely, associate to a presheaf F : G → Set the G-set X = F(∗) with the
law g · x = F(g)(x).

These constructions are the object-part of isomorphisms between the category of
G-sets with morphisms of G-sets, and the category SetG of presheaves over G with
natural transformations between functors.

Coming back to Set, one can go further and define diagrammatically the notion
of a functor from a small category to Set (in general, a functor from a small category
C to Set is also called a presheaf over C).

Again, this allows to define more generally the notion of an internal presheaf
over an internal category in any category C with pullbacks.

Finally, fixing an internal category d in a category C with pullbacks, we can also
define diagrammatically the notion of a natural transformation between two internal
presheaves over d (the so-called “internal natural transformations”), leading to the
category Cd of the internal presheaves over the internal category d.

This is not difficult (although sometimes tricky) to list the diagrams in C needed
to express all the notions above (begin to express all that in Set, and just copy mutus
mutandis to an abitrary category with pullbacks, just as we did with the notion
of an internal category at the beginning), but tiresome enough to avoid writing it
down here.

Remark 4.2.6 If G is not just a group, but a topological [resp compact, resp profi-
nite] group, associate with G the internal groupoid g in Top [resp CH, P] as in
Remark 4.2.4.

Then, it can be checked in the same spirit as Remark 4.2.5 that the category of
G-spaces [resp G-compact spaces, G-profinite spaces] with morphisms of G-spaces,
is isomorphic to the category Topg [resp CHg, Pg] of internal presheaves over
the internal groupoid g in the category Top [resp CH, P] with internal natural
transformations.

A key fact in the sequel is the following, that allows to construct very special
kinds of internal groupoids in any category with pullbacks. Recall that in a category,
a kernel pair (p1, p2) for an arrow σ is (if it exists) a pullback
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p2

p1

σ

σ

Lemma 4.2.7 Let C be a category with pullbacks, and σ : S → R be an arrow.
Then, the following data is an internal groupoid

(S ×R S)×S (S ×R S) S ×R S S

π2

m

π1

p1

∆

p2

τ

where

• (p1, p2) is a kernel pair of σ.

• ∆ is the “diagonal map”

(
1S
1S

) (
s 7→ (s, s) in the case C = Set

)
.

• τ is the “twisting map”

(
p2
p1

) (
(s, t) 7→ (t, s) in the case of Set

)
.

• If

(S ×R S)×S (S ×R S) S ×R S

S ×R S S

π2

π1

p2

p1

is a pullback, m =

(
p2 ◦ π2
p1 ◦ π1

)
.
(

((s, t), (s′, t′)) 7→ (s, t′) in the case Set
)

.

Remark 4.2.8 As recalled at the end of 2.1., the category Ringop has pullbacks,
and if σR → S is an arrow in Ring, the internal groupoid of the previous Lemma
is (writing arrows in Ring instead of Ringop for the sake of commodity) :

(S ⊗R S)⊗S (S ⊗R S) S ⊗R S S

π2

m

π1

s1
µ

s2

τ
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where s1(a) = a⊗ 1, s2(a) = 1⊗ a, µ(a⊗ b) = ab, τ(a⊗ b) = b⊗ a, m(a⊗ b) =
(a⊗ 1)⊗ (1⊗ b).

This is the internal co-groupoid of the cokernel pair of σ (in Ring).

4.2.3 Galois theorem for morphisms of Galois descent

Equipped with that machinery, it can be proved the following

Proposition 4.2.9 Let σ : R→ S a Galois descent morphism of rings.

Then, the functor S transforms the internal cogroupoid of the kernel pair of σ
(c.f. Remark 4.2.8) into an internal groupoid Gal[σ] in the category P of profinite
spaces.

Theorem 4.2.10 (Galois theorem) Let σ : R→ S be a Galois descent morphism
of rings and Gal[σ] the corresponding Galois groupoid in the category of profinite
spaces. There exists an equivalence of categories(

SplitR(σ)
)op ≈ PGal[σ]

between the dual of the category of R-algebras split by σ and the category of
internal presheaves on Gal[σ] in the category of profinite spaces.

Remark 4.2.11 In the particular case where σ is the inclusion map of a Galois
extension K ⊆ L of fields, S(L) = {∗} since the boolean algebra of the idempotents
is reduced to {0, 1}. Therefore, Gal[σ] is an internal groupoid in P with C0 = {∗},
i.e. a profinite group.

It can be proved that the profinite group associated to Gal[σ] is isomorphic to the
classical profinite group Gal[L : K], and Remark 4.2.6 provides an isomorphism be-
tween the category of Gal[L : K]-profinite spaces and the category PGal[σ] of internal
presheaves over Gal[σ].

Keeping in mind that in that particular case, SplitK(σ) is precisely the K-
algebras split by L as in 4.1.1, we recover the (generalised) Galois theorem for
fields 4.1.5.

4.3 Extending out of the algebraic context : categorical
Galois theorem and possible link with model theory

The reason of the long and tedious previous section is to make transparent and
meaningful the generalization out of the strict algebraic realm.

It turns out that, transcribing mutus mutandis the definitions of the previous
section in the case of general categories A and P instead of Ringop and P, the
main result still is true.
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Specifically, here is the context :

A,P are categories with pullbacks.

S a P is an adjunction:

A P
S

C

The fact that A has pullbacks allows to restrict S to an adjunction

A/A P/S(A)
SA

CA

for any object A of A.

Again the fact that A has pullbacks allows to exhibit, for every arrow σ : S → R
in A, an adjunction Σσ a σ∗:

A/S A/R
Σσ

σ∗

where σ∗ is the functor “pullback along σ” (c.f. discussion after Definition 4.2.2),
and Σσ is the obvious functor which maps (X, f) to (X,σ ◦ f).

For σ : S → R, the involved functors are displayed as follows :

A/S P/S(S)

A/R P/S(R)

CS

SS

CR

SR

Σσ σ∗ ΣS(σ) S(σ∗)

Now two definitions :

Definition 4.3.1 Let S a C be an adjunction

A P
S

C
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between categories A,P with pullback, and σ : S → R an arrow in A.

An object (A, a) of A/R is split by σ if the unit

ηSσ∗(A,a) : σ∗(A, a) −→ CSSSσ∗(A, a)

of the adjunction SS a CS is an isomorphism at the object σ∗(A, a).

Definition 4.3.2 Let S a C be an adjunction

A P
S

C

between categories A,P with pullback.

An arrow σ : S → R is of relative Galois descent (with respext to these data)
if

1. The functor σ∗ reflects isomorphisms.

2. Every parallel pair (u, v) of arrows of A/R such that (σ∗u, σ∗v) has a split
coequalizer in A/S, has a coequalizer that is preserved by σ∗.

3. The counit εS of the adjunction SS a CS is an isomorphism of functors.

4. For every object (X, f) ∈ P/S(S), the object (Σσ ◦ CS)(X, f) ∈ A/R is split
by σ.

Proposition 4.2.9 goes through in this context :

Proposition 4.3.3 Let σ : S → R be a Galois descent morphism, relative to an
adjunction

A P
S

C

between categories with pullback.

Then the internal groupoid of the kernel pair of σ (c.f. Lemma 4.2.7) is trans-
formed by the functor S into an internal groupoid Gal[σ] in P. This internal
groupoid is called the Galois groupoid of σ.

Finally, the categorical Galois theorem :
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Theorem 4.3.4 Let S a C be an adjunction

A P
S

C

between categories A,P with pullback, σ : S → R be a relative Galois descent
morphism in A and Gal[σ] the corresponding Galois groupoid in P. There exists
an equivalence of categories

SplitR(σ) ≈ PGal[σ]

between the category of objects of A/A split by σ, and the category of internal
presheaves on the internal groupoid Gal[σ] in P.

My plan of attack was the following :

(I) Beginning with T = ACF0, where

– GKP is isomorphic to Gal[Q/Q] as compact (profinite) groups.

– The lattice of definably closed subsets of bdd(∅) is isomorphic to the
lattice of subfields of Q.

– Through those isomorphisms, the anti-isomorphism discussed after 1.3.9 is
the classical Galois correspondence between closed subgroups of Gal[Q/Q]
and subfields of Q.

try and find

– A category A (defined in model-theorectic terms from the theory T , and
aiming to replace the category of Q-algebras split by Q).

– An adjunction

A P
S

C

where P is the category of profinite spaces.

– A morphism of Galois descent in A (relative to this adjunction) σ : S → R

with the following properties :

– S(S) = {∗} (so that the internal groupoid Gal[σ] is a profinite group, c.f.
Remark 4.2.4).

– The profinite group Gal[σ] is isomorphic to Gal[Q/Q].

– The lattice of closed subgroups of Gal[Q/Q] is (isomorphic to) a subcat-
egory of the subcategory SplitR(σ) of the objects of A/R split by σ.
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– The equivalence of categories given by 4.3.4, when restricted to SplitR(σ),
gives back the classical Galois correspondence.

(II) Inspired by what should be the category A in (II), try and find for a general
theory T

– A category B defined from the theory T .

– An adjunction

B CH
S

C

where CH is the category of compact spaces.

– A morphism of Galois descent in B (relative to these data) σ : S → R.

with the following properties :

– S(S) = {∗} (so that the internal groupoid Gal[σ] is a compact group, c.f.
Remark 4.2.4).

– The compact group Gal[σ] is isomorphic to GKP .

– The lattice of closed subgroups of GKP is (isomorphic to) a subcategory
of the category SplitR(σ) of the objects of B/R split by σ.

– The equivalence of categories given by 4.3.4, when restricted to SplitR(σ),
gives back the correspondence discussed after 1.3.9.

(III) Recover the proof of elimination of bounded hyperimaginaries using the equiv-
alence of categories in (II).

(IV) For some kind of simple theories, try and find some similar data (Gal[σ] might
well be an internal groupoid, not necessarily a group like in (I) and (II)), such
that the equivalence of categories allows to prove some kind of elimination of
hyperimaginaries.

So far I failed, but still I believe something is to be discovered in that direction.
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Chapter 5

Conclusión

No tiene sentido ninguno hacer una parte de conclusiones para una tesis de matemáticas,
pero me conformaré a los requisitos de la comisión.

En este trabajo se han obetenido los siguientes resultados:

1. Describir la distancia de un espacio métrico en puros terminos de teoŕıa de
modelos, por lo menos en una clase de teoŕıas.

2. Construir ejemplos expĺıcitos de relaciones de equivalencia tipo-definibles y
acotadas, en determinadas teoŕıas, tales que su grupo de permutationes ele-
mentales sea isomorfo a los grupos compactos On(R), SOn(R), y Un(C).

3. Definir nociones tales como hiperimaginarios normales y DCC y probar algu-
nas de sus propiedades.

4. Probar que en una teoŕıa simple T , la propiedad de la bifurcación estable es
equivalente en T y en T eq.
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Appendix A

Isometries of Sn

Rm is given the canonical Euclidian structure with the standard scalar product

〈(x1 . . . xm), (y1 . . . ym)〉 =
m∑
i=1

xiyi. The quadratic form corresponding to the scalar

product is q(x) = 〈x, x〉, and the norm derived from it is ‖x‖ =
√
q(x).

I will use repeatidely the polar identity q(x− y) = q(x) + q(y)− 2〈x, y〉 (which
is true of any symmetric bilinear form over any field).

The sphere Sn is as usual the subset of Rn+1 given by {x ∈ Rn+1 : ‖x‖ = 1}.
The aim of this appendix is to provide a proof that every isometry of the sphere

Sn with the intrinsic metric δ can be extended to an element of the orthogonal
group On+1(R).

Recall that if x, y ∈ Sn, δ(x, y) is the shortest arc length between x and y. Since
for every x, y ∈ Rn+1, 〈x, y〉 = ‖x‖.‖y‖.cos(x̂, y), specializing this to elements of Sn
immediately provides δ(x, y) = arccos(〈x, y〉).

There is another metric on Sn, namely the restriction to Sn of the metric d of
the norm ‖.‖ in Rn+1 : d(x, y) = ‖x− y‖ =

√
q(x− y).

Lemma A.0.5 Let f be a map Rm → Rm. The following are equivalent :

1. 〈f(x), f(y)〉 = 〈x, y〉 for all x, y ∈ Rm (i.e. f respects the scalar product)

2. f is linear and q(f(x)) = q(x) for all x ∈ Rm (i.e. f is linear and respects the
quadratic form)

3. f ∈ Om(R)

Proof : 1 ⇒ 2 Take an orthonormal basis (ei)i for Rm. By the hypoth-
esis, (f(ei))i is an orthonormal family, so is linearly independent, henceforth an
orthonormal basis.
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Decomposing f(
∑

i αiei) in the basis (f(ei))i we get f(
∑

i αiei) =
∑

i βif(ei).
But since (f(ei))i is orthonormal, the βi’s are given by βj = 〈f(

∑
i αiei), f(ej)〉 =

〈
∑

i αiei, ej〉 = αj . We conclude that for all αi ∈ R, f(
∑

i αiei) =
∑

i αif(ei), so f
is linear (to check linearity of a map between vectorial spaces, it is enough to check
linearity on linear combinations of a generating family).

2 ⇒ 3 We only have to check that f is a linear automorphism, since by
definition an element of Om(R) is a linear automorphism that respects the quadratic
form. Since Rm has finite dimension, it is enough to see that Ker(f) = 0. Let x
with f(x) = 0. Then, 0 = q(f(x)) = q(x), so that x = 0 since q is definite.

3 ⇒ 1 Since the base field R has characteristic 6= 2, the polar identity also

reads 〈x, y〉 =
1

2

(
q(x) + q(y)− q(x− y)

)
.

If f ∈ Om(R) and x, y ∈ Rm, we have 〈f(x), f(y)〉 =
1

2

(
q(f(x)) + q(f(y)) −

q(f(x)−f(y))
)

=
1

2

(
q(f(x))+q(f(y))−q(f(x−y))

)
=

1

2

(
q(x)+q(y)−q(x−y)

)
=

〈x, y〉. �

Lemma A.0.6 Let f be a permutation of the set Sn. Then, f is an isometry for d
iff f respects the scalar product.

Proof : If 〈f(x), f(y)〉 = 〈x, y〉 for all x, y ∈ Sn (i.e. f respects the scalar
product), then q(f(x)− f(y)) = q(f(x)) + q(f(y))− 2〈f(x), f(y)〉 = q(x) + q(y)−
2q(x, y) = q(x− y), and taking square roots implies that f is an isometry for d.

Conversely, suppose f is an isometry for d, i.e. q(f(x) − f(y)) = q(x − y),

for all x, y ∈ Sn. The polar identity gives 〈f(x), f(y)〉 =
1

2

(
q(f(x)) + q(f(y)) −

q(f(x) − f(y))
)

. Since x, y, f(x), f(y) belong to Sn, they all have norm one,

and applying the hypothesis, the right hand term of the last equality is equal to
1

2

(
q(x) + q(y)− q(x− y)

)
= 〈x, y〉. �

The isometries of Sn for d and δ are the same :

Corollary A.0.7 Let f be a map Sn → Sn. Then, f is an isometry for d iff f is
an isometry for δ.

Proof : Suppose f is an isometry for δ, and let x, y ∈ Sn. By hypothe-
sis, δ(f(x), f(y)) = δ(x, y), i.e. arccos(〈f(x), f(y)〉) = arccos(〈x, y〉). Therefore,
〈f(x), f(y)〉 = 〈x, y〉, and the previous Lemma tells us that f is an isometry for d.

Suppose f is an isometry for d, and let x, y ∈ Sn Again by the previous
Lemma, f preserves the scalar product, and δ(f(x), f(y)) = arccos(〈f(x), f(y)〉) =
arccos(〈x, y)〉 = δ(x, y). �

Proposition A.0.8 If f is an isometry of Sn for δ, then f extends to an element
of On+1(R).
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Proof : First of all, f is an isometry for d by Corollary A.0.7, so f respects
the scalar product by A.0.6

Now let f̂ : Rn+1 → Rn+1 be the map defined as follows :

f̂(0) = 0, and f̂(x) = ‖x‖f
( x

‖x‖

)
if x 6= 0.

Clearly, f̂ extends f .

Since f respects the scalar product, so does f̂ : if x, y ∈ Rn+1 are both non-

zero, 〈f̂(x), f̂(y)〉 = 〈 ‖x‖f
( x

‖x‖

)
, ‖y‖f

( y

‖y‖

)
〉 = ‖x‖‖y‖〈 f

( x

‖x‖

)
, f
( y

‖y‖

)
〉 =

‖x‖‖y‖〈 x
‖x‖

,
y

‖y‖
〉 = 〈x, y〉. And if x = 0, 〈f(x), f(y)〉 = 〈0, f(y)〉 = 0 = 〈0, y〉 =

〈x, y〉.
By A.0.5, f̂ is an element of On+1(R). �

83



84



Appendix B

The Lascar group

Among the automorphism groups of the models of a complete first order theory
T , if you were to choose one which is an invariant of T , certainly you would begin
to try some Aut(M), where M is a λ-saturated and λ-homogeneous model (λ big
enough).

But if N � M is a κ-saturated κ-homogeneous model with κ > λ, there is no
chance that Aut(N) be isomorphic to Aut(M) : if σ ∈ Aut(M), there exists (by
κ-homogeneity of N) some τ ∈ Aut(N) which extends σ, but such an extension
is not unique; so which one to choose in order to make this assignment a group
morphism ? this is far from being clear, and even if it were possible, there is no
reason why this should be one-to-one.

Nevertheless, two such extensions τ1 and τ2 clearly have the property that τ1τ
−1
2

fixes M pointwise, and therefore one is forced to consider cosets of automorphism
groups instead of the full automorphism group.

The new natural question is now : is there exist a quotient of Aut(M) which is
an invariant of T ?

According to what we’ve just observed, a good canditate would be to quotient
Aut(M) by the subgroup generated by the subgroups of the form Fix(M), with M ≺
M and M small (meaning, recall it, of sizs less than κ). Call this subgroup Autf(M)
(for “strong automoprhisms”). An element of that subgroup can be written as
σ1 . . . σn, with σi ∈ Fix(Mi).

First of all, if M ≺ M and σ ∈ Aut(M), then σ(M) ≺ M , and has the same
size as M . Henceforth, Autf(M) is normal in Aut(M) (since σ ∈ Fix(M) and
τ ∈ Aut(M) implies τστ−1 ∈ Fix(τM)), so that we can consider the quotient group
Aut(M)/Autf(M).

If N � M is a κ-saturated, κ-homogeneous model of T with κ > |M |, we want
to define a canonical morphism from Aut(M)/Autf(M) to Aut(N)/Autf(N).

85



As above, every σ ∈ Aut(M) extends to some τ ∈ Aut(N), and two such
extensions are in the same coset modulo Fix(M). Since by hypothesis |M | < κ,
they are also in the same coset modulo Autf(N), and we can define the map σ 7→
[τ ] = f(σ), where τ is any extension of σ to N , and [τ ] is the coset of τ modulo
Autf(N).

If σ extends to τ and σ′ extends to τ ′, then ττ ′ is an extension of σσ′, and since
[ττ ′] = [τ ][τ ′], this map is a group morphism Aut(M)→ Aut(N)/Autf(N).

If σ ∈ Autf(M), then clearly any extension τ belongs to Autf(N) (the reason
being that λ ≤ |M | < κ), so that the canonical morphism f factors through the pro-
jection map Aut(M)→ Aut(M)/Autf(M) by a morphism f : Aut(M)/Autf(M)→
Aut(N)/Autf(N), f([σ]) = f(σ).

It remains to show that f is an isomorphism. This will be a consequence of a
few easy lemmas :

Lemma B.0.9 Let M,N ≺M be small submodels, and σ, σ′ ∈ Aut(M).
If σ(M) ≡N σ′(M), then σ and σ′ have the same coset modulo Autf(M).

Proof : By tp(M/N) I mean tp(m/N), where m is a tuple enumerating M .
Because M,N are small, σ(m) ≡N σ′(m) implies there exists τ ∈ Aut(M/N) such
that τσ(m) = σ′(m) (by λ-homogeneity), i.e. σ′−1τσ = ρ fixes M pointwise.

Now σ′ = τσρ−1, and since τ ∈ Autf(M) and Autf(M) is normal in Aut(M),
τσ = στ ′ for some τ ′ ∈ Autf(M). Therefore, σ′ = στ ′ρ, and we are done. �

The group Autf(M), as a subgroup of Aut(M), acts on any set of the form M
α

(α ordinal).

Definition B.0.10 Two tuples a, b ∈Mα
are said to have the same Lascar strong

type if they are conjugated under the action of Autf(M), i.e. if there exists σ ∈
Autf(M) such that σ(a) = b.

If N � M is a κ-monster model (κ > |M |), there are a priori two notions of
“having the same Lascar strong type” for tuples from M : one for the action of
Autf(M), and the other for the action of Autf(N). The use of the term “type” in
“Lascar strong type” suggests that these two notions coincide since N �M , and it
is indeed the case, at least for small tuples from M :

Lemma B.0.11 Let a, b be small tuples from M . Then a and b have the same
Lascar strong type in M iff they have the same Lascar strong type in N .

Proof : Suppose a and b have the same Lascar strong type in N . Then by
definition, there exist ao = a, . . . , an = b and small submodels N1. . . . , Nn of N such
that

ai ≡Ni+1 ai+1 for every 0 ≤ i ≤ n− 1
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“Small” in N means of size less than κ, but we can always find Pi ≺ Ni of size less
than λ, and still we have

ai ≡Pi+1 ai+1 for every 0 ≤ i ≤ n− 1

Since the tuples and models involved have size less than λ, we can find by λ-
saturation of M a sequence a′0, . . . , P

′
n in M with the same type over ab as a0, . . . , Pn.

This sequence shows that a and b have the same Lascar strong type in M since by
λ-homogeneity of M , having the same type over a small set P is equivalent to be
in the same orbit under Aut(M/P ). �

Proposition B.0.12 The canonical morphism f : Aut(M)/Autf(M)→ Aut(N)/Autf(N)
is an isomorphism.

Proof : Surjectivity : fix two small submodelsM,N ≺M , and let τ ∈ Aut(M).
τ might send M outside M , but by λ-saturation of M , there is some M ′ ≺M such
that M ′ ≡N τ(M). Clearly M ′ ≡ M , so by λ-homogeneity of M , let σ ∈ Aut(M)
such that σ(M) = M ′. Now by κ-homogeneity of N and because |M | < κ, extend
σ to some τ ′ ∈ Aut(N). Then τ(M) ≡N τ(M), and by Lemma B.0.9 [τ ] = [τ ′].
But by construction, f(σ) = [τ ′], whence f([σ]) = f(σ) = [τ ′] = [τ ].

Injectivity : suppose τ ∈ Aut(M) extends to a strong automorphism τ ′ ∈
Autf(N), i.e. f([τ ]) = 1. Fix a small submodel M ≺ M . Then M and τ(M) have
the same Lascar strong type in N , whence also in M by B.0.11. Let g ∈ Autf(M)
such that g(M) = τ(M). Then g−1τ fixes M point-wise, so that g−1τ = h ∈
Autf(M). Therefore, τ = gf is a strong automorphism, which means that f is
injective. �

Once we know that f is an isomorphism, we get immediately that for any κ-
monster model N of T , Aut(N)/Autf(M) is isomorphic to Aut(M)/Autf(M) : this
is just because N elementarilly embeds into an elementary extension of M .

The conclusion is that the quotient group Aut(M)/Autf(M) does not depend
on the choice of the monster model M , so is an invariant of T . Call it GL(T) (L for
Lascar).

Morover, the size of this quotient group is controlled by |T | :

Proposition B.0.13 GL(T) has size at most 2|T |.

Proof : Let M,N be small submodels of M . Let m = (mi : i ∈ I) be a tuple
enumerating M . Denote by Sm(N) ⊆ SI(N) the (closed) subset of SI(N) defined
by the type tp(m/∅). Take p ∈ Sm(N), and realize it in M by λ-saturation: a |= p.
By λ-homogeneity and since by hypothesis m ≡ a, choose σ ∈ Aut(M) such that
σ(m) = a.Then, Lemma B.0.9 precisely says that [σ] does not depend on the choice
of the realization of p, so that there is a well defined map

Sm(N)→ GL(T )
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This map is obviously surjective, so that GL(T ) has size at most that of Sm(N).
But if you choose M,N to be submodels of size |T |, then |Sm(N)| ≤ 2|T |. �

The link with the group GKP defined in Chapter 1 is the following:

It can be showed that if an automorphism of M fixes a small submodel, then it
fixes every bounded hyperimaginary (in particular every EKP -class in M

ω
). There-

fore, Autf(M) ⊆ Γ1, and GKP is a quotient of GL(T ). See [10] or [4] for a way
of equipping GL(T ) with a compact (not necessarily Hausdorff) topology such that
the compact Hausdorff topology on GKP is the quotient topology of that of GL(T ).
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Appendix C

The eq construction

C.1 Some motivations for considering definable equiv-
alence relations

C.1.1 Smallest definably closed sets of definition

The definable relations in a structure M are the relations in some Mn of the form
ϕ(M) = {x ∈ Mn : M |= ϕ(x)}, for some formula ϕ(x1, . . . , xn) with parameters
from M .

The automorphism group Aut(M) acts on the definable relations in M , since
for every σ ∈ Aut(M), M |= ϕ(x, a) iff M |= ϕ(σ(x), σ(a)), i.e. σ transforms the
definable relation of ϕ(x, a) into the definable relation of ϕ(x, σ(a)).

As usual, call Fix(R) the isotropy group of a definable relation R under this
action, i.e. the set of σ ∈ Aut(M) that fixes R set-wise.

Recall that in a κ-saturated structure M , the definable relations have a nice
characterization in terms of automorphisms in the following sense :

Let A ⊆M with |A| < κ, and ϕ(x1, . . . , xn) be a formulas with parameters from
M . The following are equivalent :

1. There exists a formula ψ(x1, . . . , xn) with parameters in A such that

M |= ∀x1 . . . ∀xn ϕ(x1, . . . , xn)↔ ψ(x1, . . . , xn)

(i.e. the definable relation given by ϕ is definable over A).

2. ϕ(M) is set-wise invariant under Aut(M/A) (in other words, Aut(M/A) ⊆
Fix(ϕ(M)).

Recall also that in a κ-saturated structure M , the property of being definable
over A ⊆M of size < κ can be reformulated in terms of the action of the automor-
phism group :
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3. a ∈ M is definable over A (i.e. M |= χ(a), and |χ(M)| = 1, for some formula
χ(x) over A) if and only if

4. a has a one-element orbit under Aut(M/A) (in other words, Aut(M/A) ⊆
Fix(a)).

Using those properties of definability over A of relations and elements in a κ-
saturated structure, we get the following result :

Lemma C.1.1 Let M be a κ-saturated structure, B ⊆ M of size less than κ, and
R(x1, . . . , xn) a definable relation in M .

If Aut(M/B) = Fix(R), then dcl(B) is the smallest definably closed set of defi-
nition of R.

Proof : Since Aut(M/B) ⊆ Fix(R) and |B| < κ, the equivalence 1. ⇔ 2.
above implies that R is definable over B, hence over dcl(B).

Let A with dcl(A) = A such that R is definable over A, and σ ∈ Aut(M/A).
Then, σ ∈ Fix(R) = Aut(M/B), whence B ⊆ dcl(A) using the equivalence 3.⇔ 4..
Henceforth dcl(B) ⊆ dcl(dcl(A)) = dcl(A) = A, and dcl(B) is the smallest definably
closed set of definition for R. �

Not every definable relation in M has a smallest definably closed set of definition
in M , but if you are willing to handle equivalence classes of 0-definable equivalence
relations, the following holds :

Lemma C.1.2 Let M be a structure, and ϕ(x, a) be a formula with parameters
a from M . Then, there exist a 0-definable equivalence relation E(y, y′) such that
Aut(M/aE) = Fix(ϕ(M,a)).

Proof : First of all, observe that given a 0-definable equivalence relation
E(y1, . . . , ym; y′1, . . . , y

′
m), Aut(M) acts on the quotient set Mm/E. This is just

because for every y, y′ and every σ ∈ Aut(M), M |= E(y, y′) iff M |= E(σ(y), σ(y′)).
The action is thus σ · aE = [σ(a)]E , and talking of Aut(M/aE) = {σ ∈ Aut(M) |
σ(aE) = aE} makes sense.

Define E(y, y′) = ∀x
(
ϕ(x, y)↔ ϕ(x, y′)

)
. This is a formula without parameters,

and this is clearly an equivalence relation since E(b, b
′
) means f(b) = f(b

′
), where

f : Mm → P(Mn), b 7→ ϕ(M, b).

Now the following lines are clearly equivalent for σ ∈ Aut(M):

σ ∈ Fix(ϕ(M,a))

For every x ∈Mn, M |= ϕ(x, a) iff M |= ϕ(σ(x), a)

For every x ∈ Mn, M |= ϕ(x, a) iff M |= ϕ(σ−1(x), a) (if σ fixes R set-wise, so
does σ−1).

For every x ∈Mn, M |= ϕ(x, a) iff M |= ϕ(x, σ(a)) (applying σ to the previous
line).
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M |= ∀x
(
ϕ(x, a)↔ ϕ(x, σ(a))

M |= E(a, σ(a))

σ · aE = aE

σ ∈ Aut(M/aE). �

The class aE in the previous Lemma is called a canonical parameter for ϕ(x, a)
(or for the definable relation associated to it). More generally, every class bF such
that F is a 0-definable equivalence relation and Fix(ϕ(M)) = Aut(M/bF ) is called
a canonical parameter for ϕ(x, a).

Observe that M need not have any saturation feature in the previous Lemma.
But comparing with Lemma C.1.1, if M = M does have some saturation feature,
could we say that “dcl(aE) is the smallest definably closed set of definition for ϕ(M)”
? what would be the meaning of dcl(aE) ? The introduction of the language Leq in
the next section will be an answer to that.

But before, another motivation for considering definable equivalence relations.

C.1.2 Interpreting one structure in another

Here are two relevant examples showing how definable equivalence relations appear
naturally throughout mathematics:

1. Starting with a skew field D, a standard construction is that of the projective
plane P2(D) over D: the points are the vectorial lines of the D-vector space
D3, and the lines are the lines belonging to planes of D3. These sets of points
P and lines L, together with the incidence relation I between them defined
by I(p, l) iff p ∈ l (p in P , l in L), is well known to satisfy the famous axioms
(first order sentences in the 2-sorted language L with sorts P and L, and binary
relation I ⊆ P × L):

• “by two distinct points pass a unique line” (i.e. ∀xP∀yP
(
¬(xP =P y

P )→
∃ ! zLI(xP , zL) ∧ I(yP , zL)

)
).

• “ two distinct lines intersect at a point” (necessarily unique by previous
axiom)

• “each line pass through at least 3 points”

• “ there exist 3 non-colinear points”

• theorem of Desargues.

Now the sort the 2-sorted structure P2(D) in the language L can be seen as a
“quotient” inside the structure (D,+,−, ·, 0, 1) in the language R of rings:

• Consider the (definable without parameters in R) equivalence relation on
D3−{0} given by x ∼ y if x and y are colinear. The sort P is then clearly
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in bijection with
(
D3 − {0}

)
/ ∼, and D3 − {0} is a definable set of the

structure (D,+,−, ·, 0, 1).

• It is well known that the planes of D3 are in one-one correspondence with
the lines of the dual space of D3. Henceforth, introduce the (definable
without parameters in R) equivalence relation on D3 − {0}

E((a, b, c), (a′, b′, c′)) = ∃t∀x∀y∀z
(
ax+ by + cz = t(a′x+ b′y + c′z)

)
expressing (through the coordinates in the dual of the canonical basis of
D3) that two non-zero linear forms on D3 are co-linear.

Then, the set of planes in D3 is in one-one correspondence with the set of
classes

(
D3 − {0}

)
/F by [(a, b, c)]F 7→ {(x, y, z) ∈ D3 | ax+ by + cz = 0}

(the kernel of a non-zero linear form on D3).

Clearly, the sort L of P2(D) can be seen as this quotient set.

• The incidence relation I can be also seen as a definable relation in R
between(
D3−{0}

)
/ ∼ and

(
D3−{0}

)
/F : I([x, y, z]∼, [a, b, c]F ) iff ax+by+cz = 0

(which clearly does not depend on the choice of representatives for ∼- and
E-classes).

2. Conversely, it is well known that from a 2-sorted structure P in the language
L satisfying the 5 axioms above, one can construct a skew field D such that
P is isomorphic to P2(D). See for example [12], or [13].

If you enter the details of that construction, you can see that again the set D
is a set of classes of a definable (in L) equivalence relation on P, the operations
on it +,−, · being definable relations between those classes, and the constants
0, 1 being definable classes.

From those illuminating examples, we can define more generally the following:

Definition C.1.3 Let M be a structure in a language L, and M ′ a structure in a
language L′.

We say that M ′ is interpretable (with parameters) in M is there exist:

• An M - definable (in L) relation R ⊆Mn.

• An M -definable (in L) equivalence relation E(x, x′) on R.

• For each p-ary relation symbol S of L′, an L-formula ϕS(x1, . . . , xp) with pa-
rameters from M (each xi an n-tuple).

• For each p-ary function symbol F of L′, and L-formula ϕF (x1, . . . , xp, xp+1)
with parameters from M (each xi an n-tuple).

Such that:
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• The satisfaction of each ϕS inside R is compatible with the equivalence re-
lation E: If E(x1, x

′
1), . . . , E(xp, x

′
p), then M |= ϕS(x1, . . . , xp) iff M |=

ϕS(x′1, . . . , x
′
p). This allows to define a p-ary relation SR/E on the set of classes

R/E.

• For each function symbol F of L′, ϕF defines a map FR/E : (R/E)p → R/E:
If E(x1, x

′
1), . . . , E(xp, x

′
p), then there exists some xp+1 ∈ R such that M |=

ϕF (x1, . . . , xp, xp+1), and M |= ϕF (x′1, . . . , x
′
p, x
′
p+1) implies E(xp+1, x

′
p+1).

• The L′-structure (R/E, SR/E , . . . , FR/E , . . . ) is isomorphic to M ′.

If moreover, the equivalence relation E on R is not needed (just the definable
relation R, and the definable relations ϕS and ϕF on some powers of R), we say
that M ′ is definable (with parameters) in M . This is clearly a particular case of
interpretation, where E(x, x′) is the trivial (definable) equivalence relation x = x′.

In the next section, we will see that a structure M ′ in a language L′ is inter-
pretable with parameters in another structure M in a language L if and only if M ′

is definable with parameters in M eq in the language Leq. Consequently, the M eq

construction also has the virtue to unify the two notions of interpretability and
definability of one structure into another, and provides a much shorter definition of
interpretability than that of Definition C.1.3.

C.2 The language Leq and the complete theory T eq

Let T be a complete theory in the language L.

In order to link Lemma C.1.1 and Lemma C.1.2, we need to introduce a new lan-
guage Leq that allows classes under definable equivalence relations to be considered
as elements of some structure.

First observe that if M.N |= T , then the set of 0-definable equivalence relation
on some power of M = the set of 0-definable equivalence relations on some power
of N (being an equivalence relation is a first-order sentence, and T is complete).
Call this set E .

A first attempt would be to introduce, for each such 0-definable equivalence
relation E, a unary predicate SE intented to be interpreted in the new structure
M eq as the quotient set Mn/E, and to put M eq =

∐
E∈EM

n/E =
∐
E∈E S

Meq

E .

Note that the trivial equivalence relation on M given by x = y allows to see the
underlying set of the structure M (in one-one correspondence with M/=) as part
of M eq. Consequently, it is also reasonable to introduce new function symbols pE
intended to be interpreted as the canonical projection Mn = (M/=)n → Mn/E =
SM

eq

E .

The new language will therefore be Leq = L ∪ {SE , pE : E ∈ E}, and from a
model M |= T one constructs the structure M eq in the language Leq as was done
above.
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The only problem with that construction is that, since there are infinitely many
E ∈ E , some elementary extensions N � M eq contain elements out of every SNE
(
∧
E∈E ¬SE(x) is finitely consistent, so realize it in an elementary extension). This

is not really a problem in fact, but there is a simple way of avoiding these extra
elements: the use of a multi-sorted language instead of one-sorted. Specifically, the
set of sorts is {SE : E ∈ E}. The sort S= is for the equivalence relation x = y
on M referred to above, and will called the home sort, in one-one correspondence
with the underlying set of M . As always for many-sorted languages, there are for
each sort SE a countable set of variables {xSEn : n < ω}, as well as an equality
symbol =SE

. And of course we introduce the function symbols pE intended to be
interpreted as the projection map as above. Note that in a multi-sorted language,
each relation of function symbol must come labelled with the sorts on which it is
intended to be interpreted, so that pE should be written rather pS=,...,S=;SE

E , but we
will call it pE to avoid too much notation. Also recall that multi-sorted first order
logic basically works the same as standard one-sorted first order logic, in particular
the compactness theorem still is true.

Leq is the multi-sorted language with set of sorts {SE : E ∈ E}, function symbols
{pE = pS=,...,S=;SE

E : E ∈ E defined on n-tuples, and S= repeated n times above pE},
and all the symbols already appearing in L (more precisely, the equality symbol =
of L is replaced by the equality symbol == of the home sort S=, each n-relation
symbol R is replaced by RS=,...,S= , each function symbol F by FS=,...,S=;S=) (∗).

With no surprise, starting from a model M |= T , we construct an Leq-structure
M eq: the sort SE in M eq is Mn/E, and all the symbols of Leq are interpreted in M eq

as they are intended to. In particular, the home sort can be seen as an L-structure
isomorphic to M .

The intuition one has to grasp behind the technicalities is that “nothing essential
has been added when passing from M to M eq”. The precise meaning of this vague
assertion is that M eq (as an Leq-structure) is interpretable (without parameters) in
M , in the sense of Definition C.1.3.

A consequence of this is that Leq keeps a “good” relationship with the original
language L in the following sense:

Lemma C.2.1 Let M be an L-structure. Let ϕ(x
SE1
1 , . . . , x

SEn
n ) be a formula of

Leq. Then, there exists a formula ϕ∗(y1, . . . , yn) of L such that

M eq |= ϕ(a1E1
, . . . , anEn) if and only if M |= ϕ∗(a1, . . . , an)

.

Proof : This is in fact a general fact about one structure interpretable in
another: there exists such a dictionary between formulas in the new language and
formulas in the original one.

The proof is done with induction on the complexity of formulas.

For example in that particular case of Leq and L, if ϕ(xSE , xS=
1 , . . . , xS=

n ) is the
atomic formula xSE = pE(xS=

1 , . . . , xS=
n ), then we can clearly take E(y1, . . . , yn;x1, . . . , xn)
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as ϕ∗(y, x) = ϕ∗(y1, . . . , yn;x1, . . . , xn). The case of the other atomic formulas is
similar.

Assuming ψ∗ ∈ L is already constructed from ψ ∈ Leq, if ϕ(x
SE1
1 , . . . , x

SEn
n ) is

the formula ∀zSEψ(zSE , x
SE1
1 , . . . , x

SEn
n ), we can clearly take ∀uψ∗(u, y1, . . . , yn) as

ϕ∗(y1, . . . , yn). The other cases of the induction are similar. �

This simple but key result allows to very easily check the following facts:

• If M is κ-saturated and κ-homogeneous, so is M eq.

• If M,N |= T then M eq ≡ N eq.

• IfM ≺ N are models of T , then the map aME 7→ aNE is an elementary embedding
from M eq into N eq.

Now obviously each M eq with M |= T is a model of the following theory T eq in
Leq:

1. All sentences of T rewritten in S= as in (∗).

2. For each sort SE : ∀ySE∃xS=
1 . . . ∃xS=

n pE(xS=
1 , . . . xS=

n ) = ySE .

3. For each sort SE : ∀xS=1 , . . .∀xS=
n ∀y

S=
1 , . . .∀yS=

n

(
pE(xS=

1 , . . . , xS=
n ) =SE

pE(yS=
1 , . . . , yS=

n )↔
E(xS=

1 , . . . xS=
n ; yS=

1 , . . . yS=
n )
)

Conversely, it is immediate that any model P of T eq is isomorphic to an M eq,
for some M |= T (specifically, take M the home sort P=).

The conclusion is that T eq is a complete theory in Leq, whose models are very
well described in terms of models of T .

On the other hand, it is clear that every automorphism of M eq induces (restrict-
ing to the home sort) an automorphism of M . Conversely, one easily check that
every σ ∈ Aut(M) extends uniquely to σ̂ ∈ Aut(M eq): just take σ̂(aE) = [σ(a)]E
(well defined map since M |= E(x, y) iff M |= E(σ(x), σ(y)) ).

Therefore, the map σ 7→ σ̂ is an isomorphism of groups between Aut(M) and
Aut(M eq).

Call dcleq and acleq the definable and algebraic closure in the models of T eq.

In this context, and putting all together, the link between Lemma C.1.1 and
Lemma C.1.2 appears to be the following:

Proposition C.2.2 Let M be a structure in language L, ϕ(x, a) be a formula in L
with parameters from M , and e ∈M eq be a canonical parameter of ϕ as in C.1.2.

Then, dcleq(e) ⊆M eq is the smallest definably closed subset of definition for ϕ.
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Proof : Let M � M be an ℵ0-saturated and ℵ0-homogeneous extension.
As remarked above, M eq elementary embeds into M

eq
, so that we can assume

M eq ≺M eq
. Also, M

eq
is ℵ0-saturated and ℵ0-homogeneous. The construction of e

as an equivalence class aE in M shows that the class e still is a canonical parameter
for ϕ in M , i.e.

Fix(ϕ(M)) = Aut(M/e)

.

But as observed above, Aut(M/e) = Aut(M
eq
/e), and Lemma C.1.1 tells us

that dcleq(e) is the smallest definably closed subset of definition in M
eq

for ϕ.

Since e ∈ M eq and M eq ≺ M
eq

, dcleq(e) ⊆ M eq, so that dcleq(e) is also the
smallest definably closed set of definition for ϕ in M eq. �

Now the link of Leq with interpretability as defined in C.1.2:

Clearly if the equivalence relation E(x, x′) of Definition C.1.3 is defined with-
out parameters in L, the structure M ′ is definable with parameters (the eventual
parameters coming from R, ϕR or ϕS) in the sort SE of M eq. And vice versa, if a
structure M ′ is definable in M eq, it is interpretable in M . This is just an application
of the fundamental fact C.2.1.

But what happens if E comes with parameters ? the following Lemma says that
still M ′ is definable in M eq:

Lemma C.2.3 Let R be a definable set in M , and E(x, x′; a) be a formula with
parameters a from M defining an equivalence relation on R.

Then there exists a 0-definable equivalence relation F (xy, x′y′) such that R/E
is in one-one correspondence with a definable set in the sort SE.

Proof : Defining an equivalence relation on a set Z is equivalent to give a
family of disjoint subsets of Z whose union is Z.

In the case of a cartesian product X × Y , if you define an equivalence relation
Ey on each section X × {y}, and since those sections are pairwise disjoint, you
clearly define an equivalence relation on the whole X × Y by jointing together all
the classes. The resulting equivalence relation is expressed saying that (x, y) and
(x′, y′) are related iff y = y′ and Ey(x, x

′).

Let y be a tuple of variables of same length m as a, and let n be the length of
x.

We want to define an equivalence relation without parameters on each section
of Mn ×Mm.

A candidate for Mn × {a} is E(x, x′; a) itself. More generally, let χ(y) be the
formula (without parameters !) that says “E(x, x′; y) is an equivalence relation
in (x, x′)”. If M |= χ(b), put E(x, x′; b) as an equivalence relation on the section
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Mn × {b}. And if M |= ¬χ(b), put the trivial equivalence relation x = x′ on the
section Mn × {b}.

Obviously, the resulting equivalence relation F (xy, x′y′) onMn×Mm is definable
without parameters, and Mn/E is in one-one correspondence with Mn × {a}/F , a
definable (in Leq) subset in the sort SF .

If instead of starting from E defined on the whole Mn you start with E defined
on R, first extend it to E′ on Mn by saying that outside R the classes are single-
tons (again a definable equivalence relation over a), and then restrict the previous
one-one correspondence to R/E ⊆Mn/E′ to get a one-one correspondence between
R/E and a definable subset in the sort SF . �

Therefore, we have seen that:

Proposition C.2.4 A structure M ′ is interpretable with parameters in another
structure M if and only if M ′ is definable in M eq.

C.3 Some motivations for considering type-definable equiv-
alence relations

In C.1.1 we considered canonical parameters for definable relations. Let’s push a
step further, and consider complete types over A ⊆M (which are after all nothing
more than ultrafilters of definable sets over A).

For fixed σ ∈ Aut(M), the map ϕ(x, a) 7→ ϕ(x, σ(a)) induces a map Sn(A) →
Sn(σ(A)), p 7→ σ · p. If p ∈ Sn(M), σ · p ∈ Sn(M), and this obviously defines an
action of Aut(M) on the set Sn(M).

What does it mean that σ · p = p (i.e. σ ∈ Fix(p)) for this action ? simply that
for every formula ϕ(x, y) and every tuple a from M of the same length as y :

ϕ(x, a) ∈ p if and only if ϕ(x, σ(a)) ∈ p (∗)

For fixed ϕ(x, y), the set of tuples a from M such that ϕ(x, a) ∈ p is not
necessarily definable of course. But if it does, we have at our disposal a canonical
parameter epϕ for it, and Lemma C.1.1 says that (∗) is equivalent to σ(epϕ) = epϕ in
M eq.

And if it is the case for all ϕ(x, y) ∈ L, then clearly σ ∈ Fix(p) if and only if
σ(epϕ) = epϕ for every ϕ.

This motivates the following definition:

Definition C.3.1 A type p ∈ S(M) is said to be definable over some parameter
set B ⊆M if for every ϕ(x, y) ∈ L,

{a ∈Mm | ϕ(x, a) ∈ p} is definable over B
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If a type p ∈ S(M) is definable over M , call the set of canonical parameters
{epϕ : ϕ ∈ L} as described above a canonical base for p, noted Cb(p), so that

σ ∈ Fix(p) iff σ ∈ Aut(M eq/Cb(p))

a generalization of what happens for definable relations.

And one sees easily that dcleq(Cb(p)) ⊆M eq is the smallest definably closed set
of definition for p (∗∗).

Now suppose T is a theory in which every over a model M is definable in M .
Define in such a theory a relation a |̂

M
N , meaning that M ≺ N , and p = tp(a/N)

is definable over M (not just over N). The property (∗∗) above shows that (since
M eq ≺ N eq is a definably closed set)

a |̂
M

N if and only if Cb(p) ⊆M eq

It can be shown (c.f. [12] Remark 2.3.) the amazing fact that a complete theory
T has all types over models definable if and only if T is stable (i.e. no formula has
the order property in T , c.f. again [12] Chapter 1). Using C.2.1 and the definition
of a stable theory in terms of formulas with the order property, it is immediate that
T is stable if and only if T eq is stable.

Another remarkable fact of a stable theory (see [12] Corollary 2.9.) is that if
A ⊆ M eq is an algebraically closed set in T eq (i.e. acleq(A) = A), and p ∈ S(A),
then for every model N eq ⊇ A, p has a unique extension q ∈ S(N eq) that is definable
over A. Moreover, the same formulas over A can be chosen to define p in every
such model N eq. This is another motivation for considering definable equivalence
relations, since this property is not true in general for algebraically closed sets in
T : if A ⊆ M is such that acl(A) = A and p ∈ S(A), then p can have two distinct
extensions q, q′ ∈ S(M) that are definable over A.

If p ∈ S(A) with acleq(A) = A in a stable theory, we say that p is definable over
B ⊆ A if the formulas that define the unique extension to a model are all definable
over B.

This definition allows to define a |̂
A
B for every A ⊆ B and not just for el-

ementary extensions. The meaning is that some (every) extension of tp(a/B) to
acleq(A) is definable over acleq(A). If a |= p, write Cb(a/A) for Cb(tp(a/acleq(A)).

Again using (∗∗), we have immediately (since acleq(A) is a definably closed set)

a |̂
A

B if and only if Cb(a/B) ⊆ acleq(A) (∗ ∗ ∗)

The class of stable theories extends to that of simple theories. Like a stable
theory, a simple theory is one in which certain “wild” configurations are prohibited.
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In the case of stable theories, the order property is prohibited, while in the case
of simple theories the so called tree property (c.f. [5]) is prohibited. And since
the presence of the tree property implies that of the order property, stable implies
simple. In both cases, the absence of those configurations allows the theories to
have some sort of “tamed” behavior. Mainly, this tamed behavior is expressed by
the existence of a nice relation of “independence” |̂ .

For stables theories, this relation |̂ is the one defined above in terms of defin-
ability of types. It turns out that in stable theories, definability of types is related
to another notion called forking (c.f. [5]) in the following sense: a type p ∈ S(A)
is definable over B ⊆ A iff no formula in p forks over B (A,B algebraically closed
in T eq). The consequence is that the relation a |̂

A
B in a stable theory can be

characterized by tp(a/A does not fork over B.

Since stable theories are exactly those for which every type over a model is
definable, definability of types is not a meaningful notion for simple non-stable
theories. However, the notion of forking go on behaving very well in simple theories,
so that we define |̂ by means of forking in that context.

Since one has to forgot about definability of types in simple theories, and since
(∗ ∗ ∗) in stable theories was obtained precisely by means of definability of types, it
seems that no such characterization holds for a simple theory.

This is where 0-type definable equivalence relations pop up, and here is roughly
how it works:

In a simple theory, some particular complete types are ubiquitous: the so-called
amalgamation bases. In particular, every type over a model is an amalgamation
base. Associated to an amalgamation base p is the so called amalgamation class Pp
of p. For a given amalgamation base p, a technical construction (c.f.[5], chapter 17)
allows to exhibit a 0-type definable equivalence relation E and a tuple a such that
(M a monster model)

Fix(Pp) = Aut(M/aE)

The class aE is called a canonical base for p. We recognize the same pattern
over and over. In that case, this allows to show again that (in a simple theory, c.f.
[5] chapter 17)

a |̂
A

B if and only if Cb(a/B) ⊆ bdd(A)

This characterization of |̂ can be thought as a substitute for definability in
simple theories. (refer to 2.1 for the meaning of bdd, which is a generalization of
acleq).

The motivation for considering type-definable equivalence relations in a simple
theory are at least two-fold:

1. The need to consider more general kinds of amalgamation bases as just types
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over models. This is because, starting with a complete type p ∈ S(A), A
arbitrary, one needs to find B ⊇ A such that every extension of p to S(B)
does not fork over A, and models containing A does not have this property. In
a stable theory the solution is B = acleq(A), but in a simple theory a type an
algebraically closed set in T eq does not need to be an amalgamation base. Here
the solution is rather B = bdd(A), making appear type definable equivalence
relations.

2. Once one knows that a general amalgamation base in a simple theory has
to be taken as a type over an hyperimaginary (i.e. a class under a type
definable equivalence relation), the construction of its canonical base, in the
sense specified above, also makes appear type-definable equivalence relations.
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