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Introduction

The theory of Bergman spaces has been a central subject of study in complex analysis
during the past decades. The book [7] by S. Bergman contains the first systematic treat-
ment of the Hilbert space of square integrable analytic functions with respect to Lebesgue
area measure on a domain. His approach was based on a reproducing kernel that became
known as the Bergman kernel function. When attention was later directed to the spaces
Ap over the unit disk, it was natural to call them Bergman spaces. As counterparts of
Hardy spaces, they presented analogous problems. However, although many problems in
Hardy spaces were well understood by the 1970s, their counterparts for Bergman spaces
were generally viewed as intractable, and only some isolated progress was done. The 1980s
saw the emerging of operator theoretic studies related to Bergman spaces with important
contributions by several authors. Their achievements on Bergman spaces with standard
weights are presented in Zhu’s book [77]. The main breakthroughs came in the 1990s,
where in a flurry of important advances, problems previously considered intractable began
to be solved. First came Hedenmalm‘s construction of canonical divisors [26], then Seip’s
description [59] of sampling and interpolating sequences on Bergman spaces, and later on,
the study of Aleman, Richter and Sundberg [1] on the invariant subspaces of A2, among
others. This attracted other workers to the field and inspired a period of intense research
on Bergman spaces and related topics. Nowadays there are rich theories on Bergman spaces
that can be found on the textbooks [27] and [22].

Meanwhile, also in the nineties, some isolated problems on Bergman spaces with ex-
ponential type weights began to be studied. These spaces are large in the sense that they
contain all the Bergman spaces with standard weights, and their study presented new dif-
ficulties, as the techniques and ideas that led to success when working on the analogous
problems for standard Bergman spaces, failed to work on that context. It is the main goal of
this work to do a deep study of the function theoretic properties of such spaces, as well as of
some operators acting on them. It turns out that large Bergman spaces are close in spirit to
Fock spaces [79], and many times mixing classical techniques from both Bergman and Fock
spaces in an appropriate way, can led to some success when studying large Bergman spaces.

This dissertation is structured into five chapters.
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In Chapter 1, we give some basic properties of the large Bergman spaces Ap(ω), for
weights ω in a certain class W of rapidly decreasing weights, considered previously in [23]
and [51]. The concrete definition of the class is given, and it is seen that contains the
family of exponential type weights

ωσ(z) = exp

(
−A

(1− |z|2)σ

)
, σ > 0, A > 0, (0.1)

and also weights decreasing even faster such as some double exponential weights. We collect
some of the well known results proved in earlier works (pointwise estimates, completeness,
construction of suitable test functions, description of Carleson-type measures, etc.), but
we also include some new ones as the atomic decomposition for the Hilbert space A2(ω),
or the estimates for the solutions of the d-bar equation obtained in Theorem 1.4, a result
used later in Chapter 4 in order to characterize bounded and compact Hankel operators
with conjugate analytic symbols. The test functions given in Lemma C are useful in order
to study several problems on Ap(ω) even for p 6= 2 (see [9] for the study of sampling and
interpolating sequences, or [51] for the study of the boundedness of certain Cesaro type
integration operators acting between large weighted Bergman spaces), but the fact that
estimates for the norm of the reproducing kernels Kz are only available when p = 2 allows
us to consider other problems only in the Hilbert space case, as for example, the study of
Toeplitz operators in the next chapter. The topics of this chapter will serve as a basis for
our later chapters.

Chapter 2 is devoted to characterize the boundedness, compactness and membership
in Schatten classes of the Toeplitz operator Tµ acting on A2(ω) for weights in our classW .
If µ is a finite positive Borel measue on D, the Toeplitz operator Tµ is the integral type
operator given by

Tµf(z) =

∫
D
f(ξ)Kz(ξ)ω(ξ) dµ(ξ), f ∈ H(D),

where Kz denotes the reproducing kernel at the point z ∈ D. The operator Tµ acting
on standard weighted Bergman spaces has been extensively studied [75]. Luecking was
probably one of the first who considered Tµ with measures as symbols, and the study
of Toeplitz operators acting on large weighted Bergman spaces was initiated by Lin and
Rochberg [35], where they proved descriptions of the boundedness and compactness of the
Toeplitz operator in terms of the behavior of a certain averaging function of µ. Since
their class of weights is slightly different of our class, we will offer a proof for the both
descriptions in Theorem 2.1.

The main result of this chapter is Theorem 2.8 where a complete description, valid for all
0 < p <∞, of when the Toeplitz operator Tµ acting on A2(ω) belongs to the Schatten ideal
Sp. This extends the description obtained for standard Bergman spaces [78], and solves a
problem posed by Lin and Rochberg in [32], where only one implication was proved. Just
to mention here that the results of this chapter has been recently published in our paper [4].
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In Chapter 3 we study the area operator Aµ acting on large weighted Bergman spaces.
Given a positive Borel measure µ on the unit disk D, the area operator Aµ is the sublinear
operator defined by

Aµ(f)(ζ) =

∫
Γ(ζ)

|f(z)| dµ(z)

1− |z|2
, ζ ∈ T := ∂D,

where Γ(ζ) is a typical non-tangential approach region (Stolz region) with vertex ζ ∈ T.
The area operator is useful in harmonic analysis, and is closely related to, for ex-

ample, non-tangential maximal functions, Poisson integrals, Littlewood-Paley operators,
tent spaces, etc. The study of the area operator acting on the classical Hardy spaces
Hp was initiated by W. Cohn [14]. He proved that, for 0 < p < ∞, the area operator
Aµ : Hp → Lp(T) is bounded if and only if µ is a classical Carleson measure. This was
pursued later in [24], where a full description of the boundedness of Aµ : Hp → Lq(T) for
the case 0 < p < q < ∞ and 1 ≤ q < p < ∞ was obtained. In the setting of standard
Bergman spaces Apα, the study of the area operator was initiated in [69] by Z. Wu, who
obtained a characterization of the boundedness of Aµ : Apα → Lq(T) for 1 ≤ p, q < ∞. In
this chapter we are going to extend these results to our large Bergman spaces Ap(ω) for
weights ω in the class W and characterize those positive Borel measures µ for which the
area operator Aµ : Ap(ω)→ Lq(T), 1 ≤ p, q <∞ is bounded. Some of the key tools used in
the proofs are: the test functions given in Lemma C, the classical description of Carleson
measures for Hardy spaces, and the recent description [51] of Carleson type measures for
large weighted Bergman spaces.

In Chapter 4 we add an extra condition to our class of weights W , and consider the
class E that consists of those weights ω ∈ W satisfying∫

D
|Kz(ξ)|ω(ξ)1/2 dA(ξ) ≤ C ω(z)−1/2, z ∈ D. (0.2)

This condition will allow us to extend some of the previous results to the non-Hilbert space
setting. It has been recently proved in [16] that the exponential type weights ωσ given in
(0.1) with σ = 1 satisfy the previous condition and, therefore, they are in the class E . We
are able to show, following the proof given in [16] with non-trivial modifications, that all
the family of exponential type weights given in (0.1) are in the class E for all 0 < σ <∞.
The integral estimate (0.2) allows to study other properties and operators, such as the
Bergman projection which is given by

Pω(f)(z) =

∫
D
f(ξ)Kz(ξ)ω(ξ) dA(ξ), z ∈ D.

The boundedness of the Bergman projection Pω on L2(ω) is trivial from the general the-
ory of Hilbert spaces. In contrast with the case of standard Bergman spaces (where the
Bergman projection is bounded for 1 < p <∞), in the case of exponential type weights it
turns out that the the natural Bergman projection is not bounded on Lp(ω) unless p = 2
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(see [18] and [71]). At first glance, this may look as a surprise, but when one takes into
account the similarities with Fock spaces, this seems to be more natural. It turns out that,
similarly as in the setting of Fock spaces, when studying problems where the reproducing
kernels are involved, the most convenient setting are the spaces Ap(ωp/2). As a consequence
of condition (0.2), we get the right estimates for the norm of the reproducing kernels in
Ap(ωp/2) for 1 ≤ p ≤ ∞. Also, we prove in Theorem 4.4 that, for weights in the class E ,
the Bergman projection Pω : Lp(ωp/2) → Ap(ωp/2) is bounded for 1 ≤ p ≤ ∞. A conse-
quence of that result will be the identification of the dual space of Ap(ωp/2) with the space
Ap
′
(ωp

′/2) and A1(ω1/2) with A∞(ω1/2) under the natural integral pairing 〈·, ·〉ω, where p′

denotes the conjugate exponent of p. Afterwards, by using the duality and the estimates for
the p-norms of reproducing kernels, we extend in Theorem 4.12 the atomic decomposition
obtained in Chapter 1 to the non-Hilbert space setting: for weights ω ∈ E , every function
in the weighted Bergman space Ap(ωp/2), 1 ≤ p < ∞ can be decomposed into a series of
very nice functions (called atoms). These atoms are defined in terms of kernels functions
and in some sense act as a basis for the space Ap(ωp/2). The atomic decomposition for
Bergman space with standard weights was obtained by Coifman and Rochberg [15], and
has become a powerful tool in the study of the properties of weighted Bergman spaces
having found many applications.

The norm estimates for the reproducing kernels in Ap(ωp/2) for 1 ≤ p < ∞ permits
to extend the results on the boundedness and compactness of Toeplitz operators Tµ and
to consider the action of Tµ between different large weighted Bergman spaces, and to find
a general description of when Tµ : Ap(ωp/2) → Aq(ωq/2) is bounded or compact for all
values of 1 ≤ p, q < ∞. Furthermore, we also generalize the results obtained in [23]
on the boundedness and compactness of big Hankel operators Hg with conjugate ana-
lytic symbols to the non-Hilbert space setting, characterizing for all 1 < p, q < ∞, when
Hg : Ap(ωp/2) → Lq(ωq/2), is bounded or compact. As mentioned earlier, one of the key
tools used is the estimates for the d-bar equation obtained in the first chapter.

Finally, in Chapter 5, we discuss some problems we have not been able to solve, as well
other interesting problems to look on the future.
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Chapter 1

Large Bergman spaces

1.1 Basic properties

Let D be the unit disk in the complex plane, dA(z) = dxdy
π

be the normalized area measure
on D, and let H(D) denote the space of all analytic functions on D. A weight is a positive
function ω ∈ L1(D, dA). When ω(z) = ω(|z|) for all z ∈ D, we say that ω is radial.

For 0 < p < ∞, the weighted Bergman space Ap(ω) is the space of all functions
f ∈ H(D) such that

‖f‖Ap(ω) =

(∫
D
|f(z)|p ω(z) dA(z)

) 1
p

<∞.

Our main goal is to study the Bergman spaces Ap(ω) for a large class of weights, which
includes certain rapidly radial decreasing weights, that is, weights that are going to decrease
faster than any standard weight (1− |z|2)α, α > 0, such as the exponential type weights

ωσ(z) = exp

(
−A

(1− |z|2)σ

)
, σ > 0, A > 0. (1.1)

Definition 1.1. We say that a positive function τ belongs to the class L if it satisfies the
following two properties:
(A) there exists c1 > 0 such that τ(z) ≤ c1(1− |z|), for all z ∈ D.
(B) there exists c2 > 0 such that |τ(z)− τ(w)| ≤ c2|z − w|, for all z, w ∈ D.

For a ∈ D and δ > 0 we use too the notation D(δτ(a)) for the euclidian disc centered at a
and radius δτ(a) and

mτ :=
min(1, c1,

−1 c−1
2 )

4
,

where c1 and c2 are the constants appearing in the previous definition. From the above
definition it is easy to show (see [51, Lemma 2.1]) that if τ ∈ L and z ∈ D(δτ(a)), then

1

2
τ(a) ≤ τ(z) ≤ 2 τ(a), (1.2)
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for sufficiently small δ > 0, that is, for δ ∈ (0,mτ ). This fact will be used repeatedly
throughout this work.

Also, throughout this manuscript, the letter C will denote an absolute constant whose
value may change at different occurrences. We also use the notation a . b to indicate that
there is a constant C > 0 with a ≤ Cb, and the notation a � b means that a . b and b . a.

Definition 1.2. We say that a weight ω is in the class L∗ if it is of the form ω = e−2ϕ,
where ϕ ∈ C2(D) with ∆ϕ > 0, and (∆ϕ(z))−1/2 � τ(z), with τ(z) being a function in the
class L. Here ∆ denotes the classical Laplace operator.

The following result from [51, Lemma 2.2] will play an essential role in the proof of
the main theorems of this work and can be thought as some type of generalized sub-mean
value property for |f |p ω that gives the boundedness of the point evaluation functionals on
Ap(ω).

Lemma A. Let ω ∈ L∗, 0 < p <∞ and z ∈ D. If β ∈ R there exists M ≥ 1 such that

|f(z)|p ω(z)β ≤ M

δ2τ(z)2

∫
D(δτ(z))

|f(ξ)|p ω(ξ)β dA(ξ),

for all f ∈ H(D) and all δ > 0 sufficiently small.

It can be seen from the proof given in [51] that one only needs f to be holomorphic in
a neighbourhood of D(δτ(z)).

Another consequence of the above result is that the Bergman space Ap(ωβ) is a Banach
space when 1 ≤ p <∞ and a complete metric space when 0 < p < 1. In particular A2(ω)
is a Hilbert space with the inner product inherited from L2(D, ω dA). Another immediate
consequence is that, for any z ∈ D, the point evaluations `z : f 7−→ f(z) are bounded
linear functionals on Ap(ωβ). In particular, when p = 2, it follows from the Riesz repre-
sentation theorem that there are functions Kz ∈ A2(ω) with ‖`z‖ = ‖Kz‖A2(ω) such that

f(z) = 〈f,Kz〉ω :=

∫
D
f(ξ)Kz(ξ) ω(ξ)dA(ξ)

for all f ∈ A2(ω). The function Kz has the property that Kz(ξ) = Kξ(z), and is called
the reproducing kernel for the Bergman space A2(ω). It is straightforward to see from the
previous formula that the orthogonal (Bergman) projection from L2(D, ωdA) to A2(ω) is
given by

Pωf(z) =

∫
D
f(ξ)Kz(ξ)ω(ξ) dA(ξ).

We also need a similar estimate as in Lemma A, but for the gradient of |f |ω1/2.
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Lemma 1.1. Let ω ∈ L∗ and 0 < p <∞. For any δ0 > 0 sufficiently small there exists a
constant C(δ0) > 0 such that∣∣∣∇(|f |ω1/2)(z)

∣∣∣ ≤ C(δ0)

τ(z)1+ 2
p

(∫
D(δ0τ(z)/2)

|f(ξ)|p ω(ξ)p/2dA(ξ)

)1/p

,

for all f ∈ H(D).

Proof. We follow the method used in [49]. Without loss of generality we can assume
z = 0. Then, applying the Riesz’s decomposition (see for example [56]) of the subharmonic
function ϕ in D(0, δ0

2
τ(0)), we obtain

ϕ(ξ) = u(ξ) +

∫
D( r

2
)

G(ξ, η)∆ϕ(η)dA(η), (1.3)

where r = δ0τ(0), u is the least harmonic majorant of ϕ in D(0, r
2
) and G is the Green

function defined for every ξ, η ∈ D(0, r), ξ 6= η by

G(ξ, η) := log

∣∣∣∣r(ξ − η)

r2 − η̄ξ

∣∣∣∣2.
For ξ, η ∈ D(0, r

2
) we have∣∣∣∣∂G∂ξ (ξ, η)

∣∣∣∣ =
r2 − |η|2

|ξ − η||r2 − ηξ̄|

≤ r2

|ξ − η| ·
∣∣r2 − |η||ξ|

∣∣ ≤ 4

3|ξ − η|
.

Then, ∣∣∣∣∂ϕ(0)

∂ξ
− ∂u(0)

∂ξ

∣∣∣∣ ≤ ∫
D( r

2
)

∣∣∣∣∂G∂ξ (0, η)

∣∣∣∣∆ϕ(η)dA(η)

.
1

τ(0)2

∫
D( r

2
)

dA(η)

|η|
=

δ0

τ(0)
.

(1.4)

We pick a function h ∈ H(D) such that Re(h) = u. Also,∣∣∣∣∇(|f |e−ϕ)(ξ)

∣∣∣∣ =

∣∣∣∣12 f ′(ξ)f(ξ)

|f(ξ)|
− ∂ϕ

∂ξ
(ξ)|f(ξ)|

∣∣∣∣e−ϕ(ξ)

=
1

2

∣∣∣∣f ′(ξ)− 2
|f(ξ)|2

f(ξ)

∂ϕ

∂ξ
(ξ)

∣∣∣∣e−ϕ(ξ).
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Therefore, since h′(0) = 2∂u
∂ξ

(0), we get∣∣∣∣∇(|f |e−ϕ)(0)

∣∣∣∣ =
1

2

∣∣∣∣f ′(0)− 2f(0)
∂ϕ

∂ξ
(0)

∣∣∣∣e−ϕ(0)

≤ 1

2

∣∣∣∣f ′(0)− 2f(0)
∂u

∂ξ
(0)

∣∣∣∣e−ϕ(0) +

∣∣∣∣∂u∂ξ (0)− ∂ϕ

∂ξ
(0)

∣∣∣∣|f(0)|e−ϕ(0)

.

∣∣∣∣∂(fe−h)(0)

∂ξ

∣∣∣∣eu(0)−ϕ(0) +

∣∣∣∣∂u∂ξ (0)− ∂ϕ

∂ξ
(0)

∣∣∣∣|f(0)|e−ϕ(0).

By (1.4) we have ∣∣∣∣∂u∂ξ (0)− ∂ϕ

∂ξ
(0)

∣∣∣∣|f(0)|e−ϕ(0) .
δ0

τ(0)
|f(0)| e−ϕ(0).

This gives ∣∣∣∣∇(|f |e−ϕ)(0)

∣∣∣∣ . ∣∣∣∣∂(fe−h)(0)

∂ξ

∣∣∣∣eu(0)−ϕ(0) +
|f(0)|
τ(0)

e−ϕ(0). (1.5)

It follows from Lemma A that

|f(0)|
τ(0)

e−ϕ(0) .
1

τ(0)1+ 2
p

(∫
D(δ0τ(0)/2)

|f(z)|pe−pϕ(z)dA(z)

)1/p

. (1.6)

To manage the other term appearing in (1.5), notice that if we use the identity (1.3) with
the function φ(ξ) = |ξ|2 − (r/2)2 (since ∆φ(ξ) = 4 and its least harmonic majorant is
uφ = 0), we obtain ∫

D( r
2

)

G(ξ, η) dA(η) =
1

4

(
|ξ|2 − (r/2)2

)
.

Therefore, since ∆ϕ(η) = 1
τ(η)2

. 1
τ(0)2

= ∆ϕ(0) and the Green’s function G ≤ 0, we obtain

for every ξ ∈ D(0, r
2
)

u(ξ)− ϕ(ξ) = −
∫
D( r

2
)

G(ξ, η)∆ϕ(η)dA(η)

.
∆ϕ(0)

4

(
(r/2)2 − |ξ|2

)
=

1

4τ(0)2

(
(r/2)2 − |ξ|2

)
.

This gives
eu(0)−ϕ(0) ≤ eCδ

2
0 .
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Therefore ∣∣∣∣∂(fe−h)(0)

∂ξ

∣∣∣∣eu(0)−ϕ(0) .

∣∣∣∣∂(fe−h)(0)

∂ξ

∣∣∣∣. (1.7)

On the other hand, using Cauchy’s inequality, the fact that ϕ− u ≤ 0 and Lemma A, we
get ∣∣∣∣∂(fe−h)

∂ξ
(0)

∣∣∣∣ . ∣∣∣∣ ∫
|η|= δ0τ(0)

4

f(η)e−h(η)

η2
dη

∣∣∣∣
.

1

δ2
0τ(0)2

∫
|η|= δ0τ(0)

4

|f(η)|e−ϕ(η)eϕ(η)−u(η)|dη|

.
1

τ(0)2

∫
|η|= δ0τ(0)

4

(
1

τ(η)2

∫
D(δ0τ(η)/4)

|f(z)|pe−pϕ(z)dA(z)

)1/p

|dη|.

Finally, using τ(η) � τ(0), we obtain∣∣∣∣∂fe−h∂ξ
(0)

∣∣∣∣ . 1

τ(0)2

∫
|η|= δ0τ(0)

4

(
1

τ(0)2

∫
D(δ0τ(0)/2)

|f(z)|pe−pu(z)dA(z)

)1/p

|dη|

.
1

τ(0)1+ 2
p

(∫
D(δ0τ(0)/2)

|f(z)|pe−pϕ(z)dA(z)

)1/p

.

Bearing in mind (1.7) this gives∣∣∣∣∂(fe−h)(0)

∂ξ

∣∣∣∣eu(0)−ϕ(0) .
1

τ(0)1+ 2
p

(∫
D(δ0τ(0)/2)

|f(z)|pe−pϕ(z)dA(z)

)1/p

.

Putting this and (1.6) into (1.5) we get the result.

We shall also need the following lemma on coverings due to Oleinik [47]

Lemma B. Let τ ∈ L and δ ∈ (0,mτ ). Then there exists a sequence of points {zj} ⊂ D,
such that the following conditions are satisfied:

(1) zj /∈ D(δτ(zk)), j 6= k.

(2)
⋃
j D(δτ(zj)) = D

(3) D̃(δτ(zj)) ⊂ D(3δτ(zj)), where D̃(δτ(zj)) =
⋃

z∈D(δτ(zj))

D(δτ(z))

j = 1, 2, 3, ...

9



(4) {D(3δτ(zj))} is a covering of D of finite multiplicity N .

Definition 1.3. A sequence of points {zn} in D satisfying the conditions of the above
Lemma will be called a (δ, τ)-lattice on D.

Remark 1.1. The multiplicity N in the previous Lemma is independent of δ, and one
can take N = 256. Moreover, if {zj} is a (δ, τ)-lattice on D, then there exists a positive
constant (independent of δ) such that every point z in D belongs to at most N ≤ C( δ0

δ
)2

of the sets D(3δ0τ(zj)), where δ0 ∈ (δ,mτ ).

Proof. Let z ∈
N⋂
j=1

D(3δ0τ(zj)). Applying (1.2), that Area(D(δτ(zj)) = δ2τ(zj) and

D(
δ

2
τ(zj)) ∩D(

δ

2
τ(zk)) = ∅ if j 6= k,

we obtain

Nτ(z)2 =
N∑
j=1

τ(z)2 ≤ 4
N∑
j=1

τ(zj)
2 =

16

δ2

N∑
j=1

Area(D(
δ

2
τ(zj))

≤ 16

δ2
Area

( N⋃
j=1

D(
δ

2
τ(zj))

)

Because of the inclusion
N⋃
j=1

D( δ
2
τ(zj)) ⊂ D(z, 4δ0τ(z)), we get

N ≤ C

(
δ0

δ

)2

,

where C = 256.

The next result on the density of holomorphic polynomials it is certainly well known,
but for completeness we offer a proof here.

Proposition 1.2. Let ω be a radial weight and 0 < p <∞. Then the holomorphic polyno-
mials are dense in Ap(ω).
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Proof. Given f ∈ Ap(ω) and 0 < ρ < 1, let fρ be the dilated function defined by fρ(z) =
f(ρz), z ∈ D. First we want to prove that ‖f − fρ‖Ap(ω) → 0 as ρ → 1−. For 0 ≤ r < 1,
the classical integral means of f are defined by

Mp(f, r) :=

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ
)1/p

, 0 < p <∞.

Since 0 < ρ < 1 and Mp(f, r) is increasing function of r ∈ [0, 1) (see [76, Corollary 4.21])
we get

Mp(fρ, r) = Mp(f, ρr) ≤Mp(f, r).

Therefore,
Mp

p (f − fρ, r) ≤ 2p
(
Mp

p (f, r) +Mp
p (fρ, r)

)
≤ 2p+1Mp

p (f, r).

But the hypothesis that f ∈ Ap(ω) is equivalent to saying that Mp
p (f, r) is integrable over

the interval [0, 1) with respect to the measure ω(r)rdr, and it is clear that fρ(z) → f(z)
uniformly on compact subsets on D as ρ → 1−, which implies that Mp

p (f − fρ, r) → 0 for
each r ∈ [0, 1). Thus by the Lebesgue dominated convergence theorem, we conclude that

‖f − fρ‖pAp(ω) = 2

∫ 1

0

Mp
p (f − fρ, r)ω(r) rdr → 0

as ρ→ 1−. Since fρ is analytic on D, using Runge’s theorem there is a polynomial P such
that

|fρ(z)− P (z)| < ε/2,

for all z ∈ D and ε > 0. Finally,

‖f − P‖Ap(ω) ≤ ‖f − fρ‖+ ‖fρ − P‖ < ε,

which completes the proof.

Proposition 1.3. Let ω ∈ L∗ radial and 0 < p ≤ 2. Then the set E of finite linear
combinations of reproducing kernels is dense in Ap(ωp/2).

Proof. Suppose first that p = 2. Since E is a linear subspace of A2(ω), it is enough to
prove that g ≡ 0 if g ∈ A2(ω) satisfies 〈f, g〉ω = 0 for each f in E. But, taking f = Kz,
for each z ∈ D we get g(z) = 〈g,Kz〉ω = 0. This finishes the proof for p = 2.

If 0 < p < 2, then A2(ω) ⊂ Ap(ωp/2) continuously, that is, ‖f‖Ap(ωp/2) . ‖f‖A2(ω).
Thus, for a polynomial f and points a1, . . . , an, we have∥∥f − n∑

k=1

αkKak

∥∥
Ap(ωp/2)

.
∥∥f − n∑

k=1

αkKak

∥∥
A2(ω)

.

Now, by the case p = 2 and the density of the polynomials in Ap(ωp/2), the result follows.

For the case p > 2, one can obtain the density of the span of reproducing kernels
K∗z corresponding to some associated Bergman space A2(ω∗) with a weight of the form
ω∗(z) = ω(z)τ(z)α via the embedding A2(ω∗) ⊂ Ap(ωp/2). For the case of the exponential
weight, we will see in Chapter 4 that we can use reproducing kernels of A2(ω).
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1.2 The class of weights W and examples

In this section, we introduce the class of weights W for which we are going to study the
corresponding weighted Bergman spaces

Definition 1.4. The classW consists of those radial decreasing weights of the form ω(z) =

e−2ϕ(z), where ϕ ∈ C2(D) is a radial function such that (∆ϕ(z))−1/2 � τ(z), for a radial
positive function τ(z) that decreases to 0 as |z| → 1−, and limr→1− τ

′(r) = 0. Furthermore,
we shall also suppose that either there exist a constant C > 0 such that τ(r)(1 − r)−C

increases for r close to 1 or

lim
r→1−

τ ′(r) log
1

τ(r)
= 0.

The class W is the same class of weights considered in [9], [51] and [23], and it is
straightforward to see that W ⊂ L∗. Next we give several examples of weights in the class
W (these examples already appears in [51], but we give some details for completeness).

Example 1: The exponential type weights

ωγ,σ(z) = (1− |z|2)γ exp

(
−A

(1− |z|2)σ

)
, γ ≥ 0, σ > 0, A > 0,

are in the class W with associated subharmonic function

ϕγ,σ(z) = −γ log(1− |z|2) + c (1− |z|2)−σ.

We have that (
∆ϕγ,σ(z)

)−1 � τ(z)2 = (1− |z|2)2+σ,

and it is easy to see that τ(z) satisfies the conditions in the definition of the class W .

Example 2: For α > 1 and A > 0 the weights

ω(r) = exp

(
−A

(
log

e

1− r

)α)
,

with associated subharmonic function ϕ(z) = A
(

log e
1−|z|

)α
, belong to the class W . In-

deed, it is easy to see that

∆ϕ(z) � (1− |z|)−2

(
log

e

1− |z|

)α−1

,

so τ(z) = (1− |z|)
(

log e
1−|z|

) 1−α
2

, and since α > 1

τ ′(r) �
(

log
e

1− r

)−α+1
2

, r → 1−,

12



which implies that limr→1− τ(r) = limr→1− τ
′(r) = 0. Moreover, the function τ(r)(1− r)−2

increases for r close to 1. This proves that ω ∈ W .

Example 3: For α, β, γ > 0, the double exponential weight

ω(r) = exp

(
−γ exp

(
β

(1− r)α

))
belongs toW . Indeed, the associated subharmonic function is ϕ(z) = γ exp

(
β

(1−|z|)α

)
, and

a straightforward computation gives

∆ϕ(z) � (1− |z|)−2α−2 exp

(
β

(1− |z|)α

)
.

Then we can take τ(z) = (1− |z|)α+1 exp
(
−β/2

(1−|z|)α

)
. Since

τ ′(r) � exp

(
−β/2

(1− r)α

)
, r → 1−,

we obtain limr→1− τ(r) = limr→1− τ
′(r) = 0.Also, it is easy to see that limr→1− τ

′(r) log 1
τ(r)

=
0. This proves that ω ∈ W .

1.3 Test functions and some estimates

Since the norm of the point evaluation functional equals the norm of the reproducing kernel
in A2(ω), the result of Lemma A also gives an upper bound for ‖Kz‖A2(ω). In order to see
that this upper bound is the corresponding growth of the reproducing kernel, one needs an
appropriate family of test functions, a family that can also be used in other problems such
as to characterize the Carleson type measures for large weighted Bergman spaces. The
following result on test functions was obtained in [51].

Lemma C. Assume that 0 < p < ∞, N ∈ N \ {0} with Np ≥ 1 and ω ∈ W. Then, for
each a ∈ D, there is a function Fa,N,p analytic in D with

|Fa,N,p(z)|p ω(z) � 1 if |z − a| < τ(a), (1.8)

and

|Fa,N,p(z)|ω(z)1/p . min

(
1,

min
(
τ(a), τ(z)

)
|z − a|

)3N

, z ∈ D. (1.9)

Moreover, the function Fa,N,p belongs to Ap(ω) with

‖Fa,N,p‖Ap(ω) � τ(a)2/p.

13



As a consequence we have the following estimate for the norm of the reproducing kernel,
result that can be found in [9], [51].

Lemma D. Let ω ∈ W. Then

‖Kz‖2
A2(ω) ω(z) � 1

τ(z)2
, z ∈ D. (1.10)

Next result is an estimate of the reproducing kernel function for points close to the
diagonal. Despite that this result is stated in [35, Lemma 3.6] we offer here a proof based
on Lemma 1.1, since the conditions on the weights are slightly different.

Lemma E. Let ω ∈ W and z ∈ D. For ε > 0 sufficiently small we have

|Kz(ξ)| � ‖Kz‖A2(ω) · ‖Kξ‖A2(ω), (1.11)

if ξ ∈ D(ετ(z)).

Proof. The upper estimate is trivial from Cauchy-Schwarz. To prove the other inequality,
let ε ∈ (0,mτ ) be sufficiently small and z ∈ D be fixed such that ξ ∈ D(ετ(z)). We have

|Kz(z)|ω(z) =

(
|Kz(z)|ω(z)1/2 − |Kz(ξ)|ω(ξ)1/2

)
ω(z)1/2 + |Kz(ξ)|ω(ξ)1/2ω(z)1/2. (1.12)

Consider

I(z, ξ) :=

(
|Kz(z)|ω(z)1/2 − |Kz(ξ)|ω(ξ)1/2

)
ω(z)1/2.

By Lemma 1.1 with p = 2, we can estimate the first term on the righthand side as follows:
by Cauchy’s estimates there exists s ∈ [z, ξ] such that

I(z, ξ) ≤ ∇
(
|Kz|ω1/2

)
(s) |z − ξ|ω(z)1/2

≤ εC(δ0)ω(z)1/2 τ(z)

τ(s)2

(∫
D(δ0τ(s))

|Kz(t)|2 ω(t) dA(t)

)1/2

,

for δ0 ∈ (0,mτ ) fixed. Using τ(s) � τ(z) and Lemma D we get

I(z, ξ) ≤ εC(δ0)ω(z)1/2

τ(z)

(∫
D(δ0τ(z))

|Kz(t)|2 ω(t) dA(t)

)1/2

≤ εC(δ0)ω(z)1/2

τ(z)
‖Kz‖A2(ω)

≤ εC(δ0)ω(z) ‖Kz‖2
A2(ω) = εC(δ0)ω(z) |Kz(z)|.

Putting this into (1.12) and taking ε small enough such that εC(δ0) < 1/2, we obtain

|Kz(z)|ω(z) ≤ 2|Kz(ξ)|ω(ξ)1/2 ω(z)1/2.

14



Therefore, again using Lemma D and the fact that τ(z) � τ(ξ) for ξ ∈ D(ετ(z)), we have

‖Kz‖A2(ω) · ‖Kξ‖A2(ω) ≤ C |Kz(ξ)|

obtaining the desired result.

Estimates for the ∂-equation. We recall first the classical Hörmander’s theorem [28]
on L2-estimates for solutions of the ∂-equation.

Theorem A (Hörmander). Let ϕ ∈ C2(D) with ∆ϕ > 0 on D. Then there exists a solution
u of the equation ∂u = f such that∫

D
|u(z)|2e−2ϕ(z)dA(z) ≤

∫
D

|f(z)|2

∆ϕ(z)
e−2ϕ(z)dA(z),

provided the right hand side integral is finite.

In some situations, one can use the associated weights ω∗ given by

ω∗(z) = ω(z) τ(z)α, α ∈ R. (1.13)

The following result, that provides more estimates on the solutions of the ∂-equation, can
be of independent interest.

Theorem 1.4. Let ω ∈ W, and consider the associated weight ω∗(z) := ω(z) τ(z)α, z ∈ D
and α ∈ R. Then there exists a solution u of the equation ∂u = f such that∫

D
|u(z)|p ω∗(z)p/2 dA(z) ≤ C

∫
D
|f(z)|p ω∗(z)p/2 τ(z)p dA(z)

for all 1 ≤ p < ∞, provided the right hand side integral is finite. Moreover, one also has
the L∞-estimate

sup
z∈D
|u(z)|ω∗(z)1/2 ≤ C sup

z∈D
|f(z)|ω∗(z)1/2 τ(z).

Proof. We follow the method used in [12] where the case α = 0 was proved. By Lemma
C, there are holomorphic functions Fa and some δ0 ∈ (0,mτ ) such that

(i) |Fa(ξ)| � ω(ξ)−1/2, ξ ∈ D(δ0τ(a)).

(ii) |Fa(ξ)| ≤ Cω(ξ)−1/2

(
min

(
τ(ξ), τ(a)

)
|a− ξ|

)M
, (a, ξ) ∈ D× D,

(1.14)

Let δ1 < δ0. Then, there is a sequence {zn}n≥1 such that {D(δ1τ(zn))} is a covering of D of
finite multiplicity N and satisfy the other statements of Lemma B. Let χn be a partition
of unity subordinate to the covering D(δ1τ(zn)). Consider

Snf(z) = Fzn(z)

∫
D

f(ξ)χn(ξ)

(ξ − z)Fzn(ξ)
dA(ξ).

15



Since Fzn are holomorphic functions on D, by the Cauchy-Pompieu formula, we have

∂Snf(z) = f(z)χn(z), n = 1, 2....

Then,

Sf(z) =
∞∑
n=1

Snf(z) = ω∗(z)−1/2

∫
D
G(z, ξ) f(ξ)ω∗(ξ)

1/2 dA(ξ),

where

G(z, ξ) =
∞∑
n=1

Fzn(z)

ξ − z
χn(ξ)

Fzn(ξ)
ω∗(ξ)

−1/2 ω∗(z)1/2.

Since χn is a partition of the unity, we have

∂(Sf) =
∞∑
n=1

∂(Snf) = f
∞∑
n=1

χn = f

on D, so that Sf solves the equation ∂Sf(z) = f(z).

Now we are going to prove that∫
D
|G(z, ξ)|dA(ξ)

τ(ξ)
. 1. (1.15)

First we consider the covering of {ξ ∈ D : |z − ξ| > δ2τ(z)} given by

Rk(z) = {ξ ∈ D : 2k−1δ2τ(z) < |z − ξ| ≤ 2kδ2τ(z)}, k = 0, 1, 2, . . .

Let 4 δ1 < δ2 <
δ0
5

and z ∈ D be fixed. If ξ ∈ D(δ2τ(z)) ∩D(δ1τ(zn)), using (1.2)

|z − zn| ≤ |z − ξ|+ |ξ − zn| ≤ δ2τ(z) + δ1τ(zn)

≤ 4δ2τ(zn) + δ1τ(zn) < δ0τ(zn),

that implies z ∈ D(δ0τ(zn)). Using (1.2) and property (i) of (1.14), it follows

|G(z, ξ)| . ω(z)−1/2

|ξ − z|
ω∗(ξ)

−1/2ω∗(z)1/2

ω(ξ)−1/2

∞∑
n=1

χn(ξ) .
1

|ξ − z|
.

Therefore, using (1.2) and polar coordinates, we get∫
D(δ2τ(z))

|G(z, ξ)|dA(ξ)

τ(ξ)
.

1

τ(z)

∫
D(δ2τ(z))

1

|ξ − z|
dA(ξ) . 1. (1.16)
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If ξ ∈
(
D r D(δ2τ(z))

)
∩ D(δ1τ(zn)), we show that z /∈ D(δ1τ(zn)). In fact, if not, z ∈

D(δ1τ(zn)), then using (1.2) we have

|z − zn| > |z − ξ| − |ξ − zn| > δ2τ(z)− δ1τ(zn) ≥ (δ2/2− δ1)τ(zn) ≥ δ1τ(zn),

this implies a contradiction with our assumption. Thus,

|z − ξ| ≤ |z − zn|+ |zn − ξ| ≤ |z − zn|+ δ1τ(zn)

≤ 2|z − zn|.

Also, using τ(ξ) � τ(zn) we get

|z − zn|
min

(
τ(z), τ(zn)

) ≥ C
|z − ξ|

min
(
τ(z), τ(ξ)

) .
Then, again using τ(ξ) � τ(zn) and property (ii) of (1.14) with

M > max(1;−α/2; 1 + α/2),

we have

|G(z, ξ)| ≤ C
∞∑
n=1

|Fzn(z)|
|ξ − z|

χn(ξ)

|Fzn(ξ)|
ω∗(ξ)

−1/2ω∗(z)1/2

≤ C
ω(z)−1/2

|ξ − z|
ω∗(ξ)

−1/2ω∗(z)1/2

ω(ξ)−1/2

(
min

(
τ(z), τ(ξ)

)
|ξ − z|

)M ∞∑
n=1

χn(ξ)

≤ C
τ(z)

α
2

τ(ξ)
α
2 |ξ − z|

(
min

(
τ(z), τ(ξ)

)
|ξ − z|

)M
.

(1.17)

Then, ∫
DrD(δ2τ(z))

|G(z, ξ)|dA(ξ)

τ(ξ)

≤ Cτ(z)α/2
∫
DrD(δ2τ(z))

τ(ξ)
−(2+α)

2

|ξ − z|

(
min

(
τ(z), τ(ξ))

)
|ξ − z|

)M
dA(ξ).
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• If 2 + α > 0.∫
DrD(δ2τ(z))

|G(z, ξ)|dA(ξ)

τ(ξ)
≤ Cτ(z)M−1

∞∑
k=1

∫
Rk(z)

1

|ξ − z|M+1
dA(ξ)

≤ Cτ(z)M−1

∞∑
k=1

∫
Rk(z)

1(
2kτ(z)

)M+1
dA(ξ)

≤ C

∞∑
k=1

1

2k(M−1)
. 1.

• If 2 + α ≤ 0. Using the condition (B) in the definition of the class L, it follows that

τ(ξ) ≤ C2kδ2τ(z), ξ ∈ Rk(z) k = 0, 1, 2, . . .

So, ∫
DrD(δ2τ(z))

|G(z, ξ)|dA(ξ)

τ(ξ)
≤ Cτ(z)α/2

∫
DrD(δ2τ(z))

τ(ξ)−(2+α)/2τ(z)M

|ξ − z|M+1
dA(ξ)

≤ Cτ(z)M+α/2

∞∑
k=1

∫
Rk(z)

(
2kτ(z)

)−(2+α)/2(
2kτ(z)

)M+1
dA(ξ)

≤ C
∞∑
k=1

1

2k(M+α/2)
. 1.

This together with (1.16) establish (1.15).

Using (1.15), it is straightforward that the L∞-estimate holds. Our next goal is to prove
the inequality ∫

D
|Sf(z)|pω∗(z)p/2dA(z) .

∫
D
|f(z)|pω∗(z)p/2τ(z)pdA(z).

Consider g(ξ) := f(ξ)ω∗(ξ)
1/2 and Tg(z) :=

∫
DG(z, ξ) g(ξ)dA(ξ). Then, the last inequality

translates ∫
D
|Tg(z)|pdA(z) .

∫
D
|g(z)|p τ(z)pdA(z).
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Therefore, using Hölder’s inequality and (1.15), we have

|Tg(z)|p ≤
(∫

D
|G(z, ξ)| |g(ξ)| dA(ξ)

)p

≤
∫
D
|g(ξ)|p τ(ξ)p−1|G(z, ξ)| dA(ξ)

(∫
D
|G(z, ξ)| dA(ξ)

τ(ξ)

)p−1

.
∫
D
|g(ξ)|p τ(ξ)p−1|G(z, ξ)| dA(ξ).

These and Fubini’s theorem give∫
D
|Tg(z)|pdA(z) .

∫
D

(∫
D
|g(ξ)|p τ(ξ)p−1|G(z, ξ)| dA(ξ)

)
dA(z)

.
∫
D
|g(ξ)|p τ(ξ)p−1

(∫
D
|G(z, ξ)| dA(z)

)
dA(ξ).

Now, using the expression of the kernel G(z, ξ) and the fact that χn are supported in
D(δ1τ(zn)), we obtain∫
D
|Tg(z)|pdA(z) .

∫
D
|g(ξ)|p τ(ξ)p−1

(∫
D

∞∑
n=1

|Fzn(z)|
|ξ − z|

χn(ξ)

|Fzn(ξ)|
ω∗(z)1/2

ω∗(ξ)1/2
dA(z)

)
dA(ξ)

.
∞∑
n=1

∫
D
|g(ξ)|p τ(ξ)p−1

(
ω∗(ξ)

−1/2

|Fzn(ξ)|

∫
D

|Fzn(z)|
|ξ − z|

ω∗(z)1/2 dA(z)

)
χn(ξ) dA(ξ)

.
∞∑
n=1

∫
D(δ1τ(zn))

|g(ξ)|p τ(ξ)p−1

(
ω∗(ξ)

−1/2

|Fzn(ξ)|

∫
D

|Fzn(z)|
|ξ − z|

ω∗(z)1/2 dA(z)

)
dA(ξ).

By using |Fzn(ξ)| � ω(ξ)−1/2, ξ ∈ D(δ1τ(zn)), it follows that∫
D
|Tg(z)|pdA(z)

.
∞∑
n=1

∫
D(δ1τ(zn))

|g(ξ)|p τ(ξ)p−1−α/2
(∫

D

|Fzn(z)|
|ξ − z|

ω∗(z)1/2 dA(z)

)
dA(ξ).

(1.18)

We claim that ∫
D

|Fzn(z)|
|ξ − z|

ω∗(z)1/2 dA(z) . τ(ξ)1+α/2, ξ ∈ D(δ1τ(zn)). (1.19)
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Assuming the claim, we can finish the proof. Indeed, since {D(δ1τ(zn))} is a covering of
D of finite multiplicity, using the claim we have∫

D
|Tg(z)|pdA(z) .

∞∑
n=1

∫
D(δ1τ(zn))

|g(ξ)|p τ(ξ)pdA(ξ)

.
∫
D
|g(ξ)|p τ(ξ)pdA(ξ).

Therefore it remains to prove the inequality (1.19). We split this integral in two parts: one
integrating over the disk D(δ2τ(ξ)) and the other one over DrD(δ2τ(ξ)). We compute the
first integral, using (i) of (1.14), τ(ξ) � τ(zn) � τ(z), z ∈ D(δ2τ(ξ)) and by using polar
coordinates, we obtain∫

D(δ2τ(ξ))

|Fzn(z)|
|ξ − z|

ω∗(z)1/2 dA(z) . τ(ξ)α/2
∫
D(δ2τ(ξ))

dA(z)

|z − ξ|
. τ(ξ)1+α/2. (1.20)

Now we consider

I(ξ) :=

∫
DrD(δ2τ(ξ))

|Fzn(z)|
|ξ − z|

ω∗(z)1/2 dA(z), ξ ∈ D(δ1τ(zn)).

For z /∈ D(δ2τ(ξ))

|z − ξ| ≤ |z − zn|+ |zn − ξ| ≤ |z − zn|+ δ1τ(zn)

≤ |z − zn|+
2δ1

δ2

|z − zn| ≤
(
1 +

2δ1

δ2

)
|z − zn|.

Then, again by using τ(ξ) � τ(zn), we obtain

min
(
τ(zn), τ(z)

)
|z − zn|

≤ C
min

(
τ(ξ), τ(z)

)
|z − ξ|

This together with (1.14) taking M > max(1, 2 + α/2) give

I(ξ) .
∫
DrD(δ2τ(ξ))

τ(z)α/2

|ξ − z|

(
min

(
τ(zn), τ(z)

))M
|z − zn|M

dA(z)

.
∫
DrD(δ2τ(ξ))

τ(z)α/2

(
min

(
τ(ξ), τ(z)

))M
|z − ξ|M+1

dA(z).
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• Suppose first that α ≥ 0. By τ(z) ≤ C2kτ(ξ), for every z ∈ Rk(ξ), k = 0, 1, 2, . . . , we
get

I(ξ) .
∞∑
k=1

∫
Rk(ξ)

(
2kτ(ξ)

)α/2
τ(ξ)M(

2kτ(ξ)
)M+1

dA(z)

. τ(ξ)1+α/2

∞∑
k=1

1

2k(M−2−α/2)
. τ(ξ)1+α/2.

• If α < 0, then

I(ξ) .
∫
DrD(δ2τ(ξ))

τ(z)α/2

(
min

(
τ(ξ), τ(z)

))M
|z − ξ|M+1

dA(z)

.
∞∑
k=1

∫
Rk(ξ)

τ(ξ)M+α/2

|z − ξ|M+1
dA(z)

. τ(ξ)1+α/2

∞∑
k=1

1

2k(M−1)
. τ(ξ)1+α/2.

This together with (1.20) establish (1.19). The proof is complete.

1.4 Carleson type measures

Now we are going to recall some results on the boundedness of the embedding i : X → Lq(µ)
for some spaces X of analytic functions. We need first the notion of an s-Carleson measure.
Given an arc I of the unit circle T := ∂D, the Carleson box associated to I is

S(I) =
{
z ∈ D : 1− |I|

2π
< |z| < 1,

z

|z|
∈ I
}
.

For α > 0, a positive Borel measure µ on D is called an α-Carleson measure if

‖µ‖CMα := sup
I⊂T

µ
(
S(I)

)
|I|α

<∞.

The α-Carleson measures are the appropriate geometric object in order to describe the
boundedness of i : Hp → Lq(µ), as the following classical result of Carleson [10, 11] (case
q = p) and Duren [20] (case p < q) shows.

Theorem B (Carleson-Duren). Let 0 < p ≤ q <∞. Then the embedding i : Hp → Lq(µ)
is bounded if and only if µ is an q/p-Carleson measure.
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The corresponding result for 0 < q < p < ∞ it seems that was considered a folklore
theorem for a long time. It can be found stated in [65]. A detailed proof can be found in
[40] or [69].

Theorem C. Let 0 < q < p <∞. The following conditions are equivalent:

(a) i : Hp → Lq(µ) is bounded.

(b) The function Aµ1(ζ) =
∫

Γ(ζ)
dµ(z)
1−|z| is in L

p
p−q (T).

(c) The sweep µ̃ of µ belongs to L
p
p−q (T).

We recall that, for a measure µ on D, the sweep of µ onto T is defined as

µ̃(ζ) =
1

2π

∫
D

1− |z|2

|ζ − z|2
dµ(z).

A description of q-Carleson measures for Ap(ωp/2), 0 < p, q < ∞, for weights ω in the
class W was obtained in [51]. A positive measure µ is q-Carleson for Ap(ωp/2) when the
inclusion Iµ : Ap(ωp/2) −→ Lq(D, dµ) is bounded. Next results were proved in [51, Theorem
1].

Theorem D. Let ω ∈ W and µ be a finite positive Borel measure on D. Let 0 < p ≤ q <∞.
Then Iµ : Ap(ωp/2) −→ Lq(D, dµ) is bounded if and only if for each sufficiently small δ > 0
we have

Kµ,ω := sup
a∈D

1

τ(a)2q/p

∫
D(δτ(a))

ω(ξ)−q/2 dµ(ξ) <∞. (1.21)

Moreover, in that case, Kµ,ω � ‖Iµ‖qAp(ωp/2)→Lq(D,dµ)
.

Theorem E. Let ω ∈ W and µ be a finite positive Borel measure on D. Let 0 < p ≤ q <∞.
Then, Iµ : Ap(ωp/2) −→ Lq(D, dµ) is compact if and only if for each sufficiently small δ > 0
we have

lim
r→1−

sup
|a|>r

1

τ(a)2q/p

∫
D(δτ(a))

ω(ξ)−q/2 dµ(ξ) = 0. (1.22)

Theorem F. Let ω ∈ W and let µ be a finite positive Borel measure on D. Let 0 < q <
p <∞. The following conditions are equivalent:

(a) Iµ : Ap(ωp/2) −→ Lq(D, dµ) is compact.
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(b) Iµ : Ap(ωp/2) −→ Lq(D, dµ) is bounded.

(c) For each sufficiently small δ > 0, the function

Fµ(z) =
1

τ(z)2

∫
D(δτ(z))

ω(ξ)−q/2 dµ(ξ)

belongs to L
p
p−q (D, dA).

Moreover, one has
‖Iµ‖qAp(ωp/2)→Lq(µ)

� ‖Fµ‖
L

p
p−q (D)

.

1.5 Atomic Decomposition

In this Section we are going to obtain an atomic decomposition for the large weighted
Bergman space A2(ω), that is, we show that every function in the Bergman spaces A2(ω)
with ω in the class W can be decomposed into a series of kernels functions. Atomic
decomposition for standard Bergman spaces were obtained by Coifman and Rochberg [15]
and has become a powerful tool in the study of such spaces. We refer to the books
[53, 77, 76] for a modern proof of these results.

Proposition 1.5. Let ω ∈ W, and {zk}k∈N ⊂ D be the sequence that it is defined in
Lemma B. The function given by

F (z) :=
∞∑
k=0

λk ω(zk)
1/2 τ(zk)Kzk(z)

belongs to A2(ω) for every sequence λ = {λk} ∈ `2 . Moreover,

‖F‖A2(ω) . ‖λ‖`2 .

Proof. First we show that the partial sums FN =
∑N

k=0 fk converges uniformly on compact
subsets of D which proves that F defines an analytic function on D. Using Cauchy-Schwarz
inequality, Lemma A and the norm estimate of ‖Kz‖A2(ω), we have

|FN(z)| ≤
( N∑

k=0

|λk|2
)1/2( N∑

k=0

τ(zk)
2|Kzk(z)|2 ω(zk)

)1/2

.

( N∑
k=0

|λk|2
)1/2( N∑

k=0

∫
D(δτ(zk))

|Kz(ξ)|2 ω(ξ) dA(ξ)

)1/2

. ‖λ‖`2 ‖Kz‖A2(ω) .
ω(z)−1/2

τ(z)
‖λ‖`2 ,

which proves that the series defining F converges uniformly on compact subsets of D.
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To prove that F ∈ A2(ω) with ‖F‖A2(ω) . ‖λ‖`2 , by duality we must show that
|〈F, g〉ω| . ‖λ‖`2 · ‖g‖A2(ω) for g ∈ A2(ω). Clearly,∣∣〈F, g〉ω∣∣ ≤∑

k

|λk|ω(zk)
1/2 τ(zk) |g(zk)|

≤ ‖λ‖`2
(∑

k

|g(zk)|2 ω(zk) τ(zk)
2

)1/2

.

Finally, by Lemma , and since {zn} is a τ -lattice,∑
k

|g(zk)|2 ω(zk) τ(zk)
2 .

∑
k

∫
D(δτ(zk))

|g(ζ)|2 ω(z) dA(z) . ‖g‖2
A2(ω).

This finishes the proof.

Lemma 1.6. Let ω ∈ E. There is a sequence {zn} ⊂ D such that

∞∑
n=0

|f(zn)|pω(zn)p/2τ(zn)2 & ‖f‖p
Ap(ωp/2)

,

for all f ∈ Ap(ωp/2) and p > 0.

Proof. Let {zn} be an (ε, τ)-lattice on D (that exists by Lemma B) with ε > 0 small enough
to be specified later. Let f ∈ Ap(ωp/2). We consider

If (n) :=
∞∑
n=0

|f(zn)|p ω(zn)p/2 τ(zn)2.

We have

‖f‖p
Ap(ωp/2)

=

∫
D
|f(z)|pω(z)p/2dA(z)

≤ C

[ ∞∑
n=0

∫
D(ετ(zn))

(
|f(z)|ω(z)1/2 − |f(zn)|ω(zn)1/2

)p
dA(z) + Cε2If (n)

]
.

For z ∈ D(ετ(zn)), there exists ξn,z ∈ [z, zn] such that(
|f(z)|ω(z)1/2 − |f(zn)|ω(zn)1/2

)p
≤
∣∣∇(|f |ω1/2)(ξn,z)

∣∣p|z − zn|p
≤ εp τ(zn)p

∣∣∇(|f |ω1/2)(ξn,z)
∣∣p.
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This together with Lemma 1.1, with δ0 ∈ (0,mτ ) fixed, yields∫
D(ετ(zn))

(
|f(z)|ω(z)1/2 − |f(zn)|ω(zn)1/2

)p
dA(z)

≤ C εp τ(zn)p
∫
D(ετ(zn))

(
1

τ(ξn,z)p+2

∫
D(δ0τ(ξn,z))

|f(η)|pω(η)p/2dA(η)

)
dA(z).

Using that τ(ξn,z) � τ(zn) and D(δ0τ(ξn,z)) ⊂ D(3δ0τ(zn)) for z ∈ D(ετ(zn)), we obtain∫
D(ετ(zn))

(
|f(z)|ω(z)1/2 − |f(zn)|ω(zn)1/2

)p
dA(z)

≤ C εp+2

(∫
D(3δ0τ(zn))

|f(η)|pω(η)p/2dA(η)

)
.

Therefore,

‖f‖p
Ap(ωp/2)

≤ C εp+2

∞∑
n=0

∫
D(3δ0τ(zn))

|f(η)|pω(η)p/2dA(η) + Cε2 If (n).

By Lemma B every point z ∈ D belongs to at most Cε−2 of the sets D(3δ0τ(zn)), and
therefore

‖f‖p
Ap(ωp/2)

≤ Cεp‖f‖p
Ap(ωp/2)

+ C ε2 If (n).

Thus, taking ε > 0 so that Cεp < 1/2, we get the desired result.

It is worth mentioning that, what actually Lemma 1.6 says, is that an (ε, τ)-lattice with
ε > 0 small enough, is a sampling sequence for the Bergman space Ap(ωp/2). Recall that
{zn} ⊂ D is a sampling sequence for the Bergman space Ap(ωp/2) if

‖f‖p
Ap(ωp/2)

�
∑
n

|f(zn)|p ω(zn)p/2 τ(zn)2

for any f ∈ Ap(ωp/2). Just note that Lemma 1.6 gives one inequality, and the other follows
by standard methods using Lemma A and the lattice properties. Sampling sequences on
the classical Bergman space were characterized by K. Seip [59] (see also the monographs
[22] and [60]). For sampling sequences on large weighted Bergman spaces we refer to [9].
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Now we are ready to prove the result on the atomic decomposition of large weighted
Bergman spaces A2(ω). We use the notation kz for the normalized reproducing kernels in
A2(ω), that is

kz =
Kz

‖Kz‖A2(ω)

.

Theorem 1.7. Let ω ∈ W. There exists a lattice {zn} ⊂ D such that:

(i) For any λ = {λn} ∈ `2, the function

f(z) =
∑
n

λn kzn(z)

is in A2(ω) with ‖f‖A2(ω) ≤ C‖λ‖`2 .

(ii) For every f ∈ A2(ω) exists λ = {λn} ∈ `2 such that

f(z) =
∑
n

λn kzn(z)

and ‖λ‖`2 ≤ C ‖f‖A2(ω).

Proof. Because of the norm estimate ‖Kzn‖−1
A2(ω) � ω(zn)1/2 τ(zn), part (i) is just Propo-

sition 1.5. In order to prove (ii), we define a linear operator S : `2 −→ A2(ω) given
by

S({λn}) :=
∞∑
n=0

λn kzn .

By (i), the operator S is bounded. The adjoint operator S∗ : A2(ω)→ `2 is defined by

〈Sx, f〉ω = 〈x, S∗f〉` =
∑
n

xn (S∗f)n.

for every x ∈ `2 and f ∈ A2(ω). To compute S∗, let en denote the vector that equals 1 at
the n-th coordinate and equals 0 at the other coordinates. Then Sen = kzn , and using the
reproducing formula we get

(S∗f)n = 〈en, S∗f〉` = 〈Sen, f〉ω = 〈kzn , f〉ω

= ‖Kzn‖−1
A2(ω) · 〈Kzn , f〉ω =

f(zn)

‖Kzn‖A2(ω)

.

Hence, S∗ : A2(ω) −→ `2 is given by

S∗f = {(S∗f)n} =

{
f(zn)

‖Kzn‖A2(ω)

}
n

.
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We must prove that S is surjective in order to finish the proof of this case. By a classical
result in functional analysis, it is enough to show that S∗ is bounded below. By Lemma
1.6 and the estimate for the norm of Kz we obtain

‖S∗f‖2
`2 �

∞∑
n=0

|f(zn)|2 ω(zn) τ(zn)2 & ‖f‖2
A2(ω),

which shows that S∗ is bounded below. Finally, once the surjectivity is proved, the estimate
‖λ‖`2 ≤ C ‖f‖A2(ω) is an standard application of the open mapping theorem. The proof is
complete.
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Chapter 2

Toeplitz operators

Throughout this chapter, µ will denote a finite positive Borel measure on D and ω would
be a weight in the classW so that we can apply all the results of the previous chapter. The
purpose of this chapter is to characterize the boundedness, compactness and membership
in Schatten ideals of Toeplitz operators acting on A2(ω).

Definition 2.1. Let Kz be the reproducing kernel of A2(ω). The Toeplitz operator T ωµ with
symbol µ is given by

Tµf(z) = T ωµ f(z) :=

∫
D
f(ξ)Kz(ξ)ω(ξ) dµ(ξ).

Note that Tµ is very loosely defined here, because it is not clear when the integrals
above will converge, even if the measure µ is finite. We suppose that µ is a finite positive
Borel measure that satisfies the condition∫

D
|Kz(ξ)|2 ω(ξ) dµ(ξ) <∞. (2.1)

Then, the Toeplitz operator Tµ is well-defined on a dense subset of A2(ω). In fact, by
Proposition 1.3, the set E of finite linear combinations of reproducing kernels is dense in
A2(ω). Therefore, it follows from condition (2.1) and the Cauchy-Schwartz inequality that
Tµ(f) is well defined for any f ∈ E.

There is a lot of work on the study of Toeplitz operators acting on several spaces of
holomorphic functions [13, 29, 39, 43, 57, 72], and the theory is especially well under-
stood in the case of Hardy spaces or standard Bergman spaces (see [77] and the references
therein). Luecking [39] was the first to study Toeplitz operators on the Bergman spaces
with measures as symbols, and the study of Toeplitz operators acting on large weighted
Bergman spaces was initiated by Lin and Rochberg [35]
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2.1 Boundedness and compactness

In this section we describe the boundedness of Toeplitz operators on large Bergman spaces.
For δ ∈ (0,mτ ), we define a new function µ̂δ (the averaging function of µ) on D by

µ̂δ(z) :=
µ(D(δτ(z))

τ(z)2
, z ∈ D.

Theorem 2.1. Let ω ∈ W. Then

(i) Tµ : A2(ω)→ A2(ω) is bounded if and only if for each δ > 0 small enough, one has

Cµ := sup
z∈D

µ̂δ(z) <∞. (2.2)

Moreover, in that case, ‖Tµ‖ � Cµ.

(ii) Tµ : A2(ω)→ A2(ω) is compact if and only if for each δ > 0 small enough, one has

lim
r→1−

sup
|z|>r

µ̂δ(z) = 0. (2.3)

For the proof, we need first the following lemma.

Lemma 2.2. Let ω ∈ W, and assume that µ̂δ is in L∞(D) for some small δ > 0. Then

〈Tµf, g〉ω =

∫
D
f(ζ) g(ζ)ω(ζ) dµ(ζ), f, g ∈ A2(ω).

Proof. Being ω a radial weight, the polynomials are dense in A2(ω) and we may assume
that g is an holomorphic polynomial. Because of Theorem D, the condition implies that
dν = ω dµ is a Carleson measure for A2(ω). Then∫

D

(∫
D
|f(ζ)| |Kz(ζ)|ω(ζ) dµ(ζ)

)
|g(z)|ω(z) dA(z)

≤ ‖f‖L2(ν)

∫
D
‖Kz‖L2(ν) |g(z)|ω(z) dA(z)

. ‖f‖A2(ω) · ‖g‖∞
∫
D
‖Kz‖A2(ω) ω(z) dA(z)

. ‖f‖A2(ω) · ‖g‖∞
∫
D

ω(z)1/2

τ(z)
dA(z),
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and this is finite (see [51, Lemma 2.3] for example). Thus, Fubini’s theorem gives

〈Tµf, g〉ω =

∫
D

(∫
D
f(ζ)Kz(ζ)ω(ζ) dµ(ζ)

)
g(z)ω(z) dA(z)

=

∫
D
f(ζ)

(∫
D
g(z)Kζ(z)ω(z) dA(z)

)
ω(ζ) dµ(ζ)

=

∫
D
f(ζ) 〈g,Kζ〉ω ω(ζ) dµ(ζ) =

∫
D
f(ζ) g(ζ)ω(ζ) dµ(ζ).

Proof of Theorem 2.1: boundedness

Assume first that Tµ is bounded on A2(ω). For fixed a ∈ D, one has

TµKa(a) =

∫
D
|Ka(z)|2 ω(z) dµ(z).

By Lemma E, there is δ ∈ (0,mτ ) such that |Ka(z)| � ‖Kz‖A2(ω) · ‖Ka‖A2(ω), for every
z ∈ D(δτ(a)). This together with the norm estimate given in Lemma D and the fact that
τ(z) � τ(a) for z ∈ D(δτ(a)) gives

TµKa(a) ≥
∫
D(δτ(a))

|Ka(z)|2 ω(z) dµ(z)

&
∫
D(δτ(a))

‖Kz‖2
A2(ω) ‖Ka‖2

A2(ω) ω(z) dµ(z)

� µ(D(δτ(a))

ω(a) τ(a)4
=

µ̂δ(a)

ω(a) τ(a)2
.

Therefore, by Lemma A and the estimate of the norm of the reproducing kernels, we obtain

µ̂δ(a) . ω(a) τ(a)2 |TµKa(a)| ≤ ω(a)1/2 τ(a) ‖TµKa‖A2(ω)

≤ ω(a)1/2 τ(a) ‖Tµ‖ · ‖Ka‖A2(ω) . ‖Tµ‖.
(2.4)

Conversely, suppose that (2.2) holds. Let f, g ∈ A2(ω). By Lemma 2.2 and because
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dν = ωdµ is a Carleson measure for A2(ω) with ‖Iν‖2 � Cµ := supz∈D µ̂δ(z) (see Theorem
D), we have∣∣〈Tµf, g〉ω∣∣ ≤ ∫

D
|f(z)| |g(z)| dν(z) ≤ ‖f‖L2(ν) · ‖g‖L2(ν) . Cµ‖f‖A2(ω) · ‖g‖A2(ω).

This shows that Tµ is bounded on A2(ω) with ‖Tµ‖ . Cµ finishing the proof.

Proof of Theorem 2.1: compactness

Let kz be the normalized reproducing kernels in A2(ω). From (2.4) in the proof of the
boundedness part, and the estimate for ‖Kz‖A2(ω), we have

µ̂δ(z) . ‖Tµkz‖A2(ω).

From Lemma A, it is easy to see that kz converges to zero weakly as |z| → 1−. Thus, if Tµ
is compact, from Theorem 1.14 in [77], we obtain (2.3).

Conversely, suppose (2.3) holds, and let {fn} be a sequence in A2(ω) converging to zero
weakly. To prove compactness, we must show that ‖Tµfn‖A2(ω) → 0. By the proof of the
boundedness, we have

‖Tµfn‖A2(ω) . ‖fn‖L2(ν),

with dν := ωdµ. By Theorem E, our assumption (2.3) implies that Iν : A2(ω) −→ L2(D, dν)
is compact, which implies that ‖fn‖L2(ν) tends to zero. Hence ‖Tµfn‖A2(ω) → 0 proving
that Tµ is compact. The proof is complete.

2.2 Membership in Schatten classes

In this section we will provide a full characterization of the Schatten class membership
of Toeplitz operators acting on large weighted Bergman spaces A2(ω). The case of the
classical weighted Bergman spaces A2

α with α > −1 was obtained by D. Luecking [39], and
can be found also in Zhu’s book [77].

Given 0 < p < ∞, let Sp(A
2(ω)) denote the Schatten p-class of operators from A2(ω)

to A2(ω), it consists of those compact operators T : A2(ω) −→ A2(ω) with its sequence of
singular numbers λn belonging to `p, the p-summable sequence space. We recall that the
singular numbers of a compact operator T are the square root of the eigenvalues of the
positive operator T ∗T, where T ∗ denotes the adjoint of T. One has T ∈ Sp(A2(ω)) if and
only if T ∗T ∈ Sp/2(A2(ω)). Also, the compact operator T admits a decomposition of the
form

T =
∞∑
n=1

λn〈., en〉A2(ω)en,
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where {λn} are the singular numbers of T and {en} is an orthonormal basis in A2(ω). For
p ≥ 1, the class Sp(A

2(ω)) is Banach space equipped with the norm

‖T‖Sp :=

( ∞∑
n=1

|λn|p
)1/p

,

while for 0 < p < 1 one has the inequality [45, Theorem 2.8]

‖S + T‖pSp ≤ ‖S‖
p
Sp

+ ‖T‖pSp .

Two special cases are worth mentioning: S1 is called the trace class, and S2 is called the
Hilbert-Schmidt class. For a positive operator T, let tr(T ) denote the usual trace defined
by

tr(T ) :=
∞∑
n=1

〈Ten, en〉ω = ‖T‖S1 .

More background information about the Schatten classes Sp can be found in [77, Chapter
1] for example.

The main result of this section is the following:

In this section, we are going to describe those positive Borel measures µ for which the
Toeplitz operator Tµ belongs to the the Schatten ideal Sp(A

2(ω)), for weights ω ∈ W . In
order to obtain such a characterization, we need to introduce first some concepts.

We define the ω-Berezin transform Bωµ of the measure µ as

Bωµ(z) :=

∫
D
|kz(ξ)|2 ω(ξ) dµ(ξ), z ∈ D,

where kz are the normalized reproducing kernels in A2(ω). We also recall that, for δ ∈
(0,mτ ), the averaging function µ̂δ is given by

µ̂δ(z) :=
µ(D(δτ(z))

τ(z)2
, z ∈ D.

We also consider the measure λτ given by

dλτ (z) =
dA(z)

τ(z)2
, z ∈ D.

Proposition 2.3. Let 1 ≤ p <∞, and ω ∈ W. The following conditions are equivalent :

(a) The function Bωµ is in Lp(D, dλτ ).

(b) The function µ̂δ is in Lp(D, dλτ ) for any δ ∈ (0,mτ ) small enough.
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(c) The sequence {µ̂δ(zn)} is in `p for any (δ, τ)-lattice {zn} with δ ∈ (0, mτ
4

) sufficiently
small.

Proof. (a)⇒ (b). By Lemma E, for all δ ∈ (0,mτ ) sufficiently small, one has

|Kz(ζ)| � ‖Kz‖A2(ω) · ‖Kζ‖A2(ω), ζ ∈ D(δτ(z))

Then

Bωµ(z) =

∫
D
|kz(ζ)|2 ω(ζ) dµ(ζ) ≥ ‖Kz‖−2

A2(ω)

∫
D(δτ(z))

|Kz(ζ)|2 ω(ζ) dµ(ζ)

�
∫
D(δτ(z))

‖Kζ‖2
A2(ω) ω(ζ) dµ(ζ) � µ̂δ(z).

Since Bωµ is in Lp(D, dλτ ), this gives (b).

(b)⇒ (c). Since µ̂δ(zn) . µ̂4δ(z), for z ∈ D(δτ(zn)), then∑
n

µ̂δ(zn)p .
∑
n

∫
D(δτ(zn))̂

µ4δ(z)p
dA(z)

τ(z)2
.
∫
D
µ̂4δ(z)p dλτ (z).

(c)⇒ (a). We have

Bωµ(z) ≤ ‖Kz‖−2
A2(ω)

∑
n

∫
D(δτ(zn))

|Kz(s)|2 ω(s) dµ(s).

We use Lemma A in order to obtain

∫
D(δτ(zn))

|Kz(s)|2 ω(s) dµ(s) .
∫
D(δτ(zn))

(
1

τ(s)2

∫
D(δτ(s))

|Kz(ξ)|2 ω(ξ) dA(ξ)

)
dµ(s)

.

(∫
D(3δτ(zn))

|Kz(ξ)|2 ω(ξ) dA(ξ)

)
µ̂δ(zn).

If p > 1, by Hölder’s inequality,

(∑
n

∫
D(δτ(zn))

|Kz(s)|2 ω(s) dµ(s)

)p

. ‖Kz‖2(p−1)

A2(ω)

∑
n

(∫
D(3δτ(zn))

|Kz(ξ)|2 ω(ξ) dA(ξ)

)
µ̂δ(zn)p.
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This gives

∫
D
Bωµ(z)p dλτ (z) .

∑
n

µ̂δ(zn)p
∫
D(3δτ(zn))

(∫
D
|Kξ(z)|2 ‖Kz‖−2

A2(ω)dλτ (z)

)
ω(ξ) dA(ξ).

Since ‖Kz‖2
A2(ω) � τ(z)−2ω(z)−1, we have∫

D
|Kξ(z)|2 ‖Kz‖−2

A2(ω)dλτ (z) � ‖Kξ‖2
A2(ω) � τ(ξ)−2ω(ξ)−1.

Putting this estimate in the previous inequality, we finally get∫
D
Bωµ(z)p dλτ (z) .

∑
n

µ̂δ(zn)p, p ≥ 1.

This finishes the proof.

Remark: It should be observed that the equivalence of (b) and (c) in Proposition 2.3 con-
tinues to hold for 0 < p < 1 as well as the implication (a) implies (b). In order to get
equivalence with condition (a) even in the case 0 < p < 1, it seems that one needs Lp-
integral estimates for reproducing kernels, estimates that are not available nowadays.

Next Lemma is the analogue to our setting of a well known result for standard Bergman
spaces.

Lemma 2.4. Let ω ∈ W, and T be a positive operator on A2(ω). Let T̃ be the Berezin
transform of the operator T defined by

T̃ (z) = 〈Tkz, kz〉ω, z ∈ D.

(a) Let 0 < p ≤ 1. If T̃ ∈ Lp(D, dλτ ) then T is in Sp.

(b) Let p ≥ 1. If T is in Sp then T̃ ∈ Lp(D, dλτ ).

Proof. Let p > 0. The positive operator T is in Sp if and only if T p is in the trace class
S1. Fix an orthonormal basis {ek} of A2(ω). Since T p is positive, it belongs to the trace
class if and only if

∑
k〈T pek, ek〉ω <∞. Let S =

√
T p. Then∑

k

〈T pek, ek〉ω =
∑
k

‖Sek‖2
A2(ω).
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Now, by Fubini’s theorem and Parseval’s identity, we have∑
k

‖Sek‖2
A2(ω) =

∑
k

∫
D
|Sek(z)|2 ω(z) dA(z) =

∑
k

∫
D
|〈Sek, Kz〉ω|2 ω(z) dA(z)

=

∫
D

(∑
k

|〈ek, SKz〉ω|2
)
ω(z) dA(z) =

∫
D
‖SKz‖2

A2(ω) ω(z) dA(z)

=

∫
D
〈T pKz, Kz〉ω ω(z) dA(z) =

∫
D
〈T pkz, kz〉ω‖Kz‖2

A2(ω) ω(z) dA(z)

�
∫
D
〈T pkz, kz〉ω dλτ (z).

Hence, both (a) and (b) are consequences of the inequalities (see [77, Proposition 1.31])

〈T pkz, kz〉ω ≤ [〈Tkz, kz〉ω]p = [T̃ (z)]p, 0 < p ≤ 1

and

[T̃ (z)]p = [〈Tkz, kz〉ω]p ≤ 〈T pkz, kz〉ω, p ≥ 1.

This finishes the proof of the lemma.

Proposition 2.5. Let ω ∈ W. If 0 < p ≤ 1 and Bωµ is in Lp(D, dλτ ), then Tµ belongs to
Sp(A

2(ω)). Conversely, if p ≥ 1 and Tµ is in Sp(A
2(ω)), then Bωµ ∈ Lp(D, dλτ ).

Proof. If Bωµ is in Lp(D, dλτ ), then it is easy to see that Tµ is bounded on A2(ω) (just
use the discrete version in Proposition 2.3 to see that the condition in Theorem 2.1 holds).

Therefore, the result is a consequence of Lemma 2.4 since T̃µ(z) = Bωµ(z).

Now we are almost ready for the characterization of Schatten class Toeplitz operators, but
we need first some technical lemmas on properties of lattices. We use the notation

dτ (z, ζ) =
|z − ζ|

min(τ(z), τ(ζ))
, z, ζ ∈ D.
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Lemma 2.6. Let τ ∈ L, and {zj} be a (δ, τ)-lattice on D. For each ζ ∈ D, the set

Dm(ζ) =
{
z ∈ D : dτ (z, ζ) < 2mδ

}
contains at most K points of the lattice, where K depends on the positive integer m but
not on the point ζ.

Proof. Let K be the number of points of the lattice contained in Dm(ζ). Due to the
Lipschitz condition (B), we have

τ(ζ) ≤ τ(zj) + c2|ζ − zj| ≤ (1 + c22mδ) τ(zj) = Cm τ(zj).

Then

K · τ(ζ)2 ≤ C2
m

∑
zj∈Dm(ζ)

τ(zj)
2 . C2

m · Area

 ⋃
zj∈Dm(ζ)

D
(δ

4
τ(zj)

) .

As done before, we also have τ(zj) ≤ Cmτ(ζ), if zj ∈ Dm(ζ). From this we easily see that

D
(δ

4
τ(zj)

)
⊂ D

(
c2mδτ(ζ)

)
for some constant c. Since the sets {D( δ

4
τ(zj))} are pairwise disjoints, we have⋃

zj∈Dm(ζ)

D
(δ

4
τ(zj)

)
⊂ D

(
c2mδτ(ζ)

)
.

Therefore, we get

K · τ(ζ)2 ≤ C2
m · Area

(
D
(
c2mδτ(ζ)

))
. C2

m22mτ(ζ)2,

that implies K ≤ C24m.

Next, we use the result just proved to decompose any (δ, τ)-lattice into a finite number
of “big” separated subsequences.

Lemma 2.7. Let τ ∈ L and δ ∈ (0,mτ ). Let m be a positive integer. Any (δ, τ)-lattice
{zj} on D can be partitioned into M subsequences such that, if aj and ak are different
points in the same subsequence, then dτ (aj, ak) ≥ 2mδ.

Proof. Let K be the number given by Lemma 2.6. From the lattice {zj} extract a maximal
(2mδ)-subsequence, that is, we select one point ξ1 in our lattice, and then we continue
selecting points ξn of the lattice so that dτ (ξn, ξ) ≥ 2mδ for all previous selected point ξ.
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We stop once the subsequence is maximal, that is, when all the remaining points x of the
lattice satisfy dτ (x, ξx) < 2mδ for some ξx in the subsequence. With the remaining points
of the lattice we extract another maximal (2mδ)-subsequence, and we repeat the process
until we get M = K + 1 maximal (2mδ)-subsequences. If no point of the lattice is left,
we are done. On the other hand, if a point ζ in the lattice is left, this means that there
are M = K + 1 distinct points xζ (at least one for each subsequence) in the lattice with
dτ (ζ, xζ) < 2mδ, in contradiction with the choice of K from Lemma 2.6. The proof is
complete.

Now we are ready for the main result of this Section, that characterizes the membership
in the Schatten ideals of the Toeplitz operator acting on A2(ω).

Theorem 2.8. Let ω ∈ W and 0 < p <∞. The following conditions are equivalent:

(a) The Toeplitz operator Tµ is in Sp(A
2(ω)).

(b) The function µ̂δ is in Lp(D, dλτ ) for δ ∈ (0,mτ ) sufficiently small.

(c) The sequence {µ̂δ(zn)} is in `p for any δ > 0 small enough.

Moreover, when p ≥ 1, the previous conditions are also equivalent to:

(d) The function Bωµ is in Lp(D, dλτ ).

Proof. By Proposition 2.3 and the remark following it, the statements (b) and (c) are
equivalent, and when p ≥ 1, they are also equivalent with condition (d). Hence, according
to Proposition 2.5, the result is proved for p = 1 and we have the implication (a) implies
(b) for p > 1. Moreover, the implication (c) implies (a) for 0 < p < 1 is proved in [35] (the
conditions on the weights are slightly different, but the same proof works for our class).
Thus, it remains to prove that (b) implies (a) for p > 1, and that (a) implies (c) when
0 < p < 1.

Let 1 < p <∞, and assume that µ̂δ ∈ Lp(D, dλτ ) with δ ∈ (0,mτ ) small enough. It is
not difficult to see, using the equivalent discrete condition in (c) together with Theorem
2.1, that Tµ must be compact. For any orthonormal set {en} of A2(ω), we have∑

n

〈Tµen, en〉pω =
∑
n

(∫
D
|en(z)|2 ω(z) dµ(z)

)p
. (2.5)

By Lemma A and Fubini’s theorem,∫
D
|en(z)|2 ω(z) dµ(z) .

∫
D

(
1

τ(z)2

∫
D(δτ(z))

|en(ζ)|2 ω(ζ) dA(ζ)

)
dµ(z)

.
∫
D
|en(ζ)|2 ω(ζ) µ̂δ(ζ) dA(ζ).
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Since p > 1 and ‖en‖A2
ω

= 1, we can apply Hölder’s inequality to get(∫
D
|en(z)|2 ω(z) dµ(z)

)p
.
∫
D
|en(ζ)|2 ω(ζ) µ̂δ(ζ)p dA(ζ).

Putting this into (2.5) and taking into account that ‖Kζ‖2
A2(ω) ω(ζ) � τ(ζ)−2, we see that

∑
n

〈Tµen, en〉pω .
∫
D

(∑
n

|en(ζ)|2
)
ω(ζ) µ̂δ(ζ)p dA(ζ)

≤
∫
D
‖Kζ‖2

A2
ω
ω(ζ) µ̂δ(ζ)p dA(ζ)

�
∫
D
µ̂δ(ζ)p dλτ (ζ).

By [77, Theorem 1.27] this proves that Tµ is in Sp with ‖Tµ‖Sp . ‖µ̂δ‖Lp(D,dλτ ).

Next, let 0 < p < 1, and suppose that Tµ ∈ Sp(A2(ω)). We will prove that (c) holds.
The method for this proof has his roots in previous work of S. Semmes [61] and D. Luecking
[39]. Let {zn} be a (δ, τ)-lattice on D. We want to show that {µ̂δ(zn)} is in `p. To this end,
we fix a large positive integer m ≥ 2 and apply Lemma 2.7 to partition the lattice {zn}
into M subsequences such that any two distinct points aj and ak in the same subsequence
satisfy dτ (aj, ak) ≥ 2mδ. Let {an} be such a subsequence and consider the measure

ν =
∑
n

µχn,

where χn denotes the characteristic function of D(δτ(an)). Since m ≥ 2, the disks
D(δτ(an)) are pairwise disjoints. Since Tµ is in Sp and 0 ≤ ν ≤ µ, then 0 ≤ Tν ≤ Tµ
which implies that Tν is also in Sp. Moreover, ‖Tν‖Sp ≤ ‖Tµ‖Sp . Fix an orthonormal basis
{en} for A2(ω) and define an operator B on A2(ω) by

B

(∑
n

λn en

)
=
∑
n

λn fan ,

where fan = Fan,N/τ(an) and Fan,N are the functions appearing in Lemma C with N taken
big enough so that 3Np−4 > 2p. By [51, Proposition 2], the operator B is bounded. Since
Tν ∈ Sp, the operator T = B∗TνB is also in Sp, with

‖T‖Sp ≤ ‖B‖2 · ‖Tν‖Sp .
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We split the operator T as T = D+E, where D is the diagonal operator on A2(ω) defined
by

Df =
∞∑
n=1

〈Ten, en〉ω 〈f, en〉ω en, f ∈ A2(ω),

and E = T −D. By the triangle inequality,

‖T‖pSp ≥ ‖D‖
p
Sp
− ‖E‖pSp . (2.6)

Since D is positive diagonal operator, we have

‖D‖pSp =
∑
n

〈Ten, en〉pω =
∑
n

〈Tνfan , fan〉pω

=
∑
n

(∫
D
|fan(z)|2 ω(z) dν(z)

)p

≥
∑
n

(∫
D(δτ(an))

|Fan,N(z)|2

τ(an)2
ω(z) dµ(z)

)p
.

Hence, by Lemma C, there is a positive constant C1 such that

‖D‖pSp ≥ C1

∑
n

µ̂δ(an)p. (2.7)

On the other hand, since 0 < p < 1, by [77, Proposition 1.29] and Lemma 2.2 we have

‖E‖pSp ≤
∑
n

∑
k

〈Een, ek〉pω =
∑

n,k:k 6=n

〈Tνfan , fak〉pω

≤
∑

n,k:k 6=n

(∫
D
|fan(ξ)| |fak(ξ)|ω(ξ) dν(ξ)

)p

=
∑

n.k:k 6=n

(∑
j

∫
D(δτ(aj))

|fan(ξ)| |fak(ξ)|ω(ξ) dµ(ξ)

)p
.

(2.8)

If n 6= k, then dτ (an, ak) ≥ 2mδ. Thus, for ξ ∈ D(δτ(aj)), is not difficult to see that
either

dτ (ξ, an) ≥ 2m−2δ or dτ (ξ, ak) ≥ 2m−2δ.
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Indeed, since n 6= k, then either dτ (an, aj) ≥ 2mδ or dτ (aj, ak) ≥ 2mδ. Suppose that
dτ (an, aj) ≥ 2mδ. If dτ (ξ, an) < 2m−2δ, then

|an − aj| ≤ |an − ξ|+ |ξ − aj| < 2m−2δmin(τ(an), τ(ξ)) + δτ(aj)

≤ 2m−1δmin(τ(an), τ(aj)) + δτ(aj).

This directly gives a contradiction if min(τ(an), τ(aj)) = τ(aj). In case that min(τ(an), τ(aj)) =
τ(an), using the Lipschitz condition (B) we get

|an − aj| < 2m−1δmin(τ(an), τ(aj)) + δτ(an) + c2δ|an − aj|

Since c2δ ≤ 1/4, and m ≥ 2, we see that this implies

dτ (an, aj) <
4

3
(2m−1 + 1)δ ≤ 2mδ.

Thus, without loss of generality, we assume that dτ (ξ, an) ≥ 2m−2δ. For any n and k we
write

Ink(µ) =
∑
j

∫
D(δτ(aj))

|fan(ξ)| |fak(ξ)|ω(ξ) dµ(ξ).

With this notation and taking into account (2.8), we have

‖E‖pSp ≤
∑

n.k:k 6=n

Ink(µ)p. (2.9)

By Lemma C, we have

|Fan,N(ξ)| . dτ (ξ, an)−3N .

Apply this inequality raised to the power 1/2, together with the fact that dτ (ξ, an) ≥ 2m−2δ
to get

|fan(ξ)| = |Fan,N(ξ)|1/2

τ(an)
|Fan,N(ξ)|1/2 . 2−

3Nm
2
|fan(ξ)|1/2

τ(an)1/2
. (2.10)

We also have
|fak(ξ)| ≤ |fak(ξ)|1/2 · ‖Kξ‖1/2

A2(ω) (2.11)

Putting (2.10) and (2.11) into the definition of Ink(µ), and using the norm estimate

‖Kξ‖A2(ω) � τ(ξ)−1 ω(ξ)−1/2,
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we obtain

Ink(µ) .
2−

3Nm
2

τ(an)1/2

∑
j

1

τ(aj)1/2

∫
D(δτ(aj))

|fan(ξ)|1/2 |fak(ξ)|1/2 ω(ξ)1/2 dµ(ξ).

By Lemma A, for ξ ∈ D(δτ(aj)), one has

|fan(ξ)|1/2 ω(ξ)1/4 .

(
1

τ(ξ)2

∫
D(δτ(ξ))

|fan(z)|p/2 ω(z)p/4 dA(z)

)1/p

. τ(aj)
−2/p Sn(aj)

1/p,

with

Sn(x) =

∫
D(3δτ(x))

|fan(z)|p/2ω(z)p/4dA(z).

In the same manner we also have

|fak(ξ)|1/2 ω(ξ)1/4 . τ(aj)
−2/p Sk(aj)

1/p.

Therefore, there is a positive constant C2 such that

Ink(µ) ≤ C2 ·
2−

3Nm
2

τ(an)1/2

∑
j

τ(aj)
−4/p

τ(aj)1/2
Sn(aj)

1/p · Sk(aj)1/p µ
(
D(δτ(aj))

)

= C2 ·
2−

3Nm
2

τ(an)1/2

∑
j

τ(aj)
3/2−4/p · Sn(aj)

1/p · Sk(aj)1/p · µ̂δ(aj).

Since 0 < p < 1 and 2−3Nm/2 ≤ 2−m, we get

Ink(µ)p ≤ Cp
2 ·

2−mp

τ(an)p/2

∑
j

τ(aj)
3p
2
−4 · Sn(aj) · Sk(aj) · µ̂δ(aj)p.

Bearing in mind (2.9), this gives

‖E‖pSp ≤ Cp
2 · 2−mp

∑
j

τ(aj)
3p
2
−4 µ̂δ(aj)

p

(∑
n

Sn(aj)

τ(an)p/2

)
·
(∑

k

Sk(aj)

)
. (2.12)
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On the other hand, we have∑
k

Sk(aj) =
∑
k

∫
D(3δτ(aj))

|fak(z)|p/2 ω(z)p/4 dA(z)

=

∫
D(3δτ(aj))

(∑
k

|Fak,N(z)|p/2 τ(ak)
−p/2

)
ω(z)p/4 dA(z).

(2.13)

Now, we claim that ∑
k

τ(ak)
−p/2 |Fak,N(z)|p/2 . τ(z)−p/2 ω(z)−p/4 . (2.14)

In order to prove (2.14), note first that using the estimate (1.8) in Lemma C, the estimate
(1.2) and (iv) of Lemma B, we deduce that∑

{ak∈D(δ0τ(z))}

τ(ak)
−p/2 |Fak,N(z)|p/2

. ω(z)−p/4
∑

{ak∈D(δ0τ(z))}

τ(ak)
−p/2 . τ(z)−p/2 ω(z)−p/4 .

(2.15)

On the other hand, an application of the estimate (1.9) in Lemma C gives∑
{ak /∈D(δ0τ(z))}

τ(ak)
−p/2 |Fak,N(z)|p/2

. ω(z)−p/4τ(z)
3Np
2
− p

2
−2

∑
{ak /∈D(δ0τ(z))}

τ(ak)
2

|z − ak|3Np/2

= ω(z)−p/4τ(z)
3Np
2
− p

2
−2

∞∑
j=0

∑
ak∈Rj(z)

τ(ak)
2

|z − ak|3Np/2
,

where
Rj(z) =

{
ζ ∈ D : 2jδ0τ(z) < |ζ − z| ≤ 2j+1δ0τ(z)

}
, j = 0, 1, 2 . . .

Now observe that, using condition (B) in the definition of the class L, it is easy to see that,
for j = 0, 1, 2, . . . ,

D(δ0τ(ak)) ⊂ D(5δ02jτ(z)) if ak ∈ D(2j+1δ0τ(z)).

This fact together with the finite multiplicity of the covering (see Lemma B) gives∑
ak∈Rj(z)

τ(ak)
2 . m

(
D(5δ02jτ(z))

)
. 22jτ(z)2.

43



Therefore, as 3Np− 4 > 2p,∑
{ak /∈D(δ0τ(z))}

τ(ak)
−p/2 |Fak,N(z)|p/2 . ω(z)−p/4τ(z)−

p
2
−2

∞∑
j=0

2−
3Npj

2

∑
ak∈Rj(z)

τ(ak)
2

. ω(z)−p/4τ(z)−p/2
∞∑
j=0

2
(4−3Np)

2
j

. ω(z)−p/4τ(z)−p/2,

which together with (2.15), proves the claim (2.14).

Putting (2.14) into (2.13) gives ∑
k

Sk(aj) . τ(aj)
2−p/2.

Similarly, ∑
n

Sn(aj)

τ(an)p/2
. τ(aj)

2−p.

Putting these estimates into (2.12) we finally get

‖E‖pSp ≤ Cp
2 · C3 · 2−mp

∑
j

µ̂δ(aj)
p

for some positive constant C3. Combining this with (2.6), (2.7) and choosing m large
enough so that

Cp
2 · C3 · 2−mp ≤ C1/2,

then we deduce that ∑
j

µ̂δ(aj)
p ≤ C1

2
‖T‖pSp ≤ C4‖Tµ‖pSp .

Since this holds for each one of the M subsequences of {zn}, we obtain∑
n

µ̂δ(zn)p ≤ C4M ‖Tµ‖pSp (2.16)

for all locally finite positive Borel measures µ such that∑
n

µ̂δ(zn)p <∞.

Finally, an easy approximation argument then shows that (2.16) actually holds for all
locally finite positive Borel measures µ. The proof is complete.
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Chapter 3

Area operators

Let µ be a finite positive Borel measure on the unit disk D. The area operator Aµ is the
sublinear operator defined by

Aµ(f)(ζ) =

∫
Γ(ζ)

|f(z)| dµ(z)

1− |z|2
, ζ ∈ T := ∂D,

where Γ(ζ) is a typical non-tangential approach region (Stolz region) with vertex ζ ∈ T.
The study of the area operator acting on the classical Hardy spaces Hp was initiated

by W. Cohn [14]. He proved that, for 0 < p < ∞, the area operator Aµ : Hp → Lp(T)
is bounded if and only if µ is a classical Carleson measure (that is, a 1-Carleson measure
according to our definitions in Chapter 1). The area operator is useful in harmonic analysis,
and is closely related to, for example, non-tangential maximal functions, Poisson integrals,
Littlewood-Paley operators, tent spaces, etc. The study of Aµ acting on Hardy spaces was
pursued later in [24], where a full description of the boundedness of Aµ : Hp → Lq(T)
for the case 0 < p < q < ∞ and 1 ≤ q < p < ∞ was obtained. In the setting of
standard Bergman spaces, in [69] Z. Wu obtained a characterization of the boundedness
of Aµ : Apα → Lq(T) for 1 ≤ p, q <∞. In this chapter we are going to extend these results
to our large Bergman spaces Ap(ω) for weights ω in the class W and characterize those
positive Borel measures µ for which the area operator Aµ : Ap(ω)→ Lq(T), 1 ≤ p, q <∞
is bounded.

The case q = 1 is also included in the other results of the chapter, but since it is easier
and very instructive, it seems reasonable to look at it independently. For δ > 0 we use the
notation

µ̂δ,p(z) =
1

τ(z)2

∫
D(δτ(z))

ω(ζ)−1/p dµ(z).

Theorem 3.1. Let ω ∈ W and µ a finite positive Borel measure on D. Then

(i) Let 1 < p < ∞. Then Aµ : Ap(ω) → L1(T) is bounded if and only if µ̂δ,p ∈
Lp/(p−1)(D).
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(ii) Let 0 < p ≤ 1. Then Aµ : Ap(ω)→ L1(T) is bounded if and only if

sup
z∈D

1

τ(z)2/p

∫
D(δ(τ(z))

ω(ζ)−1/p dµ(z) <∞.

Proof. By Fubini’s theorem,

‖Aµ‖L1(T) =

∫
T

∫
Γ(ζ)

|f(z)| dµ(z)

1− |z|2
dζ =

∫
D
|f(z)| dµ(z).

Thus Aµ : Ap(ω) → L1(T) is bounded if and only if µ is a 1-Carleson measure for Ap(ω),
and by Theorem 1 of [51] (see also Theorems D and F) this is equivalent to

sup
z∈D

1

τ(z)2/p

∫
D(δ(τ(z))

ω(ζ)−1/p dµ(z) <∞ if 0 < p ≤ 1,

and to µ̂δ,p ∈ Lp/(p−1)(D) if p > 1.

3.1 The case p ≤ q

For a positive function g defined on the unit circle T, let

Tg(z) =
1

1− |z|

∫
I(z)

g(λ) |dλ|,

where I(0) = T, and for z 6= 0, I(z) denotes the arc in T with center z/|z| and length
2(1− |z|). We also use the notation Pg for the Poisson integral of g.

Lemma 3.2. For all z ∈ D, one has Tg(z) ≤ C Pg(z).

Proof. Since |λ− z| ≤ C(1− |z|) for λ ∈ I(z), one has

Pg(z) =

∫
T
g(λ)

1− |z|2

|λ− z|2
|dλ| ≥

∫
I(z)

g(λ)
1− |z|2

|λ− z|2
|dλ| ≥ C Tg(z).

Theorem 3.3. Let 1 < p ≤ q <∞, and ω ∈ W. Then Aµ : Ap(ω)→ Lq(T) is bounded if
and only if for all δ > 0 sufficiently small, the measure

µ̂δ,p(z)p
′
dA(z)

is a (p′/q′)-Carleson measure.

Here we recall that

µ̂δ,p(z) =
1

τ(z)2

∫
D(δτ(z))

w(ζ)−1/pdµ(ζ).
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Proof. If 1 < q <∞, by duality, the area operator Aµ : Ap(ω)→ Lq(µ) is bounded if and
only if there is a positive constant C such that∫

T
Aµ(f)(ζ) g(ζ) |dζ| ≤ C ‖g‖Lq′ (T)‖f‖Ap(ω)

for each positive function g ∈ Lq′(T), where q′ is the conjugate exponent of q. An applica-
tion of Fubini’s theorem yields∫

T
Aµ(f)(ζ) g(ζ)|dζ| =

∫
T

∫
Γ(ζ)

|f(z)| dµ(z)

1− |z|2
g(ζ) |dζ|

=

∫
T

∫
D
χΓ(ζ)(z)|f(z)| dµ(z)

1− |z|2
g(ζ) |dζ|

=

∫
D

(
1

1− |z|2

∫
I(z)

g(ζ) dζ

)
|f(z)| dµ(z)

=

∫
D
Tg(z) |f(z)| dµ(z).

By Theorem F, we have that Aµ : Ap(ω) → Lq(T) is bounded if and only if for δ > 0
sufficiently small, one has∫

D

(
1

τ(z)2

∫
D(δτ(z))

|Tg(ζ)|ω(ζ)−1/p dµ(ζ)

)p′
dA(z) ≤ C‖g‖p

′

Lq′ (T)
. (3.1)

Now, in order to prove the sufficiency, we use Lemma 3.2, the fact that Pg(ζ) ≤ CPg(z)
for ζ ∈ D(δτ(z)), and Carleson-Duren’s theorem to obtain∫

D

(
1

τ(z)2

∫
D(δτ(z))

|Tg(ζ)|ω(ζ)−1/p dµ(ζ)

)p′
dA(z)

≤ C

∫
D
|Pg(z)|p′ µ̂δ,p(z)p

′
dA(z) ≤ C‖g‖p

′

Lq′ (T)
.

To prove the necessity, for a given arc I ⊂ T, take g = χI in (3.1) to obtain∫
S(I)

(
1

τ(z)2

∫
D(δτ(z))

|TχI(ζ)|ω(ζ)−1/p dµ(ζ)

)p′
dA(z) ≤ C|I|

p′
q′ ,

and, since TχI(ζ) ≥ c > 0 for ζ ∈ D(δτ(z)) and z ∈ S(I), the result follows.

Theorem 3.4. Let 0 < p ≤ 1, p ≤ q < ∞, and ω ∈ W. Then the area operator
Aµ : Ap(ω)→ Lq(T) is bounded if and only if for all δ > 0 sufficiently small,

sup
a∈D

(1− |a|)
q−1
q

τ(a)2/p

∫
D(δτ(a))

ω(z)−1/p dµ(z) <∞. (3.2)
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Proof. Suppose first that Aµ : Ap(ω) → Lq(T) is bounded. Fix a ∈ D, and consider the
test function Fa,p(z) given in Lemma C. One has

‖Aµ(Fa,p)‖Lq(T) ≤ C‖Fa,p‖Ap(ω) ≤ C τ(a)2/p.

On the other hand, there is a number δ > 0 (independent of a and ζ) with D(δτ(a)) ⊂ Γ(ζ)
for ζ ∈ 1

2
I(a) (if I is an arc, then λI denotes the arc with the same center as I and length

λ|I|). Therefore, using the fact that |Fa,p(z)| � ω(z)−1/p for z ∈ D(δτ(a)) (see Lemma C)
one has

‖Aµ(Fa,p)‖qLq(T) ≥
∫

1
2
I(a)

(AµFa,p(ζ))q |dζ| =
∫

1
2
I(a)

(∫
Γ(ζ)

|Fa,p(z)| dµ(z)

1− |z|

)q
|dζ|

≥
∫

1
2
I(a)

(∫
D(δτ(a))

|Fa,p(z)| dµ(z)

1− |z|

)q
|dζ|

≥ C|I(a)|
(∫

D(δτ(a))

ω(z)−1/p dµ(z)

1− |z|

)q
≥ C(1− |a|)1−q

(∫
D(δτ(a))

ω(z)−1/p dµ(z)

)q
.

Thus

sup
a∈D

(1− |a|)1− 1
q

τ(a)2/p

∫
D(δτ(a))

ω(z)−1/p dµ(z) <∞.

Conversely, suppose that (3.2) holds. We must show that the area operator Aµ : Ap(ω)→
Lq(T) is bounded. Let δ > 0 be sufficiently small, and let {zj} be a (δ, τ)-lattice on D. We

use the notation Dj = D(δτ(zj)) and D̃j = D̃(δτ(zj)). Using Lemma A we obtain

Aµf(ζ) =

∫
Γ(ζ)

|f(z)| dµ(z)

1− |z|

≤ C

∫
Γ(ζ)

(
1

ω(z) τ(z)2

∫
D(δτ(z))

|f(ξ)|p ω(ξ) dA(ξ)

)1/p
dµ(z)

1− |z|

≤ C
∑

j:Dj∩Γ(ζ)6=∅

∫
Dj

ω(z)−1/p

τ(z)2/p

(∫
D(δτ(z))

|f(ξ)|p ω(ξ) dA(ξ)

)1/p
dµ(z)

1− |z|

≤ C
∑

j:Dj∩Γ(ζ)6=∅

(∫
D̃j

|f(ξ)|p ω(ξ) dA(ξ)

)1/p
(1− |zj|)−1

τ(zj)2/p

∫
Dj

ω(z)−1/pdµ(z)

Note that in the last inequality we used that τ(z) � τ(zj) for z ∈ Dj. This, together with
the assumption (3.2) yields

Aµf(ζ) ≤ C
∑

j:Dj∩Γ(ζ)6=∅

(∫
D̃j

|f(ξ)|p ω(ξ) dA(ξ)

)1/p

(1− |zj|)−1/q.
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Since 0 < p ≤ 1, and (1− |zj|) � (1− |ξ|) for ξ ∈ D̃j, we get

Aµf(ζ)p ≤ C
∑

j:Dj∩Γ(ζ)6=∅

∫
D̃j

|f(ξ)|p (1− |ξ|)−p/q ω(ξ) dA(ξ)

≤ C

∫
Γ̃(ζ)

|f(ξ)|p (1− |ξ|)−p/q ω(ξ) dA(ξ),

where Γ̃(ζ) is some Stolz angle with vertex at ζ with bigger aperture than Γ(ζ). Thus, by
Hölder’s inequality and Fubini’s theorem,

‖Aµf‖qLq =

∫
T

(
Aµf(ζ)p

)q/p |dζ|
≤ C

∫
T

(∫
Γ̃(ζ)

|f(ξ)|p (1− |ξ|)−p/q ω(ξ) da(ξ)

)q/p
|dζ|

≤ C‖f‖q−pAp(ω)

∫
T

∫
Γ̃(ζ)

|f(ξ)|p ω(ξ)
dA(ξ)

1− |ξ|
|dζ|

= C‖f‖q−pAp(ω)

∫
D
|f(ξ)|p ω(ξ)

(∫
T
χΓ̃(ζ)(ξ) |dζ|

)
dA(ξ)

1− |ξ|
≤ C‖f‖qAp(ω).

Note that the last inequality is due to the fact that
∫
T χΓ̃(ζ)(ξ) |dζ| � (1 − |ξ|). Thus the

proof is complete.

3.2 The case q < p

Theorem 3.5. Let 1 ≤ q < p < ∞, and ω ∈ W. Then the area operator Aµ : Ap(ω) →
Lq(T) is bounded if and only if for all δ > 0 sufficiently small, the function

Fµ(ζ) =

∫
Γ(ζ)

µ̂δ,p(z)p
′

1− |z|
dA(z) (3.3)

belongs to L
q(p−1)
p−q (T).

Proof. Observe that, by Fubini’s theorem, the condition Fµ ∈ L1(T) is equivalent to the
function µ̂δ,p being in Lp/(p−1)(D). Thus, the case q = 1 is just part (i) of Theorem 3.1.
Now, suppose that 1 < q < ∞. In the same way as in the proof of Theorem 3.3, we see
that Aµ : Ap(ω)→ Lq(T) is bounded if and only if for any positive function g ∈ Lq′(T) we
have ∫

D

(
1

τ(z)2

∫
D(δτ(z))

|Tg(ζ)|ω(ζ)−1/p dµ(ζ)

)p′
dA(z) ≤ C‖g‖p

′

Lq′ (T)
. (3.4)
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Observe that q′

q′−p′ = q(p−1)
p−q . As |Tg(ζ)| . |Pg(ζ)| and |Pg(ζ)| � |Pg(z)| for ζ ∈ D(δτ(z)),

if condition (3.3) holds, since now p′ < q′, an application of Theorem C gives∫
D

(
1

τ(z)2

∫
D(δτ(z))

|Tg(ζ)|ω(ζ)−1/p dµ(ζ)

)p′
dA(z)

≤ C

∫
D
|Pg(z)|p′µ̂δ,p(z)p

′
dA(z) ≤ C‖g‖p

′

Lq′ (T)
.

For the converse, we use that
Ph(z) . T

(
(Ph)∗)(z) (3.5)

where u∗(ζ) = supz∈Γ(ζ) |u(z)| is the non-tangential maximal function of u. To prove (3.5),
simply use the obvious inequality

Ph(z) ≤ (Ph)∗(ζ), ζ ∈ I(z)

and then integrate respect to ζ on I(z). Hence, applying (3.4) with g = (Ph)∗ we obtain∫
D

(
1

τ(z)2

∫
D(δτ(z))

|Ph(ζ)|ω(ζ)−1/p dµ(ζ)

)p′
dA(z) ≤ C‖h‖p

′

Lq′ (T)
.

As |Ph(ζ)| � |Ph(z)| for ζ ∈ D(δτ(z)), this gives∫
D
|Ph(z)|p′µ̂δ,p(z)p

′
dA(z) ≤ C‖h‖p

′

Lq′ (T)
.

By Theorem C we see that (3.3) is satisfied.

Finally, in the case that 0 < q < 1 we have a sufficient condition. We didn’t know if this
condition is also necessary, but when q = 1 it coincides with the one that characterizes the
boundedness of the area operator.

Theorem 3.6. Let q < p <∞ with 0 < q ≤ 1. Suppose that the function

F µ
p,q(z) =

(1− |z|)
1−q
q

τ(z)2/q

∫
D(δτ(z))

ω(ζ)−1/p dµ(ζ)

belongs to L
pq
p−q (D). Then the area operator Aµ : Ap(ω)→ Lq(T) is bounded.

Proof. As can be seen from the proof of Theorem 3.4, we have

Aµf(ζ) .
∑

Dj∩Γ(ζ) 6=∅

(∫
D̃j

|f(z)|pω(z) dA(z)

)1/p

(1− |zj|2)−
1
q τ(zj)

−2
(q−p)
pq F µ

p,q(zj).
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Since 0 < q ≤ 1, this gives

Aµf(ζ)q .
∑

Dj∩Γ(ζ)6=∅

(∫
D̃j

|f(z)|pω(z) dA(z)

)q/p

(1− |zj|2)−1 τ(zj)
−2

(q−p)
p F µ

p,q(zj)
q.

At this point we use Hölder’s inequality in order to obtain

Aµf(ζ)q . (I)q/p · (II)(p−q)/p, (3.6)

with

(I) :=
∑

Dj∩Γ(ζ)6=∅

∫
D̃j

|f(z)|p ω(z) dA(z) (1− |zj|)−1

�
∑

Dj∩Γ(ζ)6=∅

∫
D̃j

|f(z)|p ω(z)
dA(z)

1− |z|

.
∫

Γ̃(ζ)

|f(z)|p ω(z)
dA(z)

1− |z|
,

(3.7)

where Γ̃(ζ) is a Stolz region with bigger aperture, and

(II) :=
∑

Dj∩Γ(ζ)6=∅

(1− |zj|2)−1 τ(zj)
2F µ

p,q(zj)
qp
p−q .

Now, it is clear that F µ
p,q(zj) � F µ

p,q(z) if z ∈ Dj. Thus

τ(zj)
2F µ

p,q(zj)
qp
p−q �

∫
Dj

F µ
p,q(z)

qp
p−q dA(z).

This gives

(II) �
∑

Dj∩Γ(ζ) 6=∅

∫
Dj

F µ
p,q(z)

qp
p−q

dA(z)

1− |z|
.
∫

Γ̃(ζ)

F µ
p,q(z)

qp
p−q

dA(z)

1− |z|
. (3.8)

Finally, bearing in mind (3.6), (3.7) and (3.8), we get

‖Aµf‖qLq(T) =

∫
T
Aµf(ζ)q|dζ|

.
∫
T

(∫
Γ̃(ζ)

|f(z)|p ω(z)
dA(z)

1− |z|

)q/p(∫
Γ̃(ζ)

F µ
p,q(z)

qp
p−q

dA(z)

1− |z|

) p−q
p

|dζ|

≤
(∫

T

∫
Γ̃(ζ)

|f(z)|p ω(z)
dA(z)

1− |z|
|dζ|
)q/p(∫

T

∫
Γ̃(ζ)

F µ
p,q(z)

qp
p−q

dA(z)

1− |z|
|dζ|
) p−q

p

�
(∫

D
|f(z)|p ω(z) dA(z)

)q/p(∫
D
F µ
p,q(z)

qp
p−q dA(z)

) p−q
p

This finishes the proof.
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Chapter 4

The exponential weight

For the case of the exponential weight

ω(z) = exp
(
− A

1− |z|2
)
, A > 0

a further study of the corresponding weighted Bergman space can be done, as it has been
recently proved in [16] that the corresponding reproducing kernel Kz satisfies the estimate∫

D
|Kz(ξ)|ω(ξ)1/2 dA(ξ) . ω(z)−1/2. (4.1)

This estimate allows to study the non-Hilbert space case. It turns out that when studying
properties or operators such as the Bergman projection, Toeplitz operators or Hankel op-
erators, where the reproducing kernels are involved, the most convenient settings are the
spaces Ap(ωp/2). We consider the class E to consist of those weights in W satisfying condi-
tion (4.1). In the last section of this chapter, we will prove that the family of exponential
type weights ωσ given by (1.1) satisfy condition (4.1) for 0 < σ <∞.

4.1 Integral estimates for reproducing kernels

For a given weight v we introduce the growth space L∞(v) that consists of those measurable
functions f on D such that

‖f‖L∞(v) := ess sup
z∈D
|f(z)|v(z) <∞,

and let A∞(v) := L∞(v) ∩H(D).

Lemma 4.1. Let ω ∈ E. For each z ∈ D, we have

‖Kz‖A∞(ω1/2) . ω(z)−1/2 τ(z)−2.
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Proof. By Lemma A and condition (4.1), we have

ω(ξ)1/2|Kz(ξ)| = ω(ξ)1/2|Kξ(z)| . ω(ξ)1/2

ω(z)1/2 τ(z)2

∫
D(δτ(z))

|Kξ(s)|ω(s)1/2 dA(s)

. ω(z)−1/2 τ(z)−2.

This Lemma together with condition (4.1) allows us to obtain the following estimate
for the norm of the reproducing kernel in Ap(ωp/2).

Lemma 4.2. Let 1 ≤ p <∞, ω ∈ E and z ∈ D. Then

‖Kz‖Ap(ωp/2) � ω(z)−1/2 τ(z)−2(p−1)/p.

Proof. By (4.1) and Lemma 4.1, we have

‖Kz‖pAp(ωp/2)
=

∫
D
|Kz(ξ)|p ω(ξ)p/2 dA(ξ) =

∫
D
|Kz(ξ)|ω(ξ)1/2

(
|Kz(ξ)|ω(ξ)1/2

)p−1
dA(ξ)

≤ ‖Kz‖p−1

A∞(ω1/2)

∫
D
|Kz(ξ)|ω(ξ)1/2 dA(ξ) . ‖Kz‖p−1

A∞(ω1/2)
ω(z)−1/2

. ω(z)−p/2τ(z)−2(p−1).

On the other hand, by

‖Kz‖pAp(ωp/2)
≥
∫
D(δτ(z))

|Kz(ξ)|p ω(ξ)p/2 dA(ξ)

≥ C‖Kz‖pA2(ω)

∫
D(δτ(z))

‖Kξ‖pA2(ω) ω(ξ)1/2 dA(ξ)

≥ C ω(z)−p/2τ(z)−2(p−1).

4.2 Bounded projections

The boundedness of Bergman projection is a fact of fundamental importance. In the case
of the unit disc, the boundedness of Bergman projections is studied in [27], [77] and it
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immediately gives the duality between the Bergman spaces. The orthogonal Bergman
projection Pω from L2(D, ωdA) to A2(ω) is given by

Pωf(z) =

∫
D
f(ξ)Kz(ξ)ω(ξ) dA(ξ).

The natural Bergman projection is not necessarily bounded on Lp(D, ωdA) unless p = 2,
(see [18] and [71] for more details). However, we are going to see next that Pω is bounded
on Lp(ωp/2) := Lp(D, ωp/2 dA). We first prove the boundedness of the operator P+

ω defined
as

P+
ω f(z) =

∫
D
f(ξ) |Kz(ξ)|ω(ξ) dA(ξ).

We mention here that, for the case of the exponential weight with σ = 1, the results of
this section has been obtained recently in [16].

Theorem 4.3. Let 1 ≤ p <∞ and ω ∈ E . The operator P+
ω is bounded on Lp(ωp/2) and

on L∞(ω1/2).

Proof. We first consider the easiest case p = 1. By Fubini’s theorem and condition (4.1)
we obtain

‖P+
ω f‖A1(ω1/2) =

∫
D
|P+
ω f(z)|ω(z)1/2 dA(z)

≤
∫
D

∫
D
|f(z)||Kz(ξ)|ω(ξ)ω(z)1/2 dA(ξ) dA(z)

=

∫
D
|f(ξ)|ω(ξ)

(∫
D
|Kξ(z)|ω(z)1/2dA(z)

)
dA(ξ)

.
∫
D
|f(ξ)|ω(ξ)1/2dA(ξ) = ‖f‖L1(ω1/2).

Next, we consider the case 1 < p < ∞. Let p′ denote the conjugate exponent of p. By
Hölder’s inequality and (4.1) we get

|P+
ω f(z)|p ≤

(∫
D
|f(ξ)|p |Kz(ξ)|ω(ξ)

p+1
2 dA(ξ)

)(∫
D
|Kz(ξ)|ω(ξ)1/2 dA(ξ)

)p−1

.

(∫
D
|f(ξ)|p|Kz(ξ)|ω(ξ)

p+1
2 dA(ξ)

)
ω(z)−

(p−1)
2 .
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This together with Fubini’s theorem and another application of (4.1) gives

‖P+
ω f‖

p

Ap(ωp/2)
=

∫
D
|P+
ω f(z)|p ω(z)p/2dA(z)

.
∫
D

(∫
D
|f(ξ)|p|Kz(ξ)|ω(ξ)

p+1
2 dA(ξ)

)
ω(z)1/2dA(z)

=

∫
D
|f(ξ)|p ω(ξ)

p+1
2

(∫
D
|Kξ(z)|ω(z)1/2dA(z)

)
dA(ξ)

. ‖f‖p
Lp(ωp/2)

.

Finally, if f ∈ L∞(ω1/2), by condition (4.1) we get

ω(z)1/2|P+
ω (f)(z)| ≤ ω(z)1/2

∫
D
|f(ξ)| |Kz(ξ)|ω(ξ)dA(ξ)

≤ ‖f‖L∞(ω1/2) ω(z)1/2

∫
D
|Kz(ξ)|ω(ξ)1/2 dA(ξ)

. ‖f‖L∞(ω1/2).

This shows that P+
ω is bounded on L∞(ω1/2). The proof is complete.

Theorem 4.4. Let 1 ≤ p < ∞ and ω ∈ E . The Bergman projection Pω : Lp(ωp/2) −→
Ap(ωp/2) is bounded. Moreover, Pω : L∞(ω1/2)→ A∞(ω1/2) is also bounded.

Proof. In view of Theorem 4.3, it remains to see that Pωf defines an analytic function
on D. This follows easily by density, the boundedness of P+

ω and the completeness of
Ap(ωp/2).

Corollary 4.5. Let ω ∈ E. The reproducing formula f = Pωf holds for each f ∈ A1(ω1/2).

Proof. This is an immediate consequence of the boundedness of the Bergman projection
and the density of the polynomials.
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4.3 Complex interpolation and duality

An elementary introduction to the basic theory of complex interpolation, including the
complex interpolation of Lp spaces can be found in Chapter 2 of the book [77]. We assume
in this section that the reader is familiar with that theory. First of all, we recall the
following well-known interpolation theorem of Stein and Weiss [63].

Theorem 4.6. Suppose that ω, ω0 and ω1 are weight functions on D. If 1 ≤ p0 ≤ p1 ≤ ∞
and 0 ≤ θ ≤ 1, then [

Lp0(D, ω0dA), Lp1(D, ω1dA)
]
θ

= Lp(D, ωdA)

with equal norms, where

1

p
=

1− θ
p0

+
θ

p1

, ω1/p = ω
1−θ
p0

0 ω
θ
p1
1 .

With this and the result on bounded projections we can obtain the following result on
complex interpolation of large weighted Bergman spaces.

Theorem 4.7. Let ω be a weight in the class E. If 1 ≤ p0 ≤ p1 ≤ ∞ and 0 ≤ θ ≤ 1, then

[Ap0(ωp0/2), Ap1(ωp1/2)] = Ap(ωp/2),

where
1

p
=

1− θ
p0

+
θ

p1

.

Proof. The inclusion [Ap0(ωp0/2), Ap1(ωp1/2)] ⊂ Ap(ωp/2) is a consequence of the definition
of complex interpolation, the fact that each Apk(ωpk/2) is a closed subspace of Lpk(ωpk/2)
and

[
Lp0(ωp0/2), Lp1(ωp1/2)

]
θ

= Lp(ωp/2). This last assertion follows from Theorem 4.6.

On the other hand, if f ∈ Ap(ωp/2) ⊂ Lp(ωp/2), it follows from Theorem 4.6 that[
Lp0(ωp0/2), Lp1(ωp1/2)

]
θ

= Lp(ωp/2).

Thus, there exists a function Fζ(z) (z ∈ D and 0 ≤ Re ζ ≤ 1) and a positive constant C
such that:

(a) Fθ(z) = f(z) for all z ∈ D.

(b) ‖Fζ‖Lp0 (ωp0/2) ≤ C for all Re ζ = 0.

(c) ‖Fζ‖Lp1 (ωp1/2) ≤ C for all Re ζ = 1.

Define a function Gζ by Gζ(z) = PωFζ(z). Due to the reproducing formula in Corollary
4.5 and Theorem 4.4 we have:
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(a) Gθ(z) = f(z) for all z ∈ D.

(b) ‖Gζ‖Lp0 (ωp0/2) ≤ C for all Re ζ = 0.

(c) ‖Gζ‖Lp1 (ωp1/2) ≤ C for all Re ζ = 1.

Since each functionGζ is analytic on D, we conclude that f belongs to [Ap0(ωp0/2), Ap1(ωp1/2)].
This completes the proof of the theorem.

As in the case of the standard Bergman spaces, one can use the result just proved on
the boundedness of the Bergman projection Pω in Lp(ωp/2) to identify the dual spaces of
Ap(ωp/2). As usual, if X is a Banach space, we denote its dual by X∗. Next two results
(Theorems 4.8 and 4.9) on the duality of Bergman spaces with exponential type weights
appears also on [16].

Theorem 4.8. Let ω ∈ E and 1 < p < ∞. The dual space of Ap(ωp/2) can be identified
(with equivalent norms) with Ap

′
(ωp

′/2) under the integral pairing

〈f, g〉ω =

∫
D
f(z) g(z)ω(z) dA(z).

Here p′ denotes the conjugate exponent of p, that is, p′ = p/(p− 1).

Proof. Let 1 < p < ∞ and let p′ = p/(p − 1) be its dual exponent. Given a function
g ∈ Ap′(ωp′/2), Hölder’s inequality implies that the linear functional ψg : Ap(ωp/2) −→ C
defined by

ψg(f) :=

∫
D
f(ξ) g(ξ)ω(ξ) dA(ξ), f ∈ Ap(ωp/2),

is bounded with ‖ψg‖ ≤ ‖g‖Ap′ (ωp′/2).

Conversely, let T ∈
(
Ap(ωp/2)

)∗
. By Hahn-Banach we can extend T to an element T̃ ∈(

Lp(D, ωp/2dA)
)∗

such that ‖T̃‖ = ‖T‖. By the Riesz representation Theorem there exists

H ∈ Lp′(D, ωp/2dA) with ‖H‖Lp′ (ωp/2) = ‖T̃‖ = ‖T‖ such that

T̃ (f) =

∫
D
f(ξ)H(ξ)ω(ξ)p/2 dA(ξ),

for every f ∈ Ap(ωp/2). Consider the function h(ξ) = H(ξ)ω(ξ)
p
2
−1. Then h ∈ Lp′(ωp′/2)

with
‖h‖Lp′ (ωp′/2) = ‖H‖Lp′ (ωp/2) = ‖T‖,

and

T (f) = T̃ (f) =

∫
D
f(ξ) h(ξ)ω(ξ) dA(ξ), f ∈ Ap(ωp/2).
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Let g = Pωh. By Theorem 4.4, the Bergman projection Pω : Lp
′
(ωp

′/2) −→ Ap
′
(ωp

′/2) is
bounded. Thus g ∈ Ap′(ωp′/2) with

‖g‖Ap′ (ωp′/2) = ‖Pωh‖Ap′ (ωp′/2) . ‖h‖Lp′ (ωp′/2) = ‖T‖.

From Fubini’s theorem it is easy to see that Pω is self-adjoint. Indeed,

〈Pωf, g〉ω =

∫
D
Pωf(ξ) g(ξ)ω(ξ) dA(ξ)

=

∫
D

(∫
D
f(s)Kξ(s)ω(s) dA(s)

)
g(ξ)ω(ξ) dA(ξ)

=

∫
D

(∫
D
g(ξ)Ks(ξ)ω(ξ) dA(ξ)

)
f(s)ω(s) dA(s)

=

∫
D
Pωg(s) f(s)ω(s) dA(s) = 〈f, Pωg〉ω.

The interchange of the order of integration is well justified, because of the boundedness of
the operator P+

ω (see Theorem 4.3) given by

P+
ω f(z) =

∫
D
f(ζ) |Kz(ζ)|ω(ζ) dA(ζ).

Therefore, since f = Pωf for every f ∈ Ap(ωp/2) according to Corollary 4.5, we get

T (f) =

∫
D
f(ξ)h(ξ)ω(ξ) dA(ξ)

= 〈f, Pωh〉ω = 〈f, g〉ω = ψg(f).

Finally, the function g is unique. Indeed, if there is another function g̃ ∈ Ap′(ωp′/2) with
T (f) = ψg(f) = ψg̃(f) for every f ∈ Ap(ωp/2), then by taking f = Ka for each a ∈ D (that
belongs to Ap(ωp/2) due to Lemma 4.2), and using the reproducing formula, we obtain

g(a) = ψg(Ka) = ψg̃(Ka) = g̃(a), a ∈ D.

Thus, any bounded linear functional T is of the form T = ψg for some unique g ∈ Ap′(ωp′/2)
and, furthermore

‖T‖ � ‖g‖Ap′ (ωp′/2).

The proof is complete.

59



Theorem 4.9. Let ω ∈ E . The dual space of A1(ω1/2) can be identified (with equivalent
norms) with A∞(ω1/2) under the integral pairing 〈f, g〉ω.

Proof. Let g ∈ A∞(ω1/2). The linear functional ψg : A1(ω1/2) −→ C defined by ψg(f) :=
〈f, g〉ω is bounded with ‖ψg‖ ≤ ‖g‖L∞(ω1/2), since for every f ∈ A1(ω1/2)

|ψg(f)| ≤ ‖g‖L∞(ω1/2)‖f‖A1(ω1/2).

Conversely, let T ∈
(
A1(ω1/2)

)∗
. Consider the space X that consists of the functions

of the form h = fω1/2 with f ∈ A1(ω1/2). Clearly X is a subspace of L1(D, dA) and
F (h) := T (hω−1/2) = T (f) defines a bounded linear functional on X with ‖F‖ = ‖T‖. By

Hahn- Banach, F has an extension F̃ ∈ (L1(D, dA))
∗

with ‖F̃‖ = ‖F‖. Hence, there is a
function G ∈ L∞(D, dA) with ‖G‖L∞(D,dA) = ‖F‖ such that

F (h) = F̃ (h) =

∫
D
h(ξ)G(ξ) dA(ξ), h ∈ X,

or

T (f) =

∫
D
f(ξ)G(ξ)ω(ξ)1/2 dA(ξ), f ∈ A1(ω1/2).

Consider the function H(z) = ω(z)−1/2G(z). Then H ∈ L∞(ω1/2) with

‖H‖L∞(ω1/2) = ‖G‖L∞(D,dA) = ‖F‖ = ‖T‖.

By Theorem 4.4, the function g = PωH is in A∞(ω1/2) with

‖g‖A∞(ω1/2) . ‖H‖L∞(ω1/2) = ‖T‖.

Also, for f ∈ A1(ω1/2), by the reproducing formula, we have

T (f) =

∫
D
f(ξ)H(ξ)ω(ξ) dA(ξ) = 〈Pωf,H〉ω = 〈f, PωH〉ω = ψg(f).

Finally, as in the proof of Theorem 4.8 the function g is unique.

Corollary 4.10. Let ω ∈ E . The set E of finite linear combinations of reproducing kernels
is dense in Ap(ωp/2), 1 ≤ p <∞.

Proof. Since E is a linear subspace of Ap(ωp/2), by standard functional analysis and the
duality results in Theorems 4.8 and 4.9, it is enough to prove that g ≡ 0 if g ∈ Ap′(ωp′/2)
satisfies 〈f, g〉ω = 0 for each f in E (with p′ being the conjugate exponent of p, and
g ∈ A∞(ω1/2) if p = 1). But, taking f = Kz for each z ∈ D and using the reproducing
formula, we get g(z) = Pωg(z) = 〈g,Kz〉ω = 0, for each z ∈ D. This finishes the proof.
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Our next goal is to identify the predual of A1(ω1/2). For a given weight v, we introduce the
space A0(v) consisting of those functions f ∈ A∞(v) with lim|z|→1− v(z)|f(z)| = 0. Clearly,
A0(v) is a closed subspace of A∞(v).

Theorem 4.11. Let ω ∈ E . Under the integral pairing 〈f, g〉ω, the dual space of A0(ω1/2)
can be identified (with equivalent norms) with A1(ω1/2).

Proof. If g ∈ A1(ω1/2), clearly Λg(f) = 〈f, g〉ω defines a bounded linear functional in
A0(ω1/2) with ‖Λg‖ ≤ ‖g‖A1(ω1/2). Conversely, assume that Λ ∈

(
A0(ω1/2)

)∗
. Consider the

space X that consists of functions of the form h = fω1/2 with f ∈ A0(ω1/2). Clearly X
is a subspace of C0(D) (the space of all continuous functions vanishing at the boundary)
and T (h) = Λ(ω−1/2h) = Λ(f) defines a bounded linear functional on X with ‖T‖ = ‖Λ‖.
By Hahn-Banach, T has an extension T̃ ∈

(
C0(D)

)∗
with ‖T̃‖ = ‖T‖. Hence, by Riesz

representation theorem, there is a measure µ ∈ M(D) (the Banach space of all complex
Borel measures µ equipped with the variation norm ‖µ‖M) with ‖µ‖M = ‖T‖ such that

T (h) = T̃ (h) =

∫
D
h(ζ) dµ(ζ), h ∈ X,

or

Λ(f) =

∫
D
f(ζ)ω(ζ)1/2 dµ(ζ), f ∈ A0(ω1/2).

Consider the function g defined on the unit disk by

g(z) =

∫
D
Kz(ζ)ω(ζ)1/2 dµ(ζ), z ∈ D.

Clearly g is analytic on D and, by Fubini’s theorem and condition (4.1), we have

‖g‖A1(ω1/2) ≤
∫
D

(∫
D
|Kz(ζ)|ω(ζ)1/2 d|µ|(ζ)

)
ω(z)1/2dA(z)

=

∫
D

(∫
D
|Kζ(z)|ω(z)1/2 dA(z)

)
ω(ζ)1/2 d|µ|(ζ)

. |µ|(D) = ‖µ‖M = ‖Λ‖,

proving that g belongs to A1(ω1/2). Now, since A0(ω1/2) ⊂ A2(ω), the reproducing formula
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f(ζ) = 〈f,Kζ〉ω holds for all f ∈ A0(ω1/2). This and Fubini’s theorem yields

Λg(f) = 〈f, g〉ω =

∫
D
f(z)

(∫
D
Kz(ζ)ω(ζ)1/2 dµ(ζ)

)
ω(z) dA(z)

=

∫
D

(∫
D
f(z)Kζ(z)ω(z) dA(z)

)
ω(ζ)1/2 dµ(ζ)

=

∫
D
f(ζ)ω(ζ)1/2 dµ(ζ) = Λ(f).

By the reproducing formula, the function g is uniquely determined by the identity g(z) =
Λ(Kz). This completes the proof.

For the case of normal weights, the analogues of Theorems 4.9 and 4.11 were obtained by
Shields and Williams in [62]. They also asked what happens with the exponential weights,
problem that is solved in the present work.

4.4 Atomic decomposition

With the help of the duality results and the estimates for the p-norm of the reproducing
kernels Kz, we can obtain the atomic decomposition of Bergman spaces with exponential
weights in the case that p ≥ 1. We use the notation kp,z for the normalized reproducing
kernels in Ap(ωp/2), that is

kp,z =
Kz

‖Kz‖Ap(ωp/2)

.

Theorem 4.12. Let ω ∈ E and 1 ≤ p <∞. There exists a lattice {zn} ⊂ D such that:

(i) For any λ = {λn} ∈ `p, the function

f(z) =
∑
n

λn kp,zn(z)

is in Ap(ωp/2) with ‖f‖Ap(ωp/2) ≤ C‖λ‖`p .

(ii) For every f ∈ Ap(ωp/2) exists λ = {λn} ∈ `p such that

f(z) =
∑
n

λn kp,zn(z)

and ‖λ‖`p ≤ C ‖f‖Ap(ωp/2).
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Proof. (i) As done in Proposition 1.5, the function f defines an analytic function on D.
Set

M(z) :=
∞∑
k=0

τ(zk)
2ω(zk)

1/2|Kzk(z)|.

By Hölder’s inequality we have

‖F‖p
Ap(ωp/2)

≤
∫
D

(
∞∑
k=0

|λk|ω(zk)
1/2 τ(zk)

2( p−1
p

)|Kzk(z)|

)p

ω(z)p/2 dA(z).

.
∫
D

( ∞∑
k=0

|λk|pω(zk)
1/2|Kzk(z)|

)
M(z)p−1ω(z)p/2 dA(z).

On the other hand, using Lemma A, Lemma B and condition (4.1) we have

M(z) : =
∞∑
k=0

τ(zk)
2 ω(zk)

1/2 |Kzk(z)|

.
∞∑
k=0

∫
D(δτ(zk))

|Kz(ξ)|ω(ξ)1/2dA(ξ)

.
∫
D
|Kz(ξ)|ω(ξ)1/2 dA(ξ) . ω(z)−1/2.

Therefore, applying condition (4.1) again, we obtain

‖F‖p
Ap(ωp/2)

.
∫
D

(
∞∑
k=0

|λk|pω(zk)
1/2 |Kzk(z)|

)
ω(z)1/2 dA(z)

.
∞∑
k=0

|λk|pω(zk)
1/2

∫
D
|Kzk(z)|ω(z)1/2 dA(z)

.
∞∑
k=0

|λk|p.

In order to prove (ii), we define a linear operator S : `p −→ Ap(ωp/2) given by

S({λn}) :=
∞∑
n=0

λn kp,zn .

By (i), the operator S is bounded. By the duality results obtained in the previous Chapter,
when 1 < p < ∞, the adjoint operator S∗ : Ap

′
(ωp

′/2) → `p
′
, where p′ is the conjugate

exponent of p, is defined by

〈Sx, f〉ω = 〈x, S∗f〉` =
∑
n

xn (S∗f)n.
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for every x ∈ `p and f ∈ Ap
′
(ωp

′/2). From here, the proof follows the same lines as in
Theorem 1.7

When p = 1, then S∗ : A∞(ω1/2) −→ `∞ is given by

{(S∗f)n} =

{
f(zn)

‖Kzn‖A1(ω1/2)

}
n

.

Hence we must show that

sup
z∈D

ω(z)1/2|f(z)| = ‖f‖A∞(ω1/2) . ‖S∗f‖`∞ � sup
n

ω(zn)1/2|f(zn)|,

for f ∈ A∞(ω1/2). However this can be proved with the same method of the proof of
Lemma 1.6. Indeed, let z ∈ D. Then there is a point zk with z ∈ D(ετ(zk)). By Lemma
A, we have

ω(z)1/2|f(z)| ≤ C1

ε2 τ(z)2

∫
D(ετ(z))

(
|f(ζ)|ω(ζ)1/2 − |f(zk)|ω(zk)

1/2
)
dA(ζ)

+ C1 |f(zk)|ω(zk)
1/2.

As done in the proof of Lemma 1.6, we have∣∣∣|f(ζ)|ω(ζ)1/2 − |f(zk)|ω(zk)
1/2
∣∣∣ ≤ C2 ε

1

τ(zk)2

∫
D(3δ0τ(zk))

|f(ξ)|ω(ξ)1/2 dA(ξ)

≤ C3 ε ‖f‖A∞(ω1/2).

Thus, putting this in the previous estimate, we obtain

ω(z)1/2|f(z)| ≤ C4 ε ‖f‖A∞(ω1/2) + C1 sup
n

ω(zn)1/2|f(zn)|.

Finally, taking the supremum on z and ε > 0 small enough so that C4ε ≤ 1/2, we have

‖f‖A∞(ω1/2) . sup
n

ω(zn)1/2|f(zn)|.

The proof is complete.

4.5 Toeplitz operators

In this section we are going to extend the results in Chapter 2 to the non-Hilbert space
setting, when the weight ω is in the class E . Concretely, we describe the boundedness of
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the Toeplitz operators Tµ : Ap(ωp/2)→ Aq(ωq/2) for 1 ≤ p, q <∞. Recall that the Toeplitz
operator Tµ is defined by

Tµf(z) =

∫
D
f(ξ)Kz(ξ)ω(ξ) dµ(ξ).

Also, recall that, for δ ∈ (0,mτ ), the averaging function of µ on D is given by

µ̂δ(z) :=
µ(D(δτ(z))

τ(z)2
, z ∈ D.

Theorem 4.13. Let ω ∈ E , 1 ≤ p ≤ q < ∞ and µ be a finite positive Borel measure
on D satisfying (2.1). Then Tµ : Ap(ωp/2) → Aq(ωq/2) is bounded if and only if for each
δ ∈ (0,mτ ) sufficiently small

E(µ) = sup
z∈D

τ(z)2( 1
q
− 1
p

) µ̂δ(z) <∞. (4.2)

Moreover,
‖Tµ‖Ap(ωp/2)→Aq(ωq/2) � E(µ).

Proof. Since we have the estimate ‖Kz‖Ap(ωp/2) � ω(z)−1/2 τ(z)−2(p−1)/p, if we assume that

the Toeplitz operator Tµ : Ap(ωp/2) −→ Aq(ωq/2) is bounded, then we obtain (4.2) with
the same argument as in the proof of Theorem 2.1.

Conversely, we suppose that (4.2) holds. We first prove that∫
D
|Kz(ξ)|ω(ξ)1/2 τ(ξ)−2( 1

p
− 1
q

) dµ(ξ) . E(µ)ω(z)−1/2. (4.3)

Indeed, by Lemma A, we have

|Kz(ξ)|ω(ξ)1/2 .
1

τ(ξ)2

∫
D( δ

2
τ(ξ))

|Kz(s)| ω(s)1/2 dA(s).

Then, by Fubini’s theorem, the fact that τ(s) � τ(ξ) for s ∈ D(δτ(ξ)), and condition (4.1),
we get∫

D
|Kz(ξ)|ω(ξ)1/2 τ(ξ)−2( 1

p
− 1
q

)dµ(ξ) .
∫
D
|Kz(s)|ω(s)1/2 τ(s)2( 1

q
− 1
p

) µ̂δ(s) dA(s)

. E(µ)

∫
D
|Kz(s)| ω(s)1/2 dA(s)

. E(µ) ω(z)−1/2.
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This establishes (4.3). Now we proceed to prove that Tµ is bounded. If q > 1, by Hölder’s
inequality, we obtain

|Tµf(z)|q ≤
(∫

D
|f(ξ)| |Kz(ξ)| ω(ξ) dµ(ξ)

)q

≤
(∫

D
|f(ξ)|q ω(ξ)

q+1
2 |Kz(ξ)| τ(ξ)2( 1

p
− 1
q

)(q−1)dµ(ξ)

)(∫
D
|Kz(ξ)|ω(ξ)1/2τ(ξ)−2( 1

p
− 1
q

) dµ(ξ)

)q−1

.

Using (4.3), we have

|Tµf(z)|q . E(µ)q−1

(∫
D
|f(ξ)|q ω(ξ)

q+1
2 |Kz(ξ)| τ(ξ)2( 1

p
− 1
q

)(q−1)dµ(ξ)

)
ω(z)−

(q−1)
2 .

If q = 1, this holds directly. By Fubini’s theorem and condition (4.1), we obtain

‖Tµf‖qAq(ωq/2)
=

∫
D
|Tµf(z)|q ω(z)q/2 dA(z)

. E(µ)q−1

∫
D
|f(ξ)|q ω(ξ)

(q+1)
2 τ(ξ)2(q−1)( 1

p
− 1
q

)

(∫
D
|Kξ(z)|ω(z)1/2dA(z)

)
dµ(ξ)

. E(µ)q−1

∫
D
|f(ξ)|q ω(ξ)q/2 τ(ξ)2(q−1)( 1

p
− 1
q

)dµ(ξ).

Consider the measure ν given by

dν(ξ) := ω(ξ)q/2τ(ξ)2(q−1)( 1
p
− 1
q

)dµ(ξ).

Since (4.2) holds, then by Theorem D, the identity Iν : Ap(ωp/2) −→ Lq(D, dν) is bounded.
Moreover, ‖Iν‖ . E(µ)1/q. Therefore,

‖Tµf‖qAq(ωq/2)
. E(µ)q−1

∫
D
|f(z)|q dν(z) . E(µ)q · ‖f‖q

Ap(ωp/2)
. (4.4)

This finishes the proof.

In order to describe the boundedness of Tµ : Ap(ωp/2) → Aq(ωq/2) when 1 ≤ q < p < ∞,
we need first an auxiliary result.

Proposition 4.14. Let ω ∈ E and 1 < q < p <∞. If µ̂δ ∈ L
pq
p−q (D, dA), then

Jδ,q :=

∫
D

(
1

τ(z)2

∫
D(δτ(z))

|f(ξ)|ω(ξ)1/2dµ(ξ)

)q
dA(z) . ‖µ̂δ‖q

L
pq
p−q (D)

· ‖f‖q
Ap(ωp/2)

,

for any f ∈ Ap(ωp/2).
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Proof. For z ∈ D and ξ ∈ D(δτ(z)), by Lemma A, Lemma B and (1.2), we obtain

|f(ξ)|ω(ξ)1/2 .

(
1

τ(ξ)2

∫
D( δ

3
τ(ξ))

|f(s)|p ω(s)p/2dA(s)

)1/p

.

(
1

τ(z)2

∫
D(δτ(z))

|f(s)|p ω(s)p/2dA(s)

)1/p

.

This gives,

1

τ(z)2

∫
D(δτ(z))

|f(ξ)|ω(ξ)1/2dµ(ξ) . µ̂δ(z)

(
1

τ(z)2

∫
D(δτ(z))

|f(s)|p ω(s)p/2dA(s)

)1/p

.

Therefore,

Jδ,q .
∫
D

(
1

τ(z)2

∫
D(δτ(z))

|f(s)|p ω(s)p/2dA(s)

)q/p
µ̂δ(z)q dA(z).

Applying Hölder’s inequality

Jδ,q .

(∫
D

1

τ(z)2

∫
D(δτ(z))

|f(s)|p ω(s)p/2dA(s)dA(z)

)q/p
‖µ̂δ‖q

L
pq
p−q (D)

. (4.5)

On the other hand, by Fubini’s theorem and τ(z) � τ(s), for s ∈ D(δτ(z)), we have∫
D

(
1

τ(z)2

∫
D(δτ(z))

|f(s)|p ω(s)p/2dA(s)

)
dA(z) . ‖f‖p

Ap(ωp/2)
.

Combining this with (4.5), we get

Jδ,q . ‖f‖qAp(ωp/2)
· ‖µ̂δ‖q

L
pq
p−q (D)

.

The proof is complete.

Theorem 4.15. Let ω ∈ E , 1 ≤ q < p <∞ and µ be a finite positive Borel measure on D
satisfying (2.1). The following conditions are equivalent:

(i) The Toeplitz operator Tµ : Ap(ωp/2) −→ Aq(ωq/2) is bounded.

(ii) For each sufficiently small δ > 0, µ̂δ ∈ L
pq
p−q (D, dA).

Moreover, we have
‖Tµ‖Ap(ωp/2)→Aq(ωq/2) � ‖µ̂δ‖L pq

p−q (D)
.
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Proof. (i) =⇒ (ii) For an arbitrary sequence λ = {λk} ∈ `p, we consider the function

Gt(z) =
∞∑
k=0

λk rk(t) ω(zk)
1/2 τ(zk)

2( p−1
p

) Kzk(z) , 0 < t < 1,

where rk(t) is a sequence of Rademacher functions
(
see [41] or Appendix A of [21]

)
and

{zk} is the sequence given in Lemma B. Because of the norm estimate

‖Kz‖Ap(ωp/2) � ω(z)−1/2 τ(z)−2(p−1)/p

given in Lemma 4.2, by part (i) of Theorem 4.12 we obtain

‖Gt‖Ap(ωp/2) .

(
∞∑
k=0

|λk|p
)1/p

.

Thus, the boundedness of Tµ : Ap(ωp/2) −→ Aq(ωq/2) gives

‖TµGt‖qAq(ωq/2)
. ‖Tµ‖q · ‖λ‖q`p .

In other words, we have∫
D

∣∣∣ ∞∑
k=0

λk rk(t) ω(zk)
1/2 τ(zk)

2( p−1
p

) TµKzk(z)
∣∣∣qω(z)q/2 dA(z) . ‖Tµ‖q · ‖λ‖q`p .

Integrating with respect to t from 0 to 1, applying Fubini’s theorem and invoking Khin-
chine’s inequality (see [41]), we obtain

B :=

∫
D

(
∞∑
k=0

|λk|2 ω(zk) τ(zk)
4( p−1

p
) |TµKzk(z)|2

)q/2

ω(z)q/2 dA(z) . ‖Tµ‖q · ‖λ‖q`p .

Let χk denote the characteristic function of the setD(3δτ(zk)). Since the covering {D(3δτ(zk))}
of D has finite multiplicity N, we have

∞∑
k=0

|λk|q ω(zk)
q/2 τ(zk)

2q( p−1
p

)

∫
D(3δτ(zk))

|TµKzk(z)|q ω(z)q/2 dA(z)

=

∫
D

∞∑
k=0

|λk|q ω(zk)
q/2 τ(zk)

2q( p−1
p

) |TµKzk(z)|q χk(z)ω(z)q/2 dA(z)

≤ max{1, N1− q
2} B.

(4.6)

Now, using Lemma A, yields

∞∑
k=0

|λk|q ω(zk)
q/2 τ(zk)

2q( p−1
p

)+2 |TµKzk(zk)|q ω(zk)
q/2 . ‖Tµ‖q · ‖λ‖q`p .
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On the other hand, since for small δ > 0, we have |Kzk(z)| � ‖Kzk‖A2(ω)‖Kz‖A2(ω) for every
z ∈ D(δτ(zk)), applying Lemma D and (1.2), we have

|TµKzk(zk)| ≥
∫
D(δτ(zk))

|Kzk(z)|2 ω(z) dµ(z)

� ‖Kzk‖2
A2(ω)

∫
D(δτ(zk))

‖Kz‖2
A2(ω) ω(z) dµ(z)

� ω(zk)
−1 µ̂δ(zk)

τ(zk)2
.

That is,

|TµKzk(zk)|q ω(zk)
q/2 &

ω(zk)
− q

2 µ̂δ(zk)
q

τ(zk)2q
.

Therefore,
∞∑
k=0

|λk|q τ(zk)
2q( 1

q
− 1
p

) µ̂δ(zk)
q . ‖Tµ‖q · ‖λ‖q`p .

Then, using the duality between `p/q and `
p
p−q we conclude that

∞∑
k=0

(
τ(zk)

2q( 1
q
− 1
p

) µ̂δ(zk)
q

) p
p−q

. ‖Tµ‖
pq
p−q ,

that means
∞∑
k=0

τ(zk)
2 µ̂δ(zk)

pq
p−q . ‖Tµ‖

pq
p−q .

This is the discrete version of our condition. To obtain the continuous version, simply note
that

µ̂δ(z) . µ̂4δ(zk), z ∈ D(δτ(zk)).

Then, ∫
D
µ̂δ(z)

pq
p−q dA(z) ≤

∞∑
k=0

∫
D(δτ(zk))

µ̂δ(z)
pq
p−q dA(z) .

∞∑
k=0

τ(zk)
2 µ̂4δ(zk)

pq
p−q .

This finishes the proof of this implication.

(ii) =⇒ (i) First we begin with the easiest case q = 1. By Fubini’s theorem and
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condition (4.1), we have

‖Tµf‖A1(ω1/2) =

∫
D
|Tµf(z)|ω(z)1/2 dA(z)

≤
∫
D

(∫
D
|f(ξ)| |Kz(ξ)|ω(ξ) dµ(ξ)

)
ω(z)1/2 dA(z)

=

∫
D
|f(ξ)|

(∫
D
|Kξ(z)|ω(z)1/2dA(z)

)
ω(ξ) dµ(ξ)

.
∫
D
|f(ξ)|ω(ξ)1/2 dµ(ξ).

(4.7)

Now, by using Theorem F with the measure given by

dν(ξ) := ω(ξ)1/2 dµ(ξ),

it gives the desired result.

Finally, we study the case 1 < q < ∞. Let {zj} be the sequence given in Lemma B.
Applying Lemma B and Lemma A, we obtain

|Tµf(z)| ≤
∞∑
j=0

∫
D(δτ(zj)

|f(ξ)| |Kz(ξ)|ω(ξ) dµ(ξ)

.
∞∑
j=0

∫
D(δτ(zj))

|f(ξ)|ω(ξ)1/2

(
1

τ(ξ)2

∫
D(δτ(ξ))

|Kz(s)|ω(s)1/2 dA(s)

)
dµ(ξ)

.
∞∑
j=0

(∫
D(δτ(zj))

|f(ξ)|ω(ξ)1/2 dµ(ξ)

τ(ξ)2

)∫
D(3δτ(zj))

|Kz(s)|ω(s)1/2 dA(s).

Applying Hölder’s inequality, we get

|Tµf(z)|q .M(z)×N(z),

where

M(z) :=
∞∑
j=0

(∫
D(δτ(zj))

|f(ξ)|ω(ξ)1/2 dµ(ξ)

τ(ξ)2

)q ∫
D(3δτ(zj))

|Kz(s)|ω(s)1/2 dA(s),
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and

N(z) :=

( ∞∑
j=0

∫
D(3δτ(zj))

|Kz(s)|ω(s)1/2 dA(s)

)q−1

.

Furthermore, by Lemma B and condition (4.1), we have

N(z) .

(∫
D
|Kz(s)|ω(s)1/2dA(s)

)q−1

. ω(z)
1−q
2 .

Thus

|Tµf(z)|q ω(z)q/2 .M(z)ω(z)1/2.

This gives

‖Tµf‖qAq(ωq/2)
.

∞∑
j=0

(∫
D(δτ(zj))

|f(ξ)|ω(ξ)1/2 dµ(ξ)

τ(ξ)2

)q
K(j),

where

K(j) :=

∫
D

(∫
D(3δτ(zj))

|Kz(s)|ω(s)1/2dA(s)

)
ω(z)1/2 dA(z),

which by Fubini’s theorem and condition (4.1)

K(j) . τ(zj)
2.

Combining this with using (1.2) and Proposition 4.14, it shows that

‖Tµf‖qAq(ωq/2)
.

∞∑
j=0

τ(zj)
2

(
1

τ(zj)2

∫
D(δτ(zj))

|f(ξ)|ω(ξ)1/2 dµ(ξ)

)q

.
∫
D

(
1

τ(z)2

∫
D(4δτ(z))

|f(ξ)|ω(ξ)1/2dµ(ξ)

)q
dA(z)

. ‖µ̂4δ‖q
L

pq
p−q (D)

· ‖f‖q
Ap(ωp/2)

.

This proves the desired result.

Next we characterize compact Toeplitz operators on weighted Bergman spaces Ap(ωp/2)
for weights ω in the class E . We need first a lemma.

Lemma 4.16. Let 1 < p <∞, and let kp,z the normalized reproducing kernels in Ap(ωp/2).
Then kp,z → 0 weakly as |z| → 1−.
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Proof. By duality and the reproducing kernel properties, we must show that |g(z)|/‖Kz‖Ap(ωp/2)

goes to zero as |z| → 1− whenever g is in Ap
′
(ωp

′/2), where p′ denotes the conjugate expo-
nent of p, but this follows easily by the density of the polynomials and Lemma A.

Theorem 4.17. Let ω ∈ E , 1 < p ≤ q <∞ and µ be a finite positive Borel measure on D
satisfying (2.1). Then the Toeplitz operator Tµ : Ap(ωp/2) −→ Aq(ωq/2) is compact if and
only if, for each δ ∈ (0,mτ ) small enough, one has

lim
r→1−

sup
|a|>r

τ(a)2( 1
q
− 1
p

) µ̂δ(a) = 0. (4.8)

Proof. First we assume that Tµ is compact. Following the proof of the boundedness part

and the fact that ‖Ka‖−1
Ap(ωp/2)

� ω(a)1/2 τ(a)
2(p−1)
p , we get the estimate

τ(a)2( 1
q
− 1
p

) µ̂δ(a) .
ω(a)1/2

τ(a)2( 1
p
−1)
‖TµKa‖Aq(ωq/2) . ‖Tµkp,a‖Aq(ωq/2), (4.9)

where kp,a are the normalized reproducing kernels in Ap(ωp/2). Since, by Lemma 4.16, kp,a
tends to zero weakly, and Tµ is compact, the result follows.

Conversely, we suppose that (4.8) holds. Let {fn} ⊂ Ap(ωp/2) be a bounded sequence
converging to zero uniformly on compact subsets of D. By (4.4), we have

‖Tµfn‖Aq(ωq/2) .
∫
D
|fn(z)|q dν(z) = ‖Iνfn‖Lq(D,dν), (4.10)

where Iν : Ap(ωp/2) −→ Lq(D, dν) with dν(ξ) = ω(ξ)q/2 τ(ξ)2(q−1)( 1
p
− 1
q

) dµ(ξ). By using
τ(a) � τ(ξ), for ξ ∈ D(δτ(a)), we have

sup
|a|>r

1

τ(a)2q/p

∫
D(δτ(a))

ω(ξ)−q/2 dν(ξ) . sup
|a|>r

τ(a)2( 1
q
− 1
p

) µ̂δ(a).

By Theorem E, Iν is compact, and in view of (4.10), Tµ is compact.

Theorem 4.18. Let ω ∈ E , 1 ≤ q < p <∞ and µ be a finite positive Borel measure on D
satisfy (2.1). The following conditions are equivalent:

(i) The Toeplitz operator Tµ : Ap(ωp/2) −→ Aq(ωq/2) is compact.
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(ii) For each sufficiently small δ > 0

µ̂δ ∈ L
pq
p−q (D, dA). (4.11)

Proof. If Tµ is compact, then it is bounded, and by Theorem 4.15 we get the desired result.
Conversely, if (4.11) holds then, by Theorem 4.15, Tµ is bounded. Since, by Theorem 4.12
the spaces Ap(ωp/2) and Aq(ωq/2) are isomorphic to `p, the result is a consequence of a
general result of Banach space theory: it is known that, for 1 ≤ q < p <∞, every bounded
operator from `p to `q is compact (see [37, Theorem I.2.7]).

4.6 Hankel operators

One of the most important classes of operators acting on spaces of analytic functions are
the Hankel operators. When acting on the classical Hardy spaces, their study presents
[50, 54] a broad range of applications such as to control theory, approximation theory,
prediction theory, perturbation theory and interpolation problems. Furthermore, one can
find an extensive literature on Hankel operators acting on other classical function spaces
in one or several complex variables, such as Bergman spaces [2, 3, 32, 73, 74], Fock spaces
[55] or Dirichlet spaces [67, 68]. In this section, we are going to study big Hankel operators
acting on our large weighted Bergman spaces.

Definition 4.1. Let Mg denote the multiplication operator induced by a function g, and
Pω be the Bergman projection, where ω is a weight in the class E. The Hankel operator Hg

is given by
Hg = Hω

g := (I − Pω)Mg.

We assume that the function g satisfies

gKz ∈ L1(ω1/2), z ∈ D. (4.12)

Under this assumption, the Hankel operator Hω
g is well-defined on the set E of all finite

linear combinations of reproducing kernels and therefore, is densely defined in the weighted
Bergman space Ap(ωp/2), 1 ≤ p <∞. Also, for f ∈ E, one has

Hω
g f(z) =

∫
D

(
g(z)− g(s)

)
f(s)Kz(s)ω(s) dA(s).

We are going to study the boundedness and compactness when the symbol is conjugate
analytic. In the Hilbert space case A2(ω), and for weights in the class W , a characteriza-
tion of the boundedness, compactness and membership in Schatten classes of the Hankel
operator Hḡ : A2(ω)→ L2(ω) was obtained in [23]. In order to extend such results to the
non-Hilbert space setting, we need estimates for the p-norm of the reproducing kernels,
and it is here when the condition (4.1) and the exponential type class E enters in action.
Before going to study the boundedness of the Hankel operator on Ap(ωp/2) with conjugate
analytic symbols we need the following Lemma.
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Lemma F. Let 1 ≤ p <∞, g ∈ H(D) and a ∈ D. Then

τ(a)|g′(a)| ≤ C

(
1

τ(a)2

∫
D(δτ(a))

|g(z)− g(a)|p dA(z)

)1/p

.

Proof. See for example [23].

Now we are ready to characterize the boundedness of the Hankel operator with conju-
gate analytic symbols acting on large weighted Bergman spaces in term of the growth of
the maximum modulus of g′. We begin with the case 1 ≤ p ≤ q <∞.

Theorem 4.19. Let ω ∈ E , 1 ≤ p ≤ q <∞ and g ∈ H(D) satisfying (4.12). The Hankel
operator Hg : Ap(ωp/2) −→ Lq(ωq/2) is bounded if and only if

sup
z∈D

τ(z)1+2( 1
q
− 1
p

)|g′(z)| <∞. (4.13)

Proof. Suppose first that Hg : Ap(ωp/2) −→ Lq(ωq/2) is bounded. Thus

‖HgKa‖Lq(ωq/2) ≤ ‖Hg‖ ‖Ka‖Ap (ωp/2).

For each z ∈ D, consider the function gz(ξ) :=
(
g(z) − g(ξ)

)
Kz(ξ). The condition (4.12)

ensures that gz ∈ A1(ω1/2), and by the reproducing formula in Corollary 4.5, one has

HgKa(z) =

∫
D

(
g(z)− g(ξ)

)
Ka(ξ)Kz(ξ)ω(ξ) dA(ξ)

= 〈gz, Ka〉ω = gz(a).

Now, for δ small enough we have |Kz(a)| � ‖Kz‖A2(ω)‖Ka‖A2(ω) for z ∈ D(δτ(a)). Hence,
by Lemma D and (1.2), we have

‖HgKa‖qLq (ωq/2)
=

∫
D
|g(z)− g(a)|q |Kz(a)|q ω(z)q/2 dA(z)

≥
∫
D(δτ(a))

|g(z)− g(a)|q |Kz(a)|q ω(z)q/2 dA(z)

�
∫
D(δτ(a))

|g(z)− g(a)|q ‖Kz‖qA2(ω) ‖Ka‖qA2(ω) ω(z)q/2 dA(z)

�
‖Ka‖qA2(ω)

τ(a)q

∫
D(δτ(a))

|g(z)− g(a)|q dA(z).

Because of the boundedness of the Hankel operator Hg, we have

‖Hg‖q ≥
‖HgKa‖qLq (ωq/2)

‖Ka‖qAp(ωp/2)

& ‖Ka‖−qAp(ωp/2)

‖Ka‖qA2(ω)

τ(a)q

∫
D(δτ(a))

|g(z)− g(a)|q dA(z).
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Finally, by the estimates on the norm of Kz in Lemma 4.2 and Lemma D, we obtain

‖Hg‖ & τ(a)2( 1
q
− 1
p

)

(
1

τ(a)2

∫
D(δτ(a))

|g(z)− g(a)|q dA(z)

)1/q

.

By Lemma F, this completes the proof of this implication.

Conversely, assume that (4.13) holds and let 1 ≤ p ≤ q < ∞. By Theorem 1.4, there
exists a solution u of the equation ∂u = f g′ in Lq(ωq/2) such that

‖u‖q
Lq(ωq/2)

.
∫
D
|∂u(z)|q ω(z)q/2 τ(z)q dA(z).

Since any solution v of the ∂-equation has the form v = u−h, with h ∈ H(D), and because
Hgf is also a solution of ∂-equation, there is a function h ∈ H(D) such that Hgf = u− h.
As a result of Pω

(
Hgf

)
= 0, we have Hgf =

(
I − Pω

)
u, where I is the identity operator.

Therefore, by the boundedness of Pω on Lq(ωq/2) (see Theorem 4.4), we obtain

‖Hgf‖qLq(ωq/2)
≤ ‖I − Pω‖q ‖u‖qLq(ωq/2)

. ‖u‖q
Lq(ωq/2)

.
∫
D
|f(z)|q |g′(z)|q ω(z)q/2 τ(z)q dA(z).

(4.14)

By our assumption (4.13), we have

‖Hgf‖qLq(ωq/2)
.
∫
D
|f(z)|q ω(z)q/2 τ(z)2q( 1

p
− 1
q

) dA(z).

On the other hand, by Lemma A

|f(z)|ω(z)1/2 . τ(z)−2/p ‖f‖Ap(ωp/2).

Using the last pointwise estimate, we have

‖Hgf‖qLq(ωq/2)
. ‖f‖q−p

Ap(ωp/2)

∫
D
|f(z)|p ω(z)p/2dA(z) = ‖f‖q

Ap(ωp/2)
.

This completes the proof.

Next we are going to characterize the boundedness of the Hankel operator with conju-
gate analytic symbols when 1 ≤ q < p <∞. Before that we prove the following Lemma:
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Lemma 4.20. Let δ0 ∈ (0,mτ ) and 0 < r <∞. Then

|f ′(z)|r . 1

τ(z)r+2

∫
D(δ0τ(z))

|f(s)|r dA(s),

for f ∈ H(D).

Proof. By Cauchy’s integral formula and Lemma A, we get

|f ′(z)| .
∣∣∣∣ ∫
|η−z|= δ0τ(z)

4

f(η)

(η − z)2
dη

∣∣∣∣ . 1

τ(z)2

∫
|η−z|= δ0τ(z)

4

|f(η)| |dη|

.
1

τ(z)2

∫
|η−z|= δ0τ(z)

4

(
1

τ(η)2

∫
D(δ0τ(η)/4)

|f(s)|rdA(s)

)1/r

|dη|.

An application of τ(η) � τ(z), for η ∈ D(δ0τ(z)/2), gives

|f ′(z)|r . 1

τ(z)2

∫
|η−z|= δ0τ(z)

4

(
1

τ(z)2

∫
D(δ0τ(z)/2)

|f(s)|rdA(s)

)1/r

|dη|

.
1

τ(z)1+ 2
r

(∫
D(δ0τ(z)/2)

|f(s)|rdA(s)

)1/r

,

which proves the desired result.

The following result gives the characterization of the boundedness of the Hankel oper-
ator going from Ap(ωp/2) into Lq(ωq/2) when 1 ≤ q < p <∞.

Theorem 4.21. Let ω ∈ E , 1 ≤ q < p < ∞ and g ∈ H(D) satisfying (4.12). Then the
following statement are equivalent:

(a) The Hankel operator Hg : Ap(ωp/2) −→ Lq(ωq/2) is bounded.

(b) The function τg′ belongs to Lr(D, dA), where 1
r

= 1
q
− 1

p
.

Proof. Suppose that τ g′ ∈ Lr(D, dA). By (4.14), since p/q > 1 a simple application of
Hölder’s inequality, we get

‖Hgf‖qLq(ωq/2)
.
∫
D
|f(z)|q |g′(z)|q ω(z)q/2 τ(z)q dA(z) ≤ ‖f‖q

Ap(ωp/2)
‖τ g′‖qLr(D,dA).

This proves the boundedness of Hg.
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Conversely, pick ε > 0 and let {zk} be an (ε, τ)- lattice on D. For a sequence λ = {λk} ∈ `p,
we consider the function

Gt(z) =
∞∑
k=0

λk rk(t) ω(zk)
1/2 τ(zk)

2( p−1
p

) Kzk(z) , 0 < t < 1,

where rk(t) is a sequence of Rademacher functions. Because of the norm estimate for
reproducing kernels given in Lemma 4.2, by part (i) of Theorem 4.12, we obtain

‖Gt‖Ap(ωp/2) . ‖λ‖`p .

Thus, the boundedness of Hg gives

‖Hg Gt‖qLq(ωq/2)
. ‖λ‖q`p .

Therefore,∫
D

∣∣∣ ∞∑
k=0

λk rk(t) ω(zk)
1/2 τ(zk)

2( p−1
p

) HgKzk(z)
∣∣∣qω(z)q/2 dA(z) . ‖λ‖q`p .

Using the same method in (4.6), we obtain∫
D

∞∑
k=0

|λk|q ω(zk)
q/2 τ(zk)

2q( p−1
p

)
∣∣HgKzk(z)

∣∣q χk(z)ω(z)q/2 dA(z) . ‖λ‖q`p , (4.15)

which χk is the characteristic function of the set D(3 ε τ(zk)). Additionally, by Lemma E,
Lemma D and (1.2), we get

∣∣HgKzk(z)
∣∣q ω(z)q/2 =

∣∣g(z)− g(zk)
∣∣q |Kzk(z)|q ω(z)q/2 &

ω(zk)
−q/2

τ(zk)2q

∣∣g(z)− g(zk)
∣∣q.

Putting this in (4.15), it gives

∞∑
k=0

|λk|qτ(zk)
−2q/p

∫
D(3 ε τ(zk))

∣∣g(z)− g(zk)
∣∣qdA(z) . ‖λ‖q`p .

Furthermore, by Lemma F we obtain

∞∑
k=0

|λk|qτ(zk)
−2q/p+2|τ(zk)g

′(zk)|q . ‖λ‖q`p .

Moreover, by the duality between `p/q and `
p
p−q , it follows

Ig′ :=
∞∑
k=0

τ(zk)
2
(
τ(zk)|g′(zk)|

)r
<∞.
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In order to finish the proof we will justify that ‖τ g′‖rLr(D,dA) . Ig′ . For that, on the one
hand by Lemma 4.20 applied to g′, we get∣∣g′′(ξ)∣∣r . 1

τ(ξ)r+2

∫
D(δ0τ(ξ))

|g′(s)|r dA(s). (4.16)

On the other hand, by Cauchy estimates there exists ξ ∈ [z, zk] such that∣∣g′(z)− g′(zk)
∣∣ ≤ |g′′(ξ)||z − zk|.

Using τ(ξ) � τ(z) � τ(zk), for ξ, z ∈ D(ε τ(zk)), we have

‖τ g′‖rLr(D,dA) ≤
∑
k

∫
D(ε τ(zk))

τ(z)r|g′(z)|rdA(z)

≤ C
∑
k

∫
D(ε τ(zk))

τ(zk)
r
∣∣g′(z)− g′(zk)

∣∣r dA(z) + Cε2Ig′

≤ Cεr
∑
k

∫
D(ε τ(zk))

τ(zk)
2r
∣∣g′′(ξ)∣∣r dA(z) + Cε2Ig′ .

By (4.16) and using again (1.2), we obtain

‖τ g′‖rLr(D,dA) ≤ C εr
∑
k

∫
D(ε τ(zk))

τ(zk)
2r

τ(ξ)r+2

∫
D(δ0τ(ξ))

|g′(s)|r dA(s) dA(z) + ε2 Ig′

≤ C εr+2
∑
k

∫
D(3δ0τ(zk))

τ(s)r |g′(s)|r dA(s) + ε2 Ig′ .

By Lemma B, every point z ∈ D belongs to at the most Cε−2 of the sets D(3δ0τ(zk)).
Hence (

1− C εr
)
‖τ g′‖rLr(D,dA) . Ig′ .

Thus, taking ε so that C εr < 1/2, we get the desired result.

Next we characterize the compactness of the Hankel operator with conjugate analytic
symbol acting from Ap(ωp/2) into Lq(ωq/2), 1 ≤ p, q < ∞. This characterization will be
given in two theorems depending on the order of p and q. We begin with the case 1 ≤ p ≤
q <∞.

Theorem 4.22. Let ω ∈ E , 1 < p ≤ q < ∞ and g ∈ H(D) satisfying (4.12). Then, the
Hankel operator Hg : Ap(ωp/2) −→ Lq(ωq/2) is compact if and only if

lim
|a|→1−

τ(a)1+2( 1
q
− 1
p

)|g′(a)| = 0.
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Proof. Let a ∈ D and 1 < p ≤ q <∞. Recall that ka,p is the normalized reproducing kernel
in Ap(ωp/2). By Lemma 4.16, ka,p → 0 weakly. Thus, if Hg is compact, then

lim
|a|→1−

‖Hg ka,p‖Lq(ωq/2) = 0.

Let δ be small enough such that |Ka(z)| � ‖Ka‖A2(ω) ‖Kz‖A2(ω), for z ∈ D(δτ(a)). By

Lemma D, using (1.2) and the norm estimate ‖Ka‖Ap(ωp/2) � ω(a)−1/2τ(a)2( 1−p
p

), we have

‖Hg ka,p‖qLq(ωq/2)
≥
∫
D(δτ(a))

∣∣g(a)− g(z)
∣∣q |Ka(z)|q ω(z)q/2

‖Ka‖qAp(ωp/2)

dA(z)

&
1

τ(a)2q/p

∫
D(δτ(a))

∣∣g(a)− g(z)
∣∣qdA(z).

It follows from Lemma F,

‖Hg ka,p‖Lq(ωq/2) & τ(a)1+2( 1
q
− 1
p

)|g′(a)|.

This implies that

lim
|a|→1−

τ(a)1+2( 1
q
− 1
p

)|g′(a)| = 0,

which completes the proof of this implication.

Conversely, let {fn} be a bounded sequence in Ap(ωp/2) such that fn → 0 uniformly
on compact subsets of D. To show compactness, it is standard to see that it is enough to
prove that ‖Hḡfn‖Lq(ωq/2) → 0. By the assumption, given any ε > 0, there is 0 < r0 < 1
such that

τ(z)1+2( 1
q
− 1
p

)|g′(z)| < ε, r0 < |z| < 1.

Since {fn} converges to zero uniformly on compact subsets of D, exists an integer n0 such
that

|fn(z)| < ε for |z| ≤ r0 and n ≥ n0.

According to (4.14), we have

‖Hgfn‖qLq(ωq/2)
.
∫
D
|fn(z)|q |g′(z)|q ω(z)q/2 τ(z)q dA(z)

=

(∫
|z|≤r0

+

∫
r0<|z|<1

)
|fn(z)|q |g′(z)|q ω(z)q/2 τ(z)q dA(z).

On the one hand, it is easy to see that∫
|z|≤r0

|fn(z)|q |g′(z)|q ω(z)q/2 τ(z)q dA(z) . εq. (4.17)
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On the other hand, by Lemma A, we have the pointwise estimate

|fn(z)| . ω(z)−1/2τ(z)−2/p‖fn‖Ap(ωp/2).

Applying this together with our assumption, we get∫
r0<|z|<1

|fn(z)|q |g′(z)|q ω(z)q/2 τ(z)q dA(z)

< εq
∫
D
|fn(z)|p |fn(z)|q−p ω(z)q/2 τ(z)2q

(
1
p
− 1
q

)
dA(z)

. εq ‖fn‖q−pAp(ωp/2)

∫
D
|fn(z)|p ω(z)p/2 dA(z) = εq ‖fn‖qAp(ωp/2)

.

Combining this with (4.17) gives us that lim
n→∞

‖Hgfn‖Lq(ωq/2) = 0. This shows that the

Hankel operator Hg : Ap(ωp/2) −→ Lq(ωq/2) is compact.

The next Theorem give us the compactness characterization of the Hankel operator when
1 ≤ q < p <∞.

Theorem 4.23. Let ω ∈ E , 1 ≤ q < p <∞ and g ∈ H(D) satisfying (4.12). The following
conditions are equivalent:

(a) The Hankel operator Hg : Ap(ωp/2) −→ Lq(ωq/2) is compact.

(b) The function τg′ belongs to Lr(D, dA), where 1
r

= 1
q
− 1

p
.

Proof. (a) =⇒ (b) Assume that Hg is compact. Then Hg is bounded. Hence, by applying
Theorem 4.21 we get the desired result.
(b) =⇒ (a) Suppose that τg′ belongs to Lr(D, dA), where 1

r
= 1

q
− 1

p
. By Theorem 4.21,

the Hankel operator Hg is bounded, and as a result of Theorem 4.12 the space Ap(ωp/2) is
isomorphic to `p. In this case, Hg is also compact, due to a general result of Banach space
theory: it is known that, for 1 ≤ q < p < ∞, every bounded operator from `p to `q is
compact (see [37, Theorem I.2.7]). This finishes the proof.

4.7 Examples of weights in the class E
In this Section, we are going to show that the family of exponential type weights ωσ given
by

ωσ(z) = exp

(
−A

(1− |z|2)σ

)
, σ > 0, A > 0. (4.18)
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satisfy condition (4.1), and therefore they are in the class E . Notice that the case σ = 1
was obtained in [16], and we follow his method with appropriate modifications.

For λ > 0, let

vλ =

∫ 1

0

rλ ωσ(r) dr

Because the functions

en(z) =
zn√

2v2n+1

form an orthonormal basis of A2(ωσ), the reproducing kernel Kz of A2(ωσ) is given by

Kz(w) =
∑
n

(z̄w)n

2v2n+1

.

We let K(z) =
∑

n
zn

2v2n+1
. We need the following result.

Proposition 4.24. Let 0 < σ <∞. Then

M1(r,K) :=

∫ 2π

0

|K(reiθ)| dθ
2π

.
( 1

1− r

)1+σ
2

exp
( A

(1− r)σ
)

We postpone the proof of the proposition for a moment, and we first use it in order to
show that the exponential weights are in the class E .

Theorem 4.25. For 0 < σ <∞, let ωσ the exponential type weight given by (4.18). Then∫
D
|Kz(ζ)|ωσ(ζ)1/2 dA(ζ) . ωσ(z)−1/2.

Proof. Passing to polar coordinates, we have∫
D
|Kz(ζ)|ωσ(ζ)1/2 dA(ζ) =

∫ 1

0

(∫ 2π

0

|Kz(se
iθ)| dθ

π

)
s ωσ(s)1/2 ds.

Set z = reiϕ. As∫ 2π

0

|Kz(se
iθ)| dθ =

∫ 2π

0

|K(rsei(θ−ϕ))| dθ =

∫ 2π

0

|K(rseiθ)| dθ,

we get ∫
D
|Kz(ζ)|ωσ(ζ)1/2 dA(ζ) = 2

∫ 1

0

M1(rs,K) s ωσ(s)1/2 ds.

Therefore, applying Proposition 4.24, we obtain∫
D
|Kz(ζ)|ωσ(ζ)1/2ωσ(ζ)1/2 dA(ζ) .

∫ 1

0

exp (Agr(s))
1

(1− rs)1+σ
2

ds,

with

gr(s) :=
1

(1− rs)σ
− 1

2

(
1

(1− r2)σ
+

1

(1− s2)σ

)
.
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Lemma 4.26. For 0 < σ <∞. There is a positive constant C depending on σ such that

gr(s) ≤ C

(
s− r
1− sr

)(
r

(1− r2)σ
− s

(1− s2)σ

)
.

Proof. We may assume that r ≤ s, because changing the order of r and s does not affect
the result. Observe that

gr(s) =
1

2

(
1

(1− rs)β
− 1

(1− r2)β

)
+

1

2

(
1

(1− rs)β
− 1

(1− s2)β

)
. (4.19)

By the mean value theorem of differential calculus, there exists x1 ∈ (r, s) such that

(1− r2)σ − (1− rs)σ = σr (1− rx1)σ−1(s− r).

We first consider the case 0 < σ ≤ 1. As σ ≤ 1 and x1 ≤ s, we have (1 − rx1)σ−1 ≤
(1− rs)σ−1. Then

1

(1− rs)σ
− 1

(1− r2)σ
=

(1− r2)σ − (1− rs)σ

(1− r2)σ(1− rs)σ

≤ σr (s− r)
(1− r2)σ(1− rs)

.

(4.20)

Similarly, there exists x2 ∈ (r, s) such that

1

(1− rs)σ
− 1

(1− s2)σ
=
−σs (1− sx2)σ−1(s− r)

(1− s2)σ(1− rs)σ
.

Since (1− sx2) < (1− rs) and σ ≤ 1, we get

1

(1− rs)σ
− 1

(1− s2)σ
≤ −σ s (s− r)

(1− s2)σ(1− rs)
.

Combining this one with (4.19) and bearing in mind (4.20), we get the desired result for
0 < σ ≤ 1 with C = σ/2.

Next, we consider the case 1 < σ ≤ 2. In this case, as σ/2 ≤ 1, arguing as before we
get

(1− r2)σ − (1− rs)σ = ((1− r2)σ/2 − (1− rs)σ/2) · ((1− r2)σ/2 + (1− rs)σ/2)

≤ σ

2
r (1− rs)σ/2−1(s− r)

(
(1− r2)σ/2 + (1− rs)σ/2

)
.
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This gives

1

(1− rs)σ
− 1

(1− r2)σ
≤ σ

2

r(s− r)
(1− r2)σ(1− rs)

+
σ

2

r(s− r)
(1− r2)σ/2(1− rs)σ/2+1

. (4.21)

Similarly,

(1− s2)σ − (1− rs)σ ≤ −σ
2
s(1− rs)σ/2−1(s− r)

(
(1− s2)σ/2 + (1− rs)σ/2

)
,

and we obtain

1

(1− rs)σ
− 1

(1− s2)σ
≤ −σ

2

s(s− r)
(1− s2)σ(1− rs)

− σ

2

s(s− r)
(1− s2)σ/2(1− rs)σ/2+1

. (4.22)

Inserting (4.21) and (4.22) into (4.19) we get

gr(s) ≤
σ

4

(
s− r
1− rs

)( r

(1− r2)σ
− s

(1− s2)σ

)

+
σ

4

s− r
(1− rs)σ2 +1

( r

(1− r2)σ/2
− s

(1− s2)σ/2

)
.

Hence the result follows in this case with C = σ/4, because every summand is negative.

Next, we show by induction that, for 2m−1 < σ ≤ 2m with m ≥ 1, we have

gσr (s) = gr(s) ≤
σ

2m

(
s− r
1− rs

)( r

(1− r2)σ
− s

(1− s2)σ

)
.

We have just proved the case m = 1. So assume m ≥ 2 and that the result is true for
m− 1 and proceed to prove the case m. Using the identities

(1− r2)σ − (1− rs)σ =
(

(1− r2)σ/2 − (1− rs)σ/2
)
·
(

(1− r2)σ/2 + (1− rs)σ/2
)

and

(1− s2)σ − (1− rs)σ =
(

(1− s2)σ/2 − (1− rs)σ/2
)
·
(

(1− s2)σ/2 + (1− rs)σ/2
)

we get

1

(1− rs)σ
− 1

(1− r2)σ
= (1− r2)−σ/2

(
1

(1− rs)σ/2
− 1

(1− r2)σ/2

)
+ (1− rs)−σ/2

(
1

(1− rs)σ/2
− 1

(1− r2)σ/2

) (4.23)
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and

1

(1− rs)σ
− 1

(1− s2)σ
= (1− s2)−σ/2

(
1

(1− rs)σ/2
− 1

(1− s2)σ/2

)
+ (1− rs)−σ/2

(
1

(1− rs)σ/2
− 1

(1− s2)σ/2

)
.

(4.24)

Adding the two identities, we obtain

2gσr (s) = (1− r2)−σ/2
(

1

(1− rs)σ/2
− 1

(1− r2)σ/2

)
+ (1− s2)−σ/2

(
1

(1− rs)σ/2
− 1

(1− s2)σ/2

)
+ (1− rs)−σ/2 2gσ/2r (s).

As g
σ/2
r (s) ≤ 0, this gives

2gσr (s) ≤ (1−r2)−σ/2
(

1

(1− rs)σ/2
− 1

(1− r2)σ/2

)
+(1−s2)−σ/2

(
1

(1− rs)σ/2
− 1

(1− s2)σ/2

)
.

Use again the identities (4.23) and (4.24), but with σ replaced by σ/2 in order to get

2gσr (s) ≤ (I) + (II) + (III) + (IV ),

with

(I) := (1− r2)−σ/2(1− r2)−σ/4
(

1

(1− rs)σ/4
− 1

(1− r2)σ/4

)
,

(II) := (1− r2)−σ/2(1− rs)−σ/4
(

1

(1− rs)σ/4
− 1

(1− r2)σ/4

)

(III) := (1− s2)−σ/2(1− s2)−σ/4
(

1

(1− rs)σ/4
− 1

(1− s2)σ/4

)
and

(IV ) := (1− s2)−σ/2(1− rs)−σ/4
(

1

(1− rs)σ/4
− 1

(1− s2)σ/4

)
.

Note that, as r ≤ s, the term in brackets in (II) is positive, and also we have (1−r2)−σ/2 ≤
(1− s2)−σ/2. Therefore

(II) + (IV ) ≤ 2(1− s2)−σ/2(1− rs)−σ/4 gσ/4r (s) ≤ 0.
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This gives

2gσr (s) ≤ (I) + (III) = (1− r2)−σ/2(1− r2)−σ/4
(

1

(1− rs)σ/4
− 1

(1− r2)σ/4

)

+ (1− s2)−σ/2(1− s2)−σ/4
(

1

(1− rs)σ/4
− 1

(1− s2)σ/4

)

=

(
(1− r2)σ/4 − (1− rs)σ/4

(1− rs)σ/4 (1− r2)σ

)
+

(
(1− s2)σ/4 − (1− rs)σ/4

(1− rs)σ/4 (1− s2)σ

)
.

Iterating this process, we arrive at

2gσr (s) ≤
(

(1− r2)σ/2
m − (1− rs)σ/2m

(1− rs)σ/2m (1− r2)σ

)
+

(
(1− s2)σ/2

m − (1− rs)σ/2m

(1− rs)σ/2m (1− s2)σ

)
.

As σ/2m ≤ 1, using the meanvalue theorem as in the case σ ≤ 1, we have

(1− r2)σ/2
m − (1− rs)σ/2m ≤

(
σ/2m

)
r(1− rs)σ/2m−1 (s− r),

and
(1− s2)σ/2

m − (1− rs)σ/2m ≤ −
(
σ/2m

)
s(1− rs)σ/2m−1 (s− r).

This finally gives

2gσr (s) ≤
( σ

2m
) ( s− r

1− rs

)(
r

(1− r2)σ
− s

(1− s2)σ

)
.

Now, we can continue with the proof. Set

fr(s) = exp
(
Agr(s)

) 1

(1− rs)1+σ
2

.

We must show that ∫ 1

0

fr(s) ds ≤ C (4.25)

for some constant C not depending on r. Without loss of generality, we may assume that
r > 1/2. From Lemma 4.26, we see that gr(s) ≤ 0. Hence,∫ 1/2

0

fr(s) ds ≤
∫ 1/2

0

ds

(1− rs)1+σ
2

≤ 2σ/2. (4.26)
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Also, ∫ r+(1−r)1+
σ
2

r−(1−r)1+
σ
2

fr(s) ds ≤
∫ r+(1−r)1+

σ
2

r−(1−r)1+
σ
2

ds

(1− rs)1+σ
2

≤ 2σ/2

≤
∫ r+(1−r)1+

σ
2

r−(1−r)1+
σ
2

ds

(1− r)1+σ
2

≤ 2.

(4.27)

In view of (4.26) and (4.27), to see that (4.25) holds, it remains to prove that∫ 1

r+(1−r)1+
σ
2

fr(s) ds ≤ C1 (4.28)

and ∫ r−(1−r)1+
σ
2

1/2

fr(s) ds ≤ C2. (4.29)

We begin with the proof of (4.28). Let N = N(r) be the largest positive integer such
that

2N <
1

(1− r)σ/2
.

Observe that
r + 2k(1− r)1+σ

2 ≥ 1 ⇔ 2k ≥ (1− r)−σ/2.

Then ∫ 1

r+(1−r)1+σ/2
fr(s) ds =

N∑
k=0

∫
Jk(r)∩[0,1]

fr(s) ds,

with
Jk(r) =

(
r + 2k(1− r)1+σ

2 , r + 2k+1(1− r)1+σ
2

)
.

As s > r, from Lemma 4.26 we have

gr(s) ≤ −C Ar(s) ·Br(s) (4.30)

with

Ar(s) :=
s− r
1− sr

and
Br(s) :=

s

(1− s2)σ
− r

(1− r2)σ
.

For s ∈ Jk(r), we have

Ar(s) ≥
s− r

2(1− r)
≥ 2k−1(1− r)σ/2. (4.31)
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Let h(x) = x/(1− x2)σ. Then

h′(x) =
1− x2 + 2σx2

(1− x2)σ+1
.

By the mean value theorem, there is x ∈ (r, s) with

Br(s) =
1 + (2σ − 1)x2

(1− x2)σ+1
(s− r).

If 2σ ≥ 1, then 1+(2σ−1)x2 ≥ 1 and, if 2σ < 1, because x < 1, we have 1+(2σ−1)x2 > 2σ.
Therefore,

1 + (2σ − 1)x2 ≥ Cσ := min(1, 2σ).

Hence, as x > r, we obtain

Br(s) ≥ Cσ
s− r

(1− r2)σ+1
.

Since
s− r ≥ 2k(1− r)1+σ

2 , s ∈ Jk(r),

we have
Br(s) ≥ C(σ)2k(1− r)−σ/2.

Putting this estimate together with (4.31) into (4.30) we obtain

gr(s) ≤ −C(σ)22k, s ∈ Jk(r).

Hence, ∫ 1

r+(1−r)1+σ/2
fr(s) ds =

N∑
k=0

∫
Jk(r)∩[0,1]

eAgr(s) (1− sr)−1−σ
2 ds

≤
N∑
k=0

e−C22k
∫
Jk(r)

ds

(1− sr)1+σ
2

≤
N∑
k=0

e−C22k |Jk(r)|
(1− r)1+σ

2

=
N∑
k=0

2ke−C22k = C1 <∞.

This proves (4.28). Therefore, in order to finish the proof of this case, it remains to prove
that (4.29) holds, that is, we must show that∫ r−(1−r)1+

σ
2

1/2

fr(s) ds ≤ C2.
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Let M = M(r) be the largest positive integer such that

2M <
r − 1/2

(1− r)1+β/2
.

Then ∫ r−(1−r)1+σ/2

1/2

fr(s) ds ≤
M∑
k=0

∫
Jk(r)∩[1/2,1]

fr(s) ds (4.32)

with
Jk(r) =

(
r − 2k+1(1− r)1+σ/2, r − 2k(1− r)1+σ/2

)
.

Now r > s, so that from Lemma 4.26 we get

gr(s) ≤ −C(σ)Cr(s) ·Dr(s) (4.33)

with

Cr(s) :=
r − s
1− sr

, and Dr(s) :=
r

(1− r2)σ
− s

(1− s2)σ
.

We have
r − s ≥ 2k(1− r)1+σ/2, s ∈ Jk(r),

and

1− sr ≤ 1− (r − 2k+1(1− r)1+σ
2 )r ≤ 2(1− r)

(
1 + 2k(1− r)

σ
2

)
, s ∈ Jk(r).

This gives

Cr(s) ≥
2k−1(1− r)σ/2

1 + 2k(1− r)σ/2
, s ∈ Jk(r). (4.34)

In order to estimate the term Dr(s), take a non-negative integer m with 2mσ ≥ 1. Then
we claim that

Dr(s) ≥ 2−m
r(1− s2)2mσ − s(1− r2)2mσ

(1− r2)σ(1− s2)2mσ
. (4.35)

We prove the claim by induction on m. The result is obvious for m = 0. Assume the claim
is true for m and proceed to show that the case m+ 1 also holds. By induction, we have

Dr(s) ≥ 2−m
r(1− s2)2mσ − s(1− r2)2mσ

(1− r2)σ(1− s2)2mσ

= 2−m
r2(1− s2)2m+1σ − s2(1− r2)2m+1σ

(1− r2)σ(1− s2)2mσ
(
r(1− s2)2mσ + s(1− r2)2mσ

) .
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Because s ≤ r, then (1− r2) ≤ (1− s2) and

Dr(s) ≥
2−m r

r + s
· r(1− s

2)2m+1σ − s(1− r2)2m+1σ

(1− r2)σ(1− s2)2m+1σ

≥ 2−(m+1) · r(1− s
2)2m+1σ − s(1− r2)2m+1σ

(1− r2)σ(1− s2)2m+1σ
.

Hence the claim is proved.

As 2mσ ≥ 1 and s ≤ r, then (1 − r2)2mσ−1 ≤ (1 − s2)2mσ−1, and using the inequality
(4.35), we obtain

Dr(s) ≥ 2−m
r(1− s2)2mσ − s(1− r2)2mσ−1(1− r2)

(1− r2)σ(1− s2)2mσ

≥ 2−m
r(1− s2)− s(1− r2)

(1− r2)σ(1− s2)
≥ 2−m

r − s
(1− r2)σ(1− s2)

.

Now, for s ∈ Jk(r), we have
r − s ≥ 2k(1− r)1+σ/2,

and

1− s2 ≤ 2(1− s) ≤ 2
(
1− (r − 2k+1(1− r)1+σ/2)

)
= 2(1− r)(1 + 2k+1(1− r)σ/2).

This gives

Dr(s) ≥
2−(m+1) 2k(1− r)−σ/2

(1 + r)σ(1 + 2k+1(1− r)σ/2)
≥ 2−(m+1+σ) · 2k(1− r)−σ/2

(1 + 2k+1(1− r)σ/2)
, s ∈ Jk(r).

Putting this together with (4.34) into (4.33) we obtain

gr(s) ≤ −C(σ) · 22k

(1 + 2k+1(1− r)σ/2)2
, s ∈ Jk(r); 1/2 ≤ s < 1.

Then∫ r−(1−r)1+σ/2

1/2

fr(s) ds ≤
M∑
k=0

∫
Jk(r)∩[1/2,1]

eAgr(s) (1− sr)−1−σ
2 ds

≤
M∑
k=0

exp
(
− C 22k(

1 + 2k+1(1− r)σ/2
)2

)∫
Jk(r)∩[1/2,1]

ds

(1− sr)1+σ
2

ds.

Since

1− sr ≥ 1− s ≥ 1− (r − 2k(1− r)1+σ/2) = (1− r)(1 + 2k(1− r)σ/2), s ∈ Jk(r).
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and |Jk(r)| = 2k(1− r)1+σ/2 we get∫ r−(1−r)1+σ/2

1/2

fr(s) ds ≤
M∑
k=0

exp
(
− C 22k(

1 + 2k+1(1− r)σ/2
)2

) 2k(
1 + 2k(1− r)σ2

)1+σ
2

. (4.36)

Because hr(x) = (1 + x(1− r)σ/2)−(1+σ/2) is a decreasing function, then

2k

(1 + 2k(1− r)σ2 )1+σ/2
≤ 2

∫ 2k

2k−1

dx

(1 + x(1− r)σ2 )1+σ/2
.

Also, for x ∈ [2k−1, 2k], we have

22k

(1 + 2k+1(1− r)σ/2)2
≥ 22k

16(1 + 2k−1(1− r)σ/2)2
≥ x2

16(1 + x(1− r)σ/2)2
.

Therefore, we obtain

M∑
k=0

exp

(
− C 22k

(1 + 2k+1(1− r)σ/2)2

)
2k(

1 + 2k(1− r)σ/2
)1+σ/2

≤ 2

∫ (1−r)−(1+σ2 )

1/2

exp

(
−Cx2(

1 + x(1− r)σ/2
)2

)
dx

(1 + x(1− r)σ/2)1+σ/2
.

Bearing in mind (4.36), we arrive at

∫ r−(1−r)1+σ/2

1/2

fr(s) ds ≤ 2

∫ (1−r)−(1+σ2 )

1/2

exp

(
−Cx2(

1 + x(1− r)σ/2
)2

)
dx

(1 + x(1− r)σ/2)1+σ/2
. (4.37)

Consider the function

g(x) = exp

(
−Cx2

(1 + x(1− r)σ/2)2

)(
1 + x(1− r)

σ
2

)−(1+σ/2)
.

To finish the proof it remains to see that∫ (1−r)−
σ
2

1/2

g(x) dx ≤ K1 and

∫ (1−r)−(1+σ2 )

(1−r)−
σ
2

g(x) dx ≤ K2

for some positive constants K1 and K2 not depending on r. It is clear that∫ (1−r)−
σ
2

1/2

g(x) dx ≤
∫ ∞

1/2

e−Cx
2/4 dx = K1 <∞.
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Finally, using the change of variables t = (1 − r)σ/2x and the fact that the function
k(t) = −t(1 + t)−1 decreases, we get∫ (1−r)−(1+σ2 )

(1−r)−
σ
2

g(x) dx =

∫ (1−r)−1

1

exp

(
−Ct2

(1− r)σ(1 + t)2

)
dt

(1− r)σ/2(1 + t)1+σ/2

≤ (1− r)−σ/2 exp

(
−C

4(1− r)σ

)∫ (1−r)−1

1

dt

(1 + t)1+σ/2
≤ K2

for some constant K2 not depending on r. This completes the proof.

The rest of the section is devoted to the proof of Proposition 4.24. We need first some
lemmas, whose proof uses results of [33] involving the Legendre-Fenschel transform.

Lemma 4.27. Let A, σ > 0 and let c0 = A
1

σ+1

(
σ

1
σ+1 + σ−

σ
σ+1

)
. Then

∞∑
n=1

exp
(
c0n

σ
σ+1

)
ρn .

(
1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
.

Proof. We have
∞∑
n=1

exp
(
c0n

σ
σ+1

)
ρn =

∞∑
n=1

eN(n) ρn

with
N(x) = c0 x

σ/(σ+1), x > 0.

A calculation shows that its inverse Legendre-Fenschel transform is given by

u(t) = sup
x>0

(
N(x)− xt

)
= A t−σ.

Since u′′(t) = Aσ(σ + 1)t−(2+σ), by Corollary 1 in [33] we get

∞∑
n=1

eN(n) ρn �
√
u′′(log 1/ρ) eu(log 1/ρ)

=
√
Aσ(σ + 1)

(
1

log 1/ρ

)1+σ/2

exp

(
A

(log 1/ρ)σ

)

≤
√
Aσ(σ + 1)

(
1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
.
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Lemma 4.28. Let 0 < σ <∞ and

I(λ) =

∫ 1

0

rλ exp

(
− A

(log 1
r
)σ

)
dr, A > 0.

Then
I(λ) � λ−

(2+σ)
2(σ+1) exp

(
− c0λ

σ
σ+1

)
, λ→∞,

where c0 = A
1

σ+1

(
σ

1
σ+1 + σ−

σ
σ+1

)
.

Proof. This is proved for 0 < σ ≤ 1 in [18, 19], but since we need the explicit expression of
the constant c0 we give the proof here. After the change of variables t = − log r, we have

I(λ) =

∫ ∞
0

e−At
−σ−(λ+1)tdt =

∫ ∞
0

e−v(t)−(λ+1)tdt,

with v(t) = At−σ. Consider its Legendre-Fenschel transform

L(x) = inf
t>0

(
v(t) + xt

)
.

A simple calculation shows that L(x) = c0x
σ/(σ+1). Since L′′(x) = −c0

σ
(σ+1)2

x−
(2+σ)
σ+1 , by

[33, Theorem 1], we have

I(λ) �
√
−L′′(λ) e−L(λ) � λ−

(2+σ)
2(σ+1) exp

(
− c0λ

σ
σ+1

)
, λ→∞.

Proof of Proposition 4.24

Step 1. Following the same argument as in [16] we get

M1(ρ,K) ≤ C +
∞∑
n=3

Mn,

with

Mn := max
x∈[2n−1,2n+1]

ρx

v2x+1

.

We recall that

vλ =

∫ 1

0

sλ ωσ(s) ds.

Step 2. Changing variables and then using Lemma 4.28 we have

v2x+1 � x
−(2+σ)
2σ+2 exp

(
− c0 x

σ
σ+1

)
, x→∞,
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Therefore,
ρx

v2x+1

� ρx x
2+σ
2σ+2 exp

(
c0 x

σ
σ+1

)
= eh(x), x→∞,

where

h(x) = x log ρ+

(
2 + σ

2σ + 2

)
log x+ c0x

σ
σ+1 .

Since h′′(x) = − (2+σ)
2(σ+1)x2

− σ
(σ+1)2

x−
(σ+2)
σ+1 < 0, then h can only have a critical point xρ, and

in case it exists, it must be a maximum. Next we are going to show that it has a unique

maximum xρ which is comparable with yρ = ( 1
log 1

ρ

)σ+1. Indeed, for n ≥
(
σ+1
σc0

)σ+1
we have

h′
( 1

n
yρ

)
= log ρ+

(2 + σ)n

2(σ + 1)

(
log

1

ρ

)σ+1

+
σ c0

σ + 1
n

1
σ+1 log

1

ρ

=

(
log

1

ρ

)
·
(
σ c0

σ + 1
n

1
σ+1 − 1

)
+

(2 + σ)n

2(σ + 1)

(
log

1

ρ

)σ+1

> 0.

Also, for m ≥ max
(
(log 1

ρ
)σ+1; 2+σ(1+2c0)

2(σ+1)

)
, (note that we can take m independent of ρ,

since (log 1
ρ
)σ+1 is bounded for 1/2 ≤ ρ < 1)

h′(myρ) ≤ log ρ+
2 + σ(1 + 2c0)

2(σ + 1)
(myρ)

−1
σ+1

=

(
log

1

ρ

)(
2 + σ(1 + 2c0)

2(σ + 1)m
1

σ+1

− 1

)
< 0.

In the last inequality we used that x
1

β+1 ≤ x for x ≥ 1. Therefore, there exists xρ ∈
(yρ
n
,myρ) such that h′(xρ) = 0. This gives us

sup
x∈(0,∞)

eh(x) = eh(xρ) �
(

1

1− ρ

)1+σ/2

exp
(
g(xρ)

)
, (4.38)

with
g(x) = x log ρ+ c0x

σ
σ+1 .

now, a calculation shows that g has a unique maximum at the point

zρ =

(
σc0

(σ + 1)

1

log 1
ρ

)σ+1

.
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We have

g(zρ) = −
(

σc0

σ + 1

)σ+1
1

(log 1
ρ
)σ

+ c0

(
σc0

(σ + 1)

1

log 1
ρ

)σ

=

(
σc0

σ + 1

)σ
1

(log 1
ρ
)σ

(
c0 −

σc0

σ + 1

)

= σσ
(

c0

σ + 1

)σ+1
1

(log 1
ρ
)σ

=
A

(log 1
ρ
)σ
,

because, as c0 = A
1

σ+1

(
σ

1
σ+1 + σ−

σ
σ+1

)
, then

σσ
(

c0

σ + 1

)σ+1

=
Aσσ

(σ + 1)σ+1

(
σ

1
σ+1 + σ−

σ
σ+1

)σ+1

= A.

This together with (4.38) yields

sup
x∈(0,∞)

eh(x) .

(
1

1− ρ

)1+σ/2

exp
(
g(zρ)

)
=

(
1

1− ρ

)1+σ/2

exp

(
A

(log 1
ρ
)σ

)
≤
(

1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
.

(4.39)

Step 3. Choose n0 ∈ N such that 2n0 ≤ xρ < 2n0+1 and split the above sum as follows:

∞∑
n=1

Mn =

n0−2∑
n=1

Mn +

n0+1∑
n=n0−1

Mn +
∞∑

n=n0+2

Mn.

For 1 ≤ n ≤ n0 − 2, because of the monotonicity of h

Mn = max
x∈[2n−1,2n+1]

ρx

v2x+1

= max
x∈[2n−1,2n+1]

eh(x) = eh(2n+1).

And it follows from (4.39) that

n0+1∑
n=n0−1

Mn .

(
1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
.
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Using again the monotonicity of h for n ≥ n0 + 2,

Mn = max
x∈[2n−1,2n+1]

ρx

v2x+1

= max
x∈[2n−1,2n+1]

eh(x) = eh(2n−1).

So,

∞∑
n=1

Mn ≤
n0−2∑
n=1

eh(2n+1) +
∞∑

n=n0+2

eh(2n−1) +

(
1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
. (4.40)

Next, for n ≤ n0 − 2 and since h increases,

eh(2n+1) =
1

2n+1

2n+2−1∑
k=2n+1

eh(2n+1) ≤ 1

2n+1

2n+2−1∑
k=2n+1

eh(k) ≤ 2
2n+2−1∑
k=2n+1

eh(k)

k
.

And for n ≥ n0 + 2 and since h decreases,

eh(2n−1) =
1

2n−2

2n−1−1∑
k=2n−2

eh(2n−1) ≤ 4

2n

2n−1−1∑
k=2n−2

eh(k) ≤ 2
2n−1−1∑
k=2n−2

eh(k)

k
.

Using this one in (4.40), we have

M1(r,K) .

(
1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
+
∞∑
k=1

eh(k)

k

�
(

1

1− ρ

)1+σ/2

exp

(
A

(1− ρ)σ

)
+
∞∑
k=1

k−
σ

2σ+2 exp
(
c0 k

σ
σ+1

)
ρk.

Finally, as
∞∑
k=1

k−
σ

2σ+2 exp
(
c0 k

σ
σ+1

)
ρk ≤

∞∑
k=1

exp
(
c0 k

σ
σ+1

)
ρk,

applying Lemma 4.27, we get the result. The proof is complete.
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Chapter 5

Open questions and future research

We believe that we have done a satisfactory work in order to get a better understanding
of the function properties of large weighted Bergman spaces and the operators acting on
them. We hope that this work is going to attract many other researchers to this area, and
expect that the study of this function spaces is going to experience a period of intensive
research in the next years. However, we have not been able to solve all the problems we
had in mind, and in this last chapter we discuss some open problems we left, as well as
some other problems we think it can be interesting to look on the future.

5.1 Extension of the results to p 6= 2

One can look if it is possible to extend the results obtained for the class W to the case
p 6= 2, in the same way as the results obtained in Chapter for the class E . Of course, one
way to do that is to prove the estimate∫

D
|Kz(ζ)|ω(ζ)1/2 dA(ζ) . ω(z)−1/2. (5.1)

This condition will follow if one is able to show the following pointwise estimate for repro-
ducing kernels: for each M ≥ 1, there exists a constant C > 0 (depending on M) such
that, for each z, ξ ∈ D one has

|Kz(ξ)| ≤ C
1

τ(z)

1

τ(ξ)
ω(z)−1/2ω(ξ)−1/2

(
min(τ(z), τ(ξ))

|z − ξ|

)M
. (5.2)

The obtention of this estimate leads to the estimate (5.1), and according to the results
of Chapter 4 to estimate the norm of the reproducing kernels in Ap(ωp/2) for p ≥ 1. It
also leads to the same estimate even for 0 < p < 1 and even to estimate the p-norms
of Kz on the associated Bergman spaces Ap(ω

p/2
∗ ) for associated weights ω∗ of the form

ω∗(z) = ω(z) τ(z)α with α ∈ R. This will allow to study the case 0 < p < 1 and the
associated weighted Bergman spaces.
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In view of the estimates for the test functions Fa,p given in Lemma C, it seems reasonable
to think that the pointwise estimate (5.2) must be true for weights in the class W , but
we have not succeeded on that task (we have not been able to find a reasonable condition
for τ(z) in order to apply the methods developed by Marzo and Ortega-Cerdà in [44] for
weighted Fock spaces).

5.2 Localization and Compactness

In the recent years, a great effort has been done on looking for general conditions for
describing the compactness of an operator acting either on standard Bergman spaces or
in the classical Fock spaces [30, 31, 46, 66, 70]. In a recent paper, J. Xia and D. Zheng
[70] introduced a class of “sufficiently localized” operators on the Fock space including the
algebraic closure of the Toeplitz operators. They proved that every bounded operator T
from the C∗-algebra generated by the sufficiently localized operators whose Berezin trans-
form vanishes at infinity is compact in the Fock space. The concept of sufficiently localized
operators was extended to a larger class of operators (either in the Fock space setting or in
the Bergman space setting) by J. Isralowitz, M. Mitkowski and B. Wick [31] introducing
what they called “weakly localized operators”. The analogue of this last concept is what
we are going to introduce next on the setting of large weighted Bergman spaces, when the
weight ω is in the class E considered in Chapter 4. For the class W , we need to restrict to
the case p = 2 because of the lack of estimates for ‖Kz‖Ap(ωp/2).

For 1 < p < ∞, let p′ denote its conjugate exponent. Let kp,z denote the normalized
reproducing kernels on Ap(ωp/2), that is, kp,z = Kz/‖Kz‖Ap(ωp/2). Given an operator T

acting on Ap(ωp/2), we define the quantities

W1(T ) := sup
z∈D

∫
D
|〈Tkp,z, kp′,ξ〉ω|

dA(ξ)

τ(ξ)2
,

and

W2(T ) := sup
ξ∈D

∫
D
|〈Tkp,z, kp′,ξ〉ω|

dA(z)

τ(z)2
.

Definition 5.1. Let 1 < p < ∞. A linear operator T acting on Ap(ωp/2) is said to be
weakly localized if

W (T ) = max
(
W1(T ),W2(T )

)
<∞

and

V m
1 (T ) := sup

z∈D

∫
Dm(z)c

|〈Tkp,z, kp′,ξ〉ω|
dA(ξ)

τ(ξ)2
→ 0,

V m
2 (T ) := sup

ξ∈D

∫
Dm(ξ)c

|〈Tkp,z, kp′,ξ〉ω|
dA(z)

τ(z)2
→ 0,

as m→∞, where Dm(z) :=

{
ξ ∈ D : dτ (z, ξ) = |z−ξ|

min(τ(z),τ(ξ))
< 2mδ

}
.
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It is not difficult to see that if W (T ) < ∞, then T is bounded on Ap(ωp/2). Thus the
class of weakly localized operators is included in the class all bounded operators.

Lemma 5.1. Let ω ∈ E and 1 < p <∞. If W (T ) <∞, then T is bounded on Ap(ωp/2).

Proof. Let E be the linear span of the reproducing kernels of A2(ω), that is dense in
Ap(ωp/2). If f ∈ E, by the reproducing formula, we have

Tf(z) = 〈Tf,Kz〉ω = 〈f, T ∗Kz〉ω =

∫
D
f(ξ)T ∗Kz(ξ)ω(ξ) dA(ξ).

Here T ∗ denotes the adjoint operator, acting now on Ap
′
(ωp

′/2) (see the duality result in
Theorem 4.8). Since

T ∗Kz(ξ) = ‖Kξ‖Ap(ωp/2) · ‖Kz‖Ap′ (ωp′/2)〈Tkp,ξ, kp′,z〉ω

and, because of Lemma 4.2,

‖Kξ‖Ap(ωp/2) · ‖Kz‖Ap′ (ωp′/2) � ω(z)−1/2 ω(ξ)−1/2 τ(z)−2/p τ(ξ)−2/p′ ,

we get

|Tf(z)|ω(z)1/2 . τ(z)−2/p

∫
D

∣∣f(ξ)
∣∣ ∣∣〈Tkp,ξ, kp′,z〉ω∣∣ω(ξ)1/2 dA(ξ)

τ(ξ)2/p′
.

Thus, Hölder’s inequality yields

|Tf(z)|p ω(z)p/2 . W2(T )p−1 τ(z)−2

∫
D
|f(ξ)|p|〈Tkp,ξ, kp′,z〉ω|ω(ξ)p/2 dA(ξ).

Therefore, we have

‖Tf‖p
Ap(ωp/2)

=

∫
D
|Tf(z)|p ω(z)p/2 dA(z)

. W2(T )p−1

∫
D
|f(ξ)|p ω(ξ)p/2

(∫
D
|〈Tkp,ξ, kp′,z〉ω|

dA(z)

τ(z)2

)
dA(ξ)

. W1(T ) ·W2(T )p−1‖f‖p
Ap(ωp/2)

.

This finishes the proof.

Denote by Aω,p(D) the set of all weakly localized operators acting on Ap(ωp/2).
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The main goal of this project is to extend to our large Bergman spaces, the results
proved in [31] for standard Bergman spaces or classical Fock spaces. That is, we want to
show that if T ∈ Aω,p(D), then T is compact on Ap(ωp/2) if and only if BωT (z) → 0 as
|z| → 1−, where Bω denotes the ω-Berezin transform of the operator T given by

BωT (z) =
TKz(z)

‖Kz‖2
2

, z ∈ D.

We have just begin to look at that problem, and following the lines of [31] we have proved
that for ω ∈ E and 1 ≤ p <∞, the class Aω,p(D) forms an algebra, and that for ϕ ∈ L∞(D),
the Toeplitz operator Tϕ is in Aω,p(D). However, there is still plenty of work to do before
getting the result we are looking for.

5.3 Big Hankel operators

Another interesting problem is to study, for weights ω in the class E , the simultaneous
boundedness and compactness of the big Hankel operators Hf and Hf acting on Ap(ωp/2)

for general symbols f satisfying fKz ∈ L1(ω1/2) for each z ∈ D. We have been able to prove
that, for 1 ≤ p <∞, if f ∈ BMOp(τ) then Hf and Hf are both bounded on Ap(ωp/2).

For 1 ≤ p < ∞, and δ ∈ (0,mτ ), let BMOp
δ(τ) denote the space of Lploc-integrable

functions g on D such that

‖g‖BMOpδ (τ) := sup
z∈D

(
1

δ2τ(z)2

∫
D(δτ(z))

|g(s)− ĝδ(z)|p dA(s)

)1/p

,

where

ĝδ(z) :=
1

δ2τ(z)2

∫
D(δτ(z))

g(s) dA(s).

We have been able to study the structure of these spaces, and in particular, they are
independent of δ, so that we can fix some δ ∈ (0,mτ ) and put BMOp(τ) = BMOp

δ(τ).
Conversely, we conjecture that if Hf and Hf are both bounded, then f ∈ BMOp(τ).

There are several things supporting this conjecture: the analogue problem in the case of
standard weighted Bergman spaces is true [77]; in case that the symbol g is analytic, then
it is not difficult to see that g being in BMOp(τ) is equivalent to τg′ being a bounded
function and this is just the condition characterizing the boundedness of Hg obtained in
Theorem 5.3. Finally, as we commented before, we know how to prove the result in case
that the reproducing kernels Kz does not have any zero in D, but it is unlikely that this
in going to happen in general.
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5.4 Small Hankel operators

Another interesting operator is the small Hankel operator hg for a given holomorphic
symbol g, defined as

hgf(z) =

∫
D
(gf)(ζ)Kz(ζ)ω(ζ) dA(ζ).

A good problem for the future is to look at the boundedness of hg : A2(ω)→ A2(ω). This
problem is equivalent to characterizing the boundedness of the bilinear form Bg(f, h) =
〈fh, g〉ω acting on A2(ω) × A2(ω). It looks that new ideas must be developed in order to
attach this problem. In case that one succeeds on finding such a characterization, then one
can try to extend the results to Ap(ωp/2).

101



102



Bibliography

[1] A. Aleman, S. Richter, C. Sundberg, Beurling’s theorem for the Bergman space, Acta
Math. 177 (1996), 275–310.

[2] J. Arazy, S. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Amer.
J. Math. 110 (1988), 989–1054.

[3] J. Arazy, S. Fisher, S. Janson, J. Peetre, Membership of Hankel operators on the ball
in unitary ideals, J. London Math. Soc. 43 (1991), 485–508.

[4] H. Arroussi, I. Park, J. Pau, Schatten class Toeplitz operators acting on large weighted
Bergman spaces, Studia Math. 229 (2015), 203–221.

[5] S. Asserda, The essential norm of Hankel operators on the weighted Bergman spaces
with exponential type weights, Integral Equations Operator Theory 55 (2006) 1–18.

[6] M.S. Berger, ‘Nonlinearity and Functional Analysis’, Academic Press, New York, Lon-
don (1977)

[7] S. Bergman, ‘The Kernel Function and Conformal Mapping’, American Mathematical
Society, New York, N. Y., 1950. vii+161 pp.

[8] B. Berndtsson, Weighted estimates for the ∂-equation, Complex analysis and geometry
(Columbus, Ohio, 1999). Ohio State. Uni. Math. Res. Inst. Publ. 9 (2001), 43–57.

[9] A. Borichev, R. Dhuez, K. Kellay, Sampling and interpolation in large Bergman and
Fock spaces, J. Funct. Anal. 242 (2007), 563–606.

[10] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math.
80 (1958), 921–930.

[11] L. Carleson, Interpolations by bounded analytic functions and the corona problem,
Ann. of Math. 76 (1962), 547–559.

[12] H.R. Cho, S.K. Han, Exponentially weighted Lp-estimates for ∂ on the unit disc, J.
Math. Anal. Appl. 404 (2013), 129–134.

[13] H.R. Cho, J. Isralowitz, J-C. Joo, Toeplitz operators on Fock-Sobolev type spaces,
Integral Equations Operator Theory 82 (2015), 1–32.

103



[14] W. Cohn, Generalized area operators on Hardy spaces, J. Math. Anal. Appl. 216
(1997), 112-121.

[15] R. Coifman, R. Rochberg, Representation theorems for holomorphic and harmonic
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