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Abstract

This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic
non-negative random variables. Such a model is defined through a univariate survival function
that is shown to be n-monotone. Two general representations are obtained, by conditioning on
the sum of the n variables or through a doubly mixed multinomial distribution. Several other
properties including correlation measures are derived. Three processes in insurance theory are
discussed for which the claim interarrival periods form a Schur-constant model.
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1. Introduction

Schur-constant models play a special role in the analysis of lifetime data. Their properties
have been studied by several authors including Barlow and Mendel (1993), Caramellino and
Spizzichino (1994), Nelsen (2005), Chi et al. (2009) and Nair and Sankaran (2014). Traditionally,
the lifetimes considered are absolutely continuous random variables valued in IR. The present
work aims to discuss Schur-constant models for discrete survival data valued in INg = {0, 1,...}.

Let (X1,...,X,) be a vector of n (> 2) arithmetic non-negative random variables, called
lifetimes. It is said to have a Schur-constant joint survival function if for all (zq,...,x,) € INy,
PXy>xy,...,. Xy >ap) =S+ ... + x), (1.1)

where S is an admissible function from INg to [0,1]. Clearly, such a survival function S is
both Schur-convex and Schur-concave (see Marshall et al. (2011)), hence the appellation of
Schur-constant.

By (1.1), the n variables X; of this vector are exchangeable. Moreover, any subvector is
also Schur-constant. As in the continuous case, a Schur-constant model translates a no-aging
property, i.e. the residual lifetimes of any two components, X; — z; and X; — x; say, have the
same conditional distributions, even if they have different ages x; and z;:

PX,—xz;>t| Xy >x1,...,. X >x) = Si+...4+x,+0)/S(@1+ ...+ xp)
= P(Xj—l‘jZﬂXlZIl,...,XnZLL“n).
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Concerning the function S, putting 22 = ... =z, = 0in (1.1) gives P(X; > z1) = S(x1), so
that S is at least a univariate survival function. In fact, .S is a multivariate survival function,
which means that S(0) = 1, S(co) = 0 and the probability mass associated by S to any rectangle
in INj is nonnegative.

As a first result, we will show that this admissibility condition is equivalent to the property
of n-monotonicity of S on INg. A function f(x): INg — IR is said to be n-monotone if it satisfies

(=17 AIf(x) >0, j=0,...,n, (1.2)

where A is the forward difference operator (i.e. Af(x) = f(z +1) — f(z)) and A7 is its j-
th iterated. Multiple monotone functions on INg have received little attention so far in the
literature. Recently, Lefevre and Loisel (2013) have studied the property of monotonicity for
probability distributions, in the continuous and discrete cases.

It is worth indicating that the multiple monotonicity on IR is a much more standard concept.
Williamson (1956) has investigated in detail the properties of such functions when n > 1 is an
integer (as here) or even any real; see also Lévy (1962) and Gneiting (1999). In probability,
n-monotonicity of continuous distributions corresponds to the so-called beta(1, n)-unimodality,
defined for n real > 0 (Bertin et al. (1997), page 72). In statistics, the estimation problem of
n-monotone densities when n is an integer > 0 has been studied by Balabdaoui and Wellner
(2007), for instance. As shown by McNeil and Neslehova (2009), an Archimedean generator
yields a n-dimensional copula if and only if this generator is n-monotone on R4 ; see also e.g.
Genest and Rivest (1993), Albrecher et al. (2011) and Constantinescu et al. (2011). In Lefevre
and Utev (2013), it is proved that symmetric n-monotone densities are preserved by convolution
provided n € [0, 1].

The paper is organized as follows. In Section 2, we show that a Schur-constant model requires
the n-monotonicity of S, and we derive different joint life time distributions. In Section 3, we
provide two representations of a Schur-constant model, by conditioning on the sum X;+...4+ X,
or through a doubly mixed multinomial distribution. In Section 4, we prove that an infinite
sequence is Schur-constant when the joint distributions are of mixed geometric form. In Section
5, we present some parametric functions S that are monotone with various degrees. In Section 6,
we obtain simple expressions for the usual correlation coefficients. In Section 7, we discuss three
processes in insurance for which the claim interarrival periods form a Schur-constant model.
The paper ends with a short Appendix.

2. Joint lifetime distributions

We start by deriving a necessary and sufficient condition for the function S in (1.1) to be
a multivariate survival function. Firstly, the lemma below characterizes the survival function

F(z1,...,xy,) of an arbitrary INj-valued random vector (X7, ..., X,). The result is well-known,
but a short proof is given for reasons of completeness. Let F'(z;,,...,z; j) be the survival function
of any subvector (Xj,,...,X;;), 1 <j <n. Forward difference operators are defined as follows:

g being a real function on INg, then for any integers h; > 1, 1 < i <n,

Aing(xy,..c,xn) =g(@1, ..+ hey oo xn) —g(T, ., 2, -, Tn);
by convenience, we write A; 19 = Ag.
Lemma 2.1. A function F(z1,...,2,): ING — [0,1] s the survival function of a INg-valued
random vector (Xi,...,X,) if and only if F(0,...,0) =1, F(xy,...,z,) =0 if x; = oo for at

least one i, and A B
(—l)JAil...AijF(xil,...,xij)20, jzl,...,n. (21)



Proof. Applying A, p,, with h; > 1, to F(x;) gives

More generally, for 1 < j <n and h;,,..., h;y; > 1,

(—1)j Ail,hil . Aij,hijp(xiw e ,l'ij) = P(I‘Zk <X, <xy, +hy,kE=1,... 1), (2.2)
which is obviously nonnegative, hence (2.1) by taking h;, = ... = h;; = 1. Conversely, it is
immediate that a function F' well normalized and fulfilling the condition (2.1) may be considered
as the survival function of a random vector (Xi,...,X,). ¢

Now, let us go back to the Schur-constant model for which F'(z1,...,2,) = S(x1+...+ ).
As for (1.2), put AS(z) = S(z + 1) — S(z) with A7 its j-th iterated. Evidently,

AiF (i, w) = AS(2g, + ...+ a),
so that the condition (2.1) becomes
(-1 A7S(z) >0, j=1,...,n. (2.3)
This yields the following characterization result.

Proposition 2.2. A function S(z): INg — [0,1] is the Schur-constant survival function of a
ING -valued random vector (X1, ..., Xy) if and only if S(0) =1, S(oco) =0 and S is n-monotone
on INg.

In other words, S is simply a univariate survival function that is n-monotone on INy.

Let {p(z), z € Ny} denote the probability mass function (p.m.f.) associated to S. Since
AIS(z) = —AI71p(z), j > 1, the condition (2.3) is equivalent to

(=1) Alp(z) >0, j=0,...,n—1.

Proposition 2.3. A function p(x): INg — [0,1] is the Schur-constant p.m.f. of a INj-valued
random vector (X1, ..., Xy) if and only if the p(x)’s are of sum 1 and p is (n — 1)-monotone on
No.

From (1.1) and (2.2), we directly obtain simple formulas for various probablities on subvectors
(X1,...,Xj), 1 <j < n. Some cases of interest are listed below.

Proposition 2.4. For1<j <n and (z1,...,z;) € ]N%,

P(ml < X3 <$1+h1,...,1‘j SX] <xj+hj) = (—1)jA1,hl...Ajﬁ],S(;L'l—i-...—l-xj), (24)
P(Xi=a1,...,X;=2;) = (=1 AIS(z1+...+x)),
P(Xl :fL‘l,...,X]’,1 :l‘jfl,Xj ZIE]) = (*1)j_1Aj_IS($1+...+ZE]’). (26)

For the sequel, it is useful to consider the associated partial sums 7; = X1 + ...+ X, 1 <
Jj <n.



Proposition 2.5. For 1 <k<j<nand0<t; 1 <...<tj,

A tiky1+J—Fk
P(Tj_jy1 =tj pr1,-- -, T = t;) = (=1)7 AIS(2;) < J k;}_k] ) (2.7)
In particular,
S ti+7—1

Pty = 1) = (17 A8 (T 1), (2.9
P(Ty =t1,...,T; = t;) = (—1)? AIS(t;), (2.9)

which also yields

ti+j—1

P(Ty=t1,...,Tjo1 = t;1|T; = t;) = 1/< Jj Z 1 ) (2.10)

Proof. In terms of (T1,...,T}), we have

P(Tj_pp1 =tj g, .-, T =tj) = > P(Ty=ty, ..., Tj =t k..., Tj =t;).
1< <tj gtk <tj g41

The sum in the r.h.s. can then be expressed in terms of (Xi,...,X;) as

Z P(Xl :a:l,...,Xj,k:a;j,k,...,Xj:tj—tj_l).
TlyeesTj— ki 1t T 1= k41

By (2.5), the probabilities P(X; = x1,...,X; = t; — tj_1) are all equal to (—1)7AJS(t;).
Remember that the number of ways to put b indistinguishable balls in n urns is equal to (bjff_l;l).
Thus, the number of terms in the sum above is obtained by taking b =t;_j41 and n = j —k+1,
which gives (tj‘k;izj_k). Formula (2.7) now follows. It gives (2.8) for £k = 1 and (2.9) for k = j,
with (2.10) as a consequence. ©

Formula (2.10) means that given T} = t;, the j — 1 previous arrival times are obtained by
throwing j — 1 balls in ¢; + 1 urns (which correspond to the instants 0, ..., ¢;). In the continuous

case, [T, ...,Tj—1|Tj = t;] is distributed as the order statistics of a sample of j — 1 independent
(0,t;)-uniform random variables (e.g. Theorem 2.1 of Chi et al. (2009)).

3. Representations of Schur-constancy

Our purpose in this Section is to provide general representations that are valid for any
discrete Schur-constant model. Put (Z) = 0 when a < b.

Proposition 3.1. For 1 <j <n and x1,...,2;,2 > 0 withx1 +... +z; < 2,
— j -1 -1
P(Xlle,...,Xijj\Tn—z)—(Z ($1+nj‘11'])+n )/(Z;:il )7 (31)

so that for 1 <j<n-—1,

z—(x1+...+zj))+n—j5—1 z24+n—1
P(Xlle,...,xj:xj|Tn:z):( n—jj—l )/( B ) (3.2)

Thus, the function S can be represented as

S(x1+...+xn):EKZ_($1+"'+x”)+n_1>/<Z+n_1>], (3.3)

n—1 n—1

where the variable Z is distributed as T, i.e. with a p.m.f. given by (2.8) where j = n.



Proof. By definition and from (2.8),

P(Xl Z.Tl,...,Xj Zl’j,Tn:Z)
(=" AnS(2) (,"1)

n—1

P(Xl le,...,Xj Zl‘j|Tn:Z):

The numerator can be expressed as

E P(Xl:yla---an:ij--aXn:yn)y
YlseesYni Y1 21500,y 2T and y1+...+yn=2

in which, by (2.5), the probabilities are all equal to (—1)" A™S(x). One easily sees that the
number of ways to put b indistinguishable balls in n urns with at least z; balls in urn 1, ..., x;

balls in urn 7, is equal to (b_(rlJr‘?‘l‘ffjH”_l). This leads to formula (3.1).
To get (3.2), it suffices to apply (2.5) and the fact that

A z—xr+n-—1 o z—x+n-—2
n—1 - n—2 ’

where A operates on z. Finally, (3.1) where j = n gives (3.3). ¢

This result is the discrete analogue of a representation obtained for the continuous model (see
Proposition 2.3 in Caramellino and Spizzichino (1994) and Theorem 2.1 in Chi et al. (2009)).
A different but equivalent characterization of Schur-constancy is derived below.

Proposition 3.2. The model (X1,...,X,) is Schur-constant if its joint distribution is of doubly
mixed multinomial (MM ) form, namely

(Xl,...,Xn) ==d MM(Z,Ul,,Un) (34)

Here, Z represents the random number of experiments and is distributed as T,,, while (Uy, ..., Uy)
represents the vector of randomized cell probabilities, independent of T;, and with a joint survival
function that is (continuous) Schur-constant and defined by

P(Uy > ut,y .o Uy > up) = [1— (ug + .o+ w0 ur, ..y, € (0,1). (3.5)

Proof. We are going to show that under (3.4) and (3.5), the p.m.f. of (X3,..., X;) conditionally
on Z is given by (3.2), for 1 < j < n — 1. Indeed, we have, for all z1,...,2; > 0 with
r1+...F+x; <z

z!
PXi=x1,....X,=x;|Z=2) = n—1)...(n—7J

(X1 b 5 =l ) :rl!...xj!(z—xl...—a:j)!( ) (n=J)

/ uyt ... u;cj(l —up = — )T T E I gy dug. (3.6)

Ul,...,u; >0 and wi+...4u; <1
Now, consider an integral of the form

/ u‘f‘l_l...ug’“_l duy ... dug_q,
0<ui,...,up_1<1 and up=1—uj—...—up_1

for reals aq,...,a; > 0. That integral is the multinomial Beta function and is equal to

D(ag)...T(ag)/T(ar + ...+ ag).



This is a known identity, which is also easily proved by induction. Going back to the integral in

(3.6), we see that it corresponds to the particular case where k = j+1, a1 = z1+1,..., 05 = 2;+1
and aj;1 =2z — 21 — ... —xj +n — j. Thus, we can write that
/ ujt .. .u;:j(l —uy — )T T gy
uy,...,u; >0 and u+...+u; <1
ol (z—ax1—...—xi+n—7—1)!
_ ool ptn=jm D (3.7)
(z4+n—1)!

Substituting (3.7) in (3.6) then yields

Z2n-1)...(n—j)(z—x1—...—xj+n—j5—1)
(z—x1—...—x))l (z+n—-1)!

P(Xlle,...,Xj:$j|Z:Z):

and after multiplication by (n —j — 1)!/(n —j —1)! (= 1),
z—(r14+...+x))+n—j—1 z4+n—1
P(Xlle,...,Xj:$j|Z:Z):< n—]]—1 >/< n—1 >,
i.e. the desired formula (3.2). ©

In the continuous case, the vector (X1/Z,...,X,/Z) is independent of Z and is Schur-
constant with survival function (1 —z)7"". Note that in the discrete case, (X1/Z,...,X,/Z) is
not independent of Z since the X;’s are valued in {0,...,Z}.

4. The geometric special model

Firstly, we show below that the no-aging property of Schur-constant models is a generaliza-
tion of the lack of memory property for geometric random variables.

Proposition 4.1. Let (X1,...,X,) be a Schur-constant random vector. Then, the components
X, 1 <1i<n, are independent if and only if they are geometrically distributed.

Proof. If the X;’s are independent, (1.1) implies that
S(x1+...+x,) = S(x1)...5(xn),

for all (z1,...,x,) € INg. Since S is non-increasing with S(0) = 1, we then obtain by induction
that S(z) = ¢*, x € INp, for some 0 < ¢ < 1. The converse is obvious. ¢

Now, let us consider an infinite discrete Schur-constant model, i.e. (1.1) holds for all n > 2.
Since the sequence {Xj;, i > 1} is exchangeable, de Finetti theorem asserts that the X;’s are
conditionally i.i.d. given the o-algebra G of permutable events (e.g. Chow and Teicher (1988),
section 7.3). The Schur-constant property allows us to make quite explicit the mixture structure
involved.

Proposition 4.2. An infinite sequence of random wvariables {X;, i > 1} with finite mean is
Schur-constant if and only if for all j, (X1,...,X;) has a mized geometric distribution, namely

@ r1+...+x;
<@_|_1> , g =21, (4.1)

O = lim T,,/n a.s. (4.2)
n—oo

P(Xlle,...,XjZLBj):E

where



Proof. The sufficiency is immediate and omitted. Now, from (3.1), we can write that

P<X1Zwl,m,Xijj):E[<Tn—(x1+...+xj)+n—1>/<Tn+n—1>]

n—1 n—1

E[(Tn—(x1+...+xj)+n—1)...(Tn—(a:1+...+mj)+1)

(T, +n—-1)...(T,+1) I(Tnzﬁh-l-...—i—xj)}

n—1
- B H<1—w> T, >a1+...+a;)|, 1<j<n, (4.3)

Pt T, +k

where 1(.) denotes the indicator function.

The strong law of large numbers for an exchangeable sequence {X;, i > 1} with finite mean
asserts that the random variable ©,, = T}, /n converges a.s. to a variable © which is distributed
as F(X1|G) (Chow and Teicher (1988), section 9.2). This provides us with the assertion (4.2).
Moreover, by the dominated convergence theorem, (4.3) yields

P(Xlle,...,XjZCCj):E

nl T+ +x
. 1 j
nhm kI |1 <1 w0, Tk >1(n@n a:l—f—...—l—a:]) ,

so that the assertion (4.1) will follow if the limit in [...] is equal to [©/(© + 1)]*1T~*%i. To
prove this, we rewrite the limit as

n—1
i r1+...+x;
3R P [Z n (1- 255

n—1 z1 + +ox
= Jig, exp [ 2 e, rr oW

1(n®n2x1++x3)

1(nOy, > x1 + ...+ z;)

nB, +n—1

= i — )1
im exp[ (1 + ...+ xj) n( 0.

n—oQ

+o(1)| 1(nO, > x1 + ... + 1)),
)+ou]

using to the approximation

1 b
Zj:ln <a> +o(1) as a,b — 0.
l=a

From (4.2), we then get the announced variable as the above limit. ¢

We notice that for the continuous case, results similar to Propositions 4.1 and 4.2 hold with
respect to the exponential distribution (see Theorem 1 in Nelsen (2005) and Corollary 2.3 in
Chi et al. (2009)).

5. Monotone survival functions

In this Section, we present some parametric survival functions S that are monotone of various
degrees. Before this, we come back shortly on two general characterizations for such functions.

5.1. Representations

By Proposition 2.1, the function S in a Schur-constant model is a n-monotone survival
function. Recently, Lefevre and Loisel (2013) proved that such a function admits a general



representation (see Proposition 2.5 with ¢ = n — 1 and formula (2.10) for ¢ = 0 in that paper).
Specifically, there exists a random variable Z valued in INg for which S can be expressed as

S(m):E{<Z—x+n—1>/<Z+n—1>}’ e 5.1

n—1 n—1
and the p.m.f. of Z is univoquely determined from S by

z+n-—1
n—1

P(Z =z =(-1)" ( ) A"S(z). (5.2)
This result provides us with another method to derive the representation (3.3) for a Schur-
constant model. Indeed, comparing (2.8) and (5.2), we see that Z has the same distribution as
T,. Furthermore, inserting (5.1) in (1.1) then yields the formula (3.3).
A different representation for such a function S is also given by Lefevre and Loisel (2013)
(see their formulas (2.13) and (2.16)). More precisely, S corresponds to the survival function of
a random variable X whose distribution is of doubly mixed binomial (M B) form, namely

X =4 MB(Z,1 — U1y, (5.3)

where Z is the random number of experiments and 1 — UY (1 ig the random parameter, U
being a (0, 1)-uniform random variable independent of Z.

We note that, as expected, the formula (5.3) is in fact a consequence of the representation
(3.4), (3.5) for Schur-constant models.

5.2. Bernoulli model

Let X be a Bernoulli random variable with parameter p. Its survival function is

S0)=1, S(1)=p and S(z)=0, =z>2.

Proposition 5.1.
S(x) is n-monotone iff p < 1/n.

Proof. It suffices to observe that for all j > 0,

AVS(0) = (=1)(=jp+1),
AS(1) = (=1)p,

with A7S(x) = 0 for # > 2, hence the assertion for n-monotonicity. ©

Note that if 1/(n + 1) < p < 1/n, S is n-monotone but not (n + 1)-monotone. From (5.2),
we see that the corresponding variable Z has a Bernoulli distribution with parameter np.

For illustration, consider n successive time intervals of unitary length. Denote by X; the
indicator of the claim occurence in interval i, 1 < i < n. The model (1.1) with X binomial
describes a situation where the n claim indicators are exchangeable and of probability p, and
at most one claim can arise during the whole period (0,7n). This could arise, for example, in
reliability with one-shot device testing and in life insurance with monthly death risk estimation
on the basis of yearly reports.



5.3. Stop-loss model
Let X be a random variable with a survival function of stop-loss type defined by

S(z) = (k — :U)i/kt, x € N, (5.4)

where k and ¢ are positive integers.
To begin with, we point out that the function S can be expanded as a mean of combinatorial
terms. The proof is given in the Appendix.

Lemma 5.2.

B —x+1
k=) . )+ A0 (k . i ) (5.5)
1=0

where {a;(t), 0 < i <t—1} is a symmetric p.m.f. which is computed recursively by

z—f—l

ault) :ai_l(t—l)tT—kaZ(t—l) t=2.3,..., (5.6)

with ap(l) =1 and a—1(t — 1) = 0.

We are now ready to establish the monotonicity property satisfied by S.

Proposition 5.3.
S(x) is (t 4+ 1)-monotone,

and the p.m.f. of the corresponding variable Z is

z+t

P(Z=z2= az+t_k(t)< ; )lil’ max(0,k —t) <z<k-—1 (5.7)

Proof. Note that A(“}%) = —(*}*] 1) for t > 1, while A(%;*) = —1(z = a) where 1(.) is the
indicator function. From (5.5), we thus get

t—1 C
Nk — ), = 1 (~1) Zai(t)<k_“?_j>, 0<j<t,
=0
and for j =1¢+ 1,

ATk —2) = t+12a2 llz=k+i—1)

= ¢(=1)t! ozx+t_k(t) 1[max(0,k —t) <z <k —1]. (5.8)

From (5.4), we then deduce that (—1)7A7S(z) > 0for 0 < j <t+1,i.e. S(z)is (t+1)-monotone.
Now, from (5.2) with n =t + 1, we have

P(Z _ z) _ (_1)t+1 [At+1(k . Z)z_]% (Z:—t)

Using the formula (5.8) we then deduce the announced result (5.7). ¢
Note that the function S is not (¢ 4 2)-monotone since by (5.8),

( )t+2At+QS —— Z az A(Sm it



which is not always nonnegative. For instance, it reduces to —t!ag(t) < 0 when x =k — 1 —¢.
Tables 1 and 2 below give the p.m.f. of Z for the first values of ¢ when k& = 3 or 10.

Table 1: P.m.f. {P(Z =2)} whent=1,...,7 and k = 3.

\ 2|0 1 2
1
1/3 2/3

1/33 16/3%  10/33
11/3*  55/3*  15/3%
66/3° 156/3°> 21/3°
302/3%  399/35 28/36
1191/37 960/37 36/37

~N O U= W N T

Table 2: P.m.f. {P(Z ==z)} whent=1,...,7 and k = 10.

t o\ z 3 4 5 6 7 8 9
1 1
2 0.45 0.55
3 0.12 0.66 0.22
4 0.021 0.363 0.5445  0.0715
5 0.00252  0.12012  0.52272  0.33462  0.02002
6 0.00021  0.026334  0.279048  0.518232 0.171171 0.005005
7 10.000012 0.00396 0.0943272 0.4145856 0.4087512 0.07722 0.001144

5.4. Simple models

Many parametric models are possible for a discrete survival function. In general, however, it
is not easy to check the degree of monotonicity verified by S. Some examples are briefly reported
below.

Power-type model. Let X be a random variable with survival function
S(z) =[1— (z/k)]y, =x €Ny,
where k is a positive integer and t a positive real.

Proposition 5.4.
S(z) is 2-monotone iff t < 1.

Proof. We see that

A*S(z) = [~(z +2)' +2(x + 1) —2'|/k', 0<a2<k-2,
A%S(k—1)=1—(k—1)!/k,

with A2S(z) = 0 for x > k. So, when x > k — 1, A2S(x) > 0 for all t. When 0 < z < k — 2,
this condition means (z + 1)t > [(z + 2)! + 2] /2, which is true iff # < 1. The result follows. o

In that case, S is not 3-monotone since if ¢ = 1 for instance, A3S(k —2) = 1/k > 0.

10



Gompertz model. Let X be a random variable with survival function
S(z) =expld(1 —e*)], x € Ny,

where 6 is a positive real.
First, we define a sequence of reals {0}, j = 2,3,...} by

7 .
0; = max{0 > 0: f;(0) = Z < > ¥ exp(—6e*) = 0}. (5.9)
k=0

Using Mathematica 8.0 for instance, it can be seen that f;(6) > 0 when 6 > 6;, and 6,11 > 6;
for all j =2,3,... Thus, f1(0),..., fn(0) > 0iff § > 6,,. More details are given in the Appendix.

Proposition 5.5.
S(x) is n-monotone iff 0 > 0,.

Proof. We have, for j > 0,

(—1)/AIS(z) = Zj: < > S(x + k) Zj: < > ¥ explO(1 — ).

For j =1, this is positive. Thus, the n-monotonicity condition requires that
L (]
fia®) =" <k> (—1)Fexp(—0e™*h) >0, 2<j<n. (5.10)
k=0

When = 0, fj0(0) = f;(0) defined in (5.9), so that (5.10) is fulfilled iff 6 > 6,,. For x > 0,
when 6 > 6, then fe” > 6,, and thus (5.10) is again satisfied. ©

Note that S(x) is not (n+1)-monotone when 6, <6 < 6,41.

Other cases. We present below the p.m.f. of a few parametric models for which the function
S is at least 2-monotone. In fact, it seems that S is co-monotone but we have not been able to
prove it so far.

Logarithmic model (of parameter 6 € (0,1)):

p(z) = —c#* /(x4 1) where ¢ =1/In(1 —6), € Ny.
Bendford model (of parameter b integer > 3):
p(z) = cln[(z + 2)/(x +1)] where ¢=1/In(b), 0 <2 <b—2, and p(z) =0, = >b—2.

Pareto model (of parameter p > 0):

p(z) = ¢/(1 + x)'™ where ¢ = l/i(l/k)Hp, x € INy.
k=1

11



6. Correlation measures

Various dependence properties and association measures, as well as their links with aging
properties, are widely discussed for the continuous Schur-constant model, especially in the bi-
variate case. The reader is referred e.g. to Nair and Sankaran (2014) and the references therein.
Much of these studies can be adapted to the present discrete model. For brevity reasons, here
we focus mainly on the study of the Pearson linear correlation coefficient.

By exchangeability, all the X;’s have the same mean and variance, y and o2 say (assumed
to exist), and the same Pearson correlation coefficient p. As Schur-constancy is expressed in
terms of the survival function S of X7, one expects that p is related to some parameters of X;
alone. We will see that p is indeed a function of 4 and 2. Let us begin by showing how to
calculate these two parameters. We can use either the p.m.f. of X; (i.e. (2.5) with j = 1), or
the characterization (3.4), (3.5) where the mean and variance of Z are denoted by uz and o%.

Proposition 6.1. In terms of S,

p=> S(+1), (6.1)
x=0

oZ:ZZxS(:c—i—l)—,uz—ku, (6.2)
=0
and in terms of uz and 0%,
p=pz/n, (6.3)
02 =20%/n(n+ 1)+ pg(n —1)/n*(n + 1) + pz(n —1)/n(n + 1). (6.4)

Proof. The k-th descending factorial moment of X;, k > 1, is given by

E(Xip) = > aplS(z)—S(x+ 1)
x=0

= > @+ DySx+1) = apS+1)
=0 =0
= kY ap_ySa+1). (6.5)
=0

Taking k = 1 and 2 in (6.5) then yields the first two formulas (6.1) and (6.2).
Let us derive the following two formulas. By (3.4), (3.5) (or (5.3)), we know that X; =4
MB(Z,Uy) where Uy is independent of Z and P(U; > u1) = (1 —u1)’"". Since E(Uy) = 1/n,

p=E(Z)EU) = pz/n,
as stated in (6.3). Now, applying a standard conditional argument, we get (in obvious notation)
o? = war{E[B(Z,U1)|Z,U1]} + E{var|B(Z,U})|Z,U1]}
= war(ZUy) + E[ZUy (1 — Uy)]
= war|E(ZU\|Z)| + Evar(ZU.|2Z)| + E[ZU1(1 — Uy)]

= war[ZE(Uh)] + E[Z%var(Uy)] + E[ZU (1 — Uy)]
= [BE(U))*0% +var(U))E(Z*) + E(Z)E[U(1 — Uy)). (6.6)

12



It is directly checked that F(U?) = 2/n(n + 1), so that

var(Uy) = (n —1)/n?(n + 1),
EUy(1 = U)] = (n—1)/n(n+1).

Substituting this in (6.6) leads to
o =02 /n* + E(Z*)(n—1)/n*(n+1) + E(Z)(n —1)/n(n +1).
Finally, writing 1/n? = 2/n(n + 1) — (n — 1)/n?(n + 1), we obtain the formula (6.4). o
We are in a position to provide the expression of p.

Proposition 6.2. In terms of i and o2,
p=(0%—p* —p)/20°, (6.7)
and in terms of uz and 0%,

_ noy — py — njiz
2no% 4+ (n— Vp% +n(n—pz’

p

Proof. By (2.5), we have

[e.e] oo

E(XlXQ) = Z Z xleP(Xl = SUl,XQ = xg) = Z I [Z x2A2S(x1 +l‘2)].

x1=0x22=0 x1=0 x2=0

The sum [...] above is easily checked to reduce to S(z1 + 1). Therefore,

E(XlXQ) = Z xls(azl + 1) = E(XL[Q})/Q,

x1=0

by virtue of (6.5). We then deduce that p is given by formula (6.7). Let us now establish (6.8). Of
course, we could evaluate cov(X1, X) by arguing as above for 2. A simpler method, however,
consists in using (6.7) where (6.3) is substituted for p and (6.4) for o2, After an elementary
calculation, we then obtain the desired formula. ¢

From (6.7) or (6.8), we see that p can be positive or not. This is not surprising in view of the
representation (6.3): the common factor of Z tends to generate positive correlation while the
negative dependence between U; and Us tends to generate negative correlation. In fact, p > 0 if
0?2 > % + por no% > p% + nuz; roughly, when o? (0%) is large enough with respect to p (p1z).
We also notice that, as expected, p is an increasing function of 0‘% (and ¢?) when n and pz are
kept fixed. Moreover, it is clear that —1 < p < 1/2.

Let us recall that in the continuous case, p can be expressed by the following two formulas:

p=(k?—1)/2r",
where k = o /p is the variation coefficient of X (Nelsen (2005)) and, when n = 2,
p= (263 — 1)/(4r% + 1),

where Kz = 0z /pz is the variation coefficient of Z (Chi et al. (2009)). Here too, —1 < p < 1/2.
We observe, however, that in the discrete case, p is a function of the mean and variance of X or
Z, and not only of their variation coeflicient.
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An alternative measure of association between two random variables is provided by the
Kendall 7 coefficient. The variant named 7, is an adjustment of 7 to deal with discrete random
variables (e.g. Agresti (2013); see also Neslehovd (2007)). Its population version is defined as
follows: let (X7, X2) and (Y1,Y2) be two i.i.d. random vectors with the same marginals, then

P[(X1 —Y1)(X2 — Y2) > 0] — P[(X; — Y7)(Xz — Y3) <0

v JP(X1 £ Y1) P(Xs £ Ya) ' (6.9)
For a Schur-constant model, 7, can be expressed by the formula (6.10) below.
Proposition 6.3. In terms of S,
o Ak + DSk + DAZS(R) 4235 NS~ Sk + DIATSRE -1 o

[ SN
Proof. First, we note that

P[(Xl — Yl)(Xg — YQ) < 0] =1- P[(Xl — Yi)(XQ — Yg) > 0] — P(Xl =Y; or Xy = Yg),
so that (6.9) can be rewritten as

2P[(X1 —Y1)(Xo—Y2) > 0]+ P(X1 =Yior Xo=Y3) — 1
VP(X1 #Y1)P(Xs #Ya) '

As (Y1,Y3) is an independent copy of (X1, X2),

(6.11)

Ty =

oo [e.e]
P(X1-YV)(Xp=Y2) > 0]=2> > P(X1 >y + 1, Xy >y + DP(Y1 = 41, Y2 = 12).
y1=0y2=0

For a Schur-constant model, we then get from (1.1) and (2.5)

P[(X1 —Y1)(Xa=Y2) > 0] = 2> > S(yi + 42+ 2)A°S(y1 + 1)
y1=0y2=0

= 2i(k:+ 1)S(k +2)A%S(k), (6.12)
k=0

after putting £ = x1 + z2. In a similar way, we obtain

(X1 # Y1) = 1= P(X, = X2) = 1= S JAS(h2 (613
k=0
and
P(X;=YiorXo=Yy) = 2P(X;=Y])—P(X] =Y}, Xy =Y3)

= 2 i[AS(k)]2 - i i [A%S(y1 + y2)]?
k=0 y1=0y2=0

= 2 i[AS(k)]Q — f:(/-c + 1)[A%S(K))% (6.14)
k=0 k=0

14



Inserting (6.12), (6.13), (6.14) in (6.11) then yields (6.10). ©

Let us examine the Schur-constant models, of dimension n, generated by the functions S of
Section 5. First, for the Bernoulli case, (6.7) yields p = —p/(1 — p), regardless of n. From (6.9)
and using (2.5), we also see that 7, = p. Now, for the stop-loss case, we have computed p from
(6.7) and 7, from (6.10) for several values of ¢t and k. By Propositin 5.3, the Schur-constant
model is here of dimension n =t + 1. Table 3 shows that the values of the two parameters are
negative and increase with ¢ (or n). We note that when ¢ = 1, S reduces to the survival function
of a uniform on (0, 1); it is then easily checked that Xo =4 k — X7, which explains the value —1

obtained for both coefficients.

Table 3: Coefficients p and 7, when S is of stop-loss form.

t o\ k 2 3 4 5 6 7
1 o —1 —1 —1 —1 —1 —1
T ~1 ~1 -1 -1 ~1 ~1
2 p | —0.333333 —0.421053 —0.454545 —0.470588 —0.479452 —0.484348
7, | —0.333333  —0.391304 —0.395349 —0.391304 —0.386139 —0.381295
3 p | —0.142857 —0.250000 —0.286713 —0.303571 —0.312693 —0.318182
7, | —0.142857 —0.245283 —0.253886 —0.250889 —0.246213 —0.241742
4 p | —0.066667 —0.166400 —0.202267 —0.219214 —0.228526 —0.234180
7, | —0.066667 —0.167773 —0.185030 —0.185698 —0.182908 —0.179570
5 p | —0.032258 —0.114078 —0.149812 —0.167343 —0.177121 —0.183102
7, | —0.032258 —0.115436 —0.141662 —0.146555 —0.145914 —0.143810
6 p | —0.015873 —0.078354 —0.113867 —0.131973 —0.142235 —0.148566
7, | —0.015873 —0.079042 —0.110539 —0.119374 —0.120903 —0.120059
7 p | —0.007874 —0.053562 —0.087780 —0.106196 —0.116865 —0.123524
7, | —0.007874 —0.053850 —0.086681 —0.098756 —0.102342 —0.102746

We have also considered the other functions S for generating bivariate Schur-contant models
(i.e. with n = 2). As seen before, S is 2-monotone in the power-type case when ¢ < 1, in the
Gompertz case when 6 > 0y = 0.340983 and in the logarithmic, Bendford and Pareto cases for
any parameter value. Figure 1 gives p and 73, in these different situations. We observe that the

dependence can be positive or negative, and that the two parameters are often very close.
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(a) S power-type with k =5 (b) S Gompertz

0.15
0.2r

0.10
—-0.2¢

0.05
-04;
01 02 03 04 05 06 0.79 -0.6-

(c) S logarithmic (d) S Bendford

(e) S Pareto

Figure 1: Coefficients p (circles, blue line) and 7, (squares, red line) for different S when n = 2.

7. Schur-constant interarrival models

In this Section, we are going to discuss three processes in insurance theory for which the
claim interarrival periods form a Schur-constant model: a claim counting process, a random
payment process and an insurance risk process, respectively.

7.1. Claim counting process

Let us introduce an associated counting process defined by
n
N(t) =Y I(T; <t), teN,
i=1
where, as before, T; = X1 + ...+ X; and {X,..., X,,} is a Schur-constant model.
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In an insurance context, suppose that a maximum number of n claims can arise in a portfolio.
Let T; denote the claim arrival time of the i-th claim. Then, N(¢) represents the total number
of claims that occur until time t¢.

Proposition 7.1. Fort > 0,
P[N(t) = k] = (-1)" A¥S(t + 1) L) 0<k<n-1, (7.1)
and P[N(t) = n] = P(T,, <t) is obtained from (2.8). For 0 <t; <...<t, <t,
t+k
P[Tl:tl,...,Tthk‘N(t):k]:1/ k 5 1§k§n—1 (72)

Proof. Clearly, P[N(t) =0] = P(X; >t)=S(t+1). For 1 <k <n-—1,

P[N(t) = k‘Tl =t1,..., T} :tk] = P(Tk+1 >t+ 1|T1 =t1,..., 1 = tk)
= P(Xk_,_lZt+1—tk|X1:tl,...,Xk:tk—tk_l)
= AFS(t+1)/A%S(t), (7.3)

by virtue of (2.5) and (2.6). Using (2.9), we then get

PINt)=k = Y PNt =kTy=t1,...., Ty =t3] P(Ty = t1,..., T}, = t)
— ST AR+ 1)/ARS()] (1) AS ()

= (=DFARS(t+1) A,

where Aj counts the cases satisfying t; < ... <t <t. Since Aj is equal to (t:k), (7.1) follows.
Applying Bayes’ rule yields
P[N(t) = k‘Tl =t1,..., T :tk]P(Tl =11,..., 1 = tk)
P[N(t) = k]
[AFS(t +1)/AFS(1)] (=1)* A*S(ty)
i+k
(—=DFARS(E+1) (")

PITy=t1,..., Ty = t,|N(t) = k] =

)

thanks to (2.9), (7.1) and (7.3), so that formula (7.2) follows. ¢

Formula (7.2) means that given N (t) = k with k£ (< n—1), the arrival times of these k events
are obtained by throwing k indistinguishable balls in ¢+ 1 urns (the instants 0, ..., ). Note that
when k = n, the probability in (7.3) is equal to 1 by definition; this case differs from the others,
of course.

For the continuous model, formulas of this type are derived by Chi et al. (2009) in Lemma
7.1 and Theorem 2.4. In particular, [T,...,Tx|N(t) = k], 1 <k <n — 1, is then distributed as
the order statistics of a sample of k independent (0, ¢)-uniform random variables.

Proposition 7.2. In an infinite discrete Schur-constant model, N(t) has a mized negative bi-
nomial (MN B) distribution, namely

N(t) =¢ MNBJt+1,1/(0 + 1), (7.4)

where © is defined in (4.2).
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Proof. By (4.1), S(z) = E[(©/(© +1))?] for an infinite Schur-constant model. Substituting this
in (7.1) and since A¢® = —(1 — q)¢*, we then get

PIN(t) = k] = (“f)E (@i1)k<@i1>m]’ k>0,

In other words, N(¢) has the mixed distribution stated in (7.4). ©

7.2. Random payment process

Much research is devoted to the evaluation of the present value of random payments at
random times (e.g. Léveillé and Garrido (2001), Chi et al. (2009), Garrido et al. (2010), Woo
and Cheung (2013)).

Here we consider a compound Schur-constant sum of discounted claims expressed as

N(t) T; n T;
=S C[[v=>_1T<t)C: [[vi. teN,
i=1  j=1

i=1 j=1

where T; represents the i-th payment time, C; is the claim amount at that time and v; (€ (0, 1])
is a deterministic discount factor for the period (j — 1,7); of course, H?:l = 1. Here too,
T, = X1 + ... + X; where {Xy,...,X,,} is a discrete Schur-constant model. The C;’s are
assumed to be i.i.d. positive random variables, independent of the Tj’s.

Our purpose is to determine the Laplace transform of R(t), i.e. Lg)(A\) = E{exp[-AR(t)]}
with A > 0. Let Lc(\) be the Laplace transform of C;.

Proposition 7.3.

n—1
LppN) =St+1)+ > (=D ARSE+1) > HL )\ij ) A”S(0) [Le
k=1 0<t1 <. <t <t i=1
+ Y ()" A"S(tn) L AHUJ > HL AHUJ
tn=1 7j=1 0<t1 <..<tp_1<t, =1
Proof. Evidently,
e = 3Bl M OIN () = k)] = PING) = 0

k=0
n—1

+Y PIN(t) = k] EleMO|N(t) = k] + E[e MOI(N({) =n)].  (7.6)
k=1

For the terms with 1 < k <n — 1 in the second sum of (7.6), we obtain, using (7.2),

B O =k = Bl = O TNy — &

1 AYE L T v
S D DI Chte
k /) 0<t1 <. <t <t

k

S RN &

k) o<t<..<tp<t i= j=1
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since the C;’s are i.i.d. random variables.
For the last term in (7.6) where k = n, we have, since [N (t) = n] means (T;, < t),

Ele MOIN(t) =n)] = P(T, =0) B(e T )

t
n o,
+ 3" P(Ty = ty) B(e M == Gl T, =) (7.8)
tn=1

Using (2.10) with j = n, we express the conditional expectation E(...) in (7.8) as

() = B pe D GILL w|T, = 1)
- E(efkcnnjilvj) tn+1n—1 Z E(ef’\zgllcinj‘izlvj)
( n—1 ) 0<t1<..<tp—1<tn

S )| CEND SR Y 1 £ 9

n—1 7j=1 0<t1<..<tp-1<tn i=1

It remains to insert (7.7), (7.8) and (7.9) in (7.6) and then to use (7.1) for the p.m.f. of N(¢)
and (2.8) with j = n for the p.m.f. of T),. ©

Example. Suppose that the claim amounts C; are exponentially distributed with parameter 1.
Since La(N\) = 1/(1 + N), formula (7.5) gives

n—1 o 1 n
Lppy(A) = S(t+1) + ; (—=1)* A*S(t + 1) V(k,t) + (—1)" A"S(0) (1+A>

t

+ 3T (D) ATS () Vtn) Vi(n — 1,1,

tn=1
where
V({t)=1/0+A ] v), 1<i<n,
j=1
k
Vikr) = > [[Vvt) 1<k<n-1reN,.
0<t1<...<t <7 i=1
The claim interarrival periods (X7, ..., X,) form a Schur-constant model. For illustration,

we first consider the Bernoulli case of Section 5. Then, ¢; = 0 or 1 for all ¢, which greatly
simplifies the calculations. So, we easily obtain the following formula: for ¢t = 0,

» 1 1—np
Lao\) =p+ 2 (1- + -~

and fort =1 (or t > 1),

_1—mnp p 1+ A n
Lrn()) = FESVON (T+N"A(1— o) <(1+Av1) 1>'

Table 4 gives P[R(t) = 0] and several quantiles R,(t) for different values of n when p = 0.08
and v; = 0.95. Note that, as expected, the quantiles increase with n and t.
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Table 4: P[R(t) = 0] and Rq(t) with S of Bernoulli form when p = 0.08, v; = 0.95.

n 2 3 4 5 6 7

P[R(0)=0] | 0.08 0.08 0.08 0.08 0.08 0.08
Ros0(0) | 1.45497 2.24537 2.96722 3.60988 4.15995 4.60201
Ro.05(0) | 4.55266 5.96314 7.24594 8.43023 9.53011 10.5449
Ro.90(0) | 6.45200 8.08879 9.56817 10.9353 12.2084 13.3923

P[R(t) = 0] 0 0 0 0 0 0
Roso(t) | 1.66802 2.65219 3.63464 4.61386 5.58950 6.56139
Roos(t) | 4.71638 6.24742 7.67994 9.04840 10.3722 11.6609
Rogo(t) | 6.60129 8.34365 9.95497 11.4758 12.9384 14.3540

Next, we consider a bivariate Schur-constant model (n = 2) generated by a stop-loss function
S where k =4 and t = 1 or 2. Figure 2 shows the distribution function of R(t) when v; = 0.95
for all j.

SOO)=(4-x) /4

SX)=(4-x), /4

o 2 4 6 8 2 4 8 8"

ith S of stop-loss form when n = 2 and all v; = 0.95, for ¢ = 0 (thick

Figure 2: Distribution function of R(t
t (dotted red line).

) w
black line), t = 1 (dashed blue line), ¢t > 3

7.8. Insurance risk process

A large number of works are devoted to the evaluation of the ruin probability for an insurance
over a finite or infinite horizon (see e.g. the books by Seal (1978), Dickson (2005), Asmussen and
Albrecher (2010)). Let us consider a discrete-time risk model in which claims occur according to
a Schur-constant counting process N (t). The successive claim amounts, C; say, are independent
of the claim arrival process (but may be interdependent); their partial sums are denoted by
A;=Ci1+ ...+ Cy, i > 1. The premium flow is deterministic (but may be nonstationary); the
cumulated premiums until time ¢ are given by the nondecreasing function h(t) (h(0) > 0 being
the initial reserves). Thus, the reserves process is written as

N(t)
U(t) = h(t) - AN(t), where AN(t) = Z Ci, te INp.
i=1

Ruin occurs when the reserves U (t) become negative, i.e. as soon as Ay > h(t). Let ¢(t)
be the probability of non-ruin until time ¢. We derive below a formula for computing ¢(¢).
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Proposition 7.4.

n—1
G(t)=SE+1)+ Y (-DFARS@E+1) > PlAI < h(tr),..., Ap < h(ty)]
k=1 0<t1<..<tp,<t
+ Z "A"S(t,) > P[A; < h(t1),..., A, < h(t,)]. (7.10)
tn=0 0<t1 <..<tp—1<tn

Proof. By definition, ¢(t) can be expressed as

¢(t) = PIN(t)=0]+ Zn: P[non-ruin until time ¢, N(t) = k]
k=1
= S(t+1) +ZP P[A; < W(Th),..., A < W(Ty)|N(t) = k|
+P[A; < h(Tl), ooy Ay < W(T), N(t) = n). (7.11)

For 1 <k <n—1, we get from (5.2) that

P[A; < h(Th), ..., Ap < W(TR)|N(t) = k] = (Hltk)oq <Z<t B P[A1 < h(t1), ..., Ax < h(ty)].
S (7.12)
For k = n, we write
P[A; < h(Tl) , An < W(T5), N(t) = n]
= Z P(T, PlA; < W(TY), ..., Ay < W(T)|Tp = ta], (7.13)
tn=0
and by virtue of (2.10),
PlA; < h(Th),..., An < W(TH)|T = tn]
_ H% S PA<h(t),. A <h(t)] (714)

( n—1 )0§t1§~--§tn—1§tn

Combining (7.11), (7.12), (7.13), (7.14) and using (5.1), (2.8), we then deduce formula (7.10).

To apply (7.10), it remains to evaluate probabilities of the form P[A; < h(t1),...,Ar <
h(tr)]. Clearly, this can be cumbersome in practice, as for the traditional models.

Example. Suppose that the claim amounts C; are exponentially distributed with parameter 1.
Then, each A has an Erlang(k, 1) distribution, i.e.

k—1

1 fcp
PAy<z)=1-) e > 0. (7.15)
J=0
For the claim interarrival periods, consider again a Schur-constant model (Xi,...,X,) with S

of Bernoulli type. From (7.10), we then obtain the following formula: for ¢t = 0,

n—1

$(0) =p+pY_ P[Ax < h(0)] + (1 — np) P[4, < h(0)],
k=1
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and fort =1 (or t > 1),

¢(t) = (1 — np) P[A, < h(0)] + pP[A4, < h(1 +pZP “k < h(0), Ay < h(1)],

in which we get, after some calculations and using (7.15),

,1 k—1

J ] (1) h(0)kt+i—i
Z (1)°h(0)

PlAng < h(0), An < h(D)] = Pldns < hO) - =3, ks T =

=0 i=0

.

This result is illustrated in Table 5 for different values of n when p = 0.08, h(0) = 4 and k(1) = 8.

Table 5: Probability ¢(t) with S of Bernoulli form when p = 0.08, h(0) =4, h(1) = 8.

n| 2 3 4 5 6 7
0] 0.921609 0.810250 0.677401 0.560180 0.478908 0.433062
1]0.921260 0.808184 0.669609 0.538648 0.431727 0.346796

Z

We also reconsider a bivariate model with S of stop-loss type where k =4 and ¢ = 1 or 2.
Figure 3 shows the probability ¢(t) in function of ¢ when h(0) = 1, h(1) = 2, h(2) = 3 and
h(3) = 4.

—eo— SX)=(4-x)./4

—a— S(X)=(4-x)2/4?

8. Appendix

The coefficients «;(t) (in Section 5.3)

We first derive the expansion stated in Lemma 5.3. The argument is inspired from the proof
of Lemma 3.3 in Denuit et al. (2002).

Proof of Lemma 5.3. Observe that (5.5) is true for ¢ = 1 with ag(1) = 1. Proceeding by
induction, let us consider the case t + 1, t > 1. Clearly,

(k—2)5'  (k—z)y (k—a)}
t+1)! t+1 !
s k—x(k—x+1
:;amm( gt (8.1)
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by assumption and since k — x may be substituted to (k — z)4 in the first equality. Now, we
notice that k — z can be rewritten as

t—1 141
k—z=——(k— i+ 1)+ ——(k—  —t
x t+1< x+z+)+t+1( T+i—t),
so that
k—x(k—x+i\ t—ifk—x+i+1 +z'+1 k—x+4i (8.2)
t+1 t Ct+1 t+1 t+1\ t+1 ) '
Inserting (8.2) in (8.1) (and changing the index ¢ to ¢ + 1 in the first sum) yields
(k — z)t+! ! thl—ifk—az+i\ = . it+l(k—z+i
S e — () — () —=
(t+ 1) ;al (1) t+1 t+1 +;a’()t+1 t+1
t . . .
t+1—1 i+ 1] (k—x+1
= 1 (t)———— () —— 8.3
Z%P”l()t+1 +C”"()tﬂ]( t+1 )’ (8:3)

after putting a_1(¢) = 0 = o4 (t). By (8.3), we thus see that the expansion (5.5) holds too for
t + 1 where the a;(t + 1)’s correspond to the terms [...] above. In other words, the coefficients
a;(t) satisfy the recurrence (5.6). Again by induction, we get that the «;(t)’s are positive, of
sum 1 and symmetric (i.e. a;(t) = a_1-i(t)). ©

Table 6 gives the coefficients {a;(t), 0 <i <t — 1} in (5.5) for the first values of ¢. Observe
that, as indicated before, they form a symmetric p.m.f.

Table 6: Coefficients {c;(t)} whent =1,...,7.

\ilo 1 2 3 4 5 6
1
/2 1/2

1/31 4/31  1/3!

1/40 11/40 11740 1/4)

1/5! 26/5!  66/5!  26/5!  1/5!

16! 57/6! 302/6! 302/6! 57/6!  1/6!

170 120/7' 1191/7' 2416/7! 1191/7! 120/7! 1/7!

N O U W N T

It can be shown that «;(t) is provided by the following explicit formula:

1 t—i—1 t—i—1—s;
Oéi(t) = E Z (Z+1)sl (tfifsi) Z g8i-1 (t*i*Si*Sifl)
" 5;=0 Ssi—1=0

t—i—l—si—si_l

Z (’i— 1)Si72 (t—i—si — S;—1 —Si_g)...
Si—2=0
t—i—1—s;—8j—1—...—S2
Z 281(t—i—8i—8i_1—...—51), 1§i§t—1.

s1=0

The roots 6; (in Section 5.4)
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The functions f;(#), j > 2, introduced in (5.9) can be analyzed using Mathematica 8.0. In
Figure 4 below, they are plotted for different values of j.

0.20¢
0.15¢ / 0.1r /
0.10t |

| [ . e
0.05} “/ - . Ll 2 3 4 5 0
~0.05 / 12 3 4 5 _0'1\ /
~0.10, -02/| /
~0.15! v
(a) j=2 (b)j=3
1.5¢
0.2 )
01 \‘ m\ 1'0/\
[ g 05
\ /1 2 3 4 s \ e 9
-oyl R % 2 3 4 5
—0.2F \‘ / —05
—0.3F \ / -1.0
—0.4F Y -15
(c) j=4 (d)j=7

Figure 4: Functions f;(0) when j =2,3,4,7.

Observe that f;(0) has j real roots; they are given in Table 7. The largest root corresponds
to 0; defined in (5.9).

Table 7: Roots of f;(0) when j = 2,3,4,7.

J

2 ‘ 0 62 =0.340983

3 0 0.068210 3 = 0.603576

4 0 0.015599 0.146406 04 = 0.783918

7 0 0.0002416 0.003448 0.017788 0.072867 0.281368 67 = 1.1232

We also notice that f;(#) > 0 for § > 6; and 0;,1 > 6;. In fact, these properties are found to be
true for all j > 2.

Future extension of the model

The Schur-constant property implies the exchangeability of the X;’s, and in particular the
identity between the marginal distributions. This assumption may be restrictive or unrealistic
in certain fields of applications. This is the case, for instance, in survival analysis for the study
of risks in competition. In a forthcoming paper, we will develop a Schur-constant model that is
rescaled to take into account the heterogeneity between the different risks.
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