Scaling of entanglement entropy for chains of arbitrary spin
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Abstract: We investigate the entanglement entropy of a 1D Hamiltonian written in terms of
the generalized Gell-Mann matrices that shares some properties with the spin-1/2 XXZ model. In
particular, we study the point that marks the boundary between a critical phase and a ferromagnetic
phase. This point cannot be described by a conformal field theory and its ground state is infinitely

degenerate in the thermodynamic limit.

We find an analytical expression for the ground state

and its Schmidt decomposition, and show that the entanglement entropy scales as slog, L in the
leading order, where L is the size of the subsystem and s is the spin. The scaling is related to the

symmetric-like structure of the ground state.

I. INTRODUCTION

Entanglement lies at the interplay between quantum
information and many-body physics, and both fields have
benefited from the advances in its study. From a quan-
tum information perspective, entanglement is a resource
used in protocols such as quantum teleportation [I] or
superdense coding, and it is thought to be at the heart
of the speed up of quantum computers [2]. Therefore,
the study of entanglement in many-body systems pro-
vides a connection between quantum protocols and their
implementation. From a many-body point of view, en-
tanglement appears naturally in a variety of phenomena,
like topological insulators [3] or quantum phase transi-
tions [], and provides a way to efficiently simulate cer-
tain quantum systems through Tensor Networks [5].

In this work we will study the bipartite entanglement
of a many-body system close to a quantum phase tran-
sition. In quantum phase transitions, the appearance of
long-range correlations can be explained by means of the
entanglement of the ground state. Consider a quantum
system in the pure state |¥), and a bipartition of it in
parts A and B. As a measure of entanglement, we will
use the von Neumann entropy of the reduced density ma-
trix of either part A or B [2],

S (pa) = —Trpalogy pa = S (pB). (1)

The reduced density matrix of subsystem A is obtained
by tracing out B from the density matrix of the system,
pa =Trp (|U) (¥|). It is convenient to write the reduced
density matrix in terms of the Schmidt coefficients. The
Schmidt decomposition of |¥) is

) =D aile 4 @ e, @

where |¢;) 4, and |p;) 5 are orthonormal basis of subsys-
tems A and B, and the Schmidt coefficients «; fulfill
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> la;|* = 1. Tracing out either subsystem shows that,
in these basis, p4 and pp are the same diagonal matrix,
one whose non-zero diagonal entries are |a;|?>. The en-
tanglement entropy is, then,

S(pa) = =Y _ lail* logy o[ 3)

In 1D quantum systems out of criticality, the entan-
glement entropy is known to fulfill an area law [7]: the
entanglement entropy of subsystem A grows as the area
of A. This means that in 1D systems, the entanglement
entropy is bounded. At critical points, however, the en-
tanglement entropy violates the area law. In most cases
the violation is by a factor of log L, where L is the vol-
ume of A [§], although there are cases of Hamiltonians
whose entanglement entropy can violate the area law by
a power law [9, [I0]. When the system is conformally in-
variant, it can be described by a conformal field theory,
and the entropy of entanglement is known to scale as

SNC+C

10g2 La (4)

when the chain has periodic boundary conditions [6].
Here, ¢ and ¢ are the central charges for the holomorphic
and antiholomorphic sectors of the conformal field the-
ory. Recent studies show that, even in non-conformally
invariant points, a very high degeneracy of the ground
state can also lead to violations of the area law [11].

The paper is organized as follows. In section [l we
introduce a Hamiltonian based on the generalized Gell-
Mann matrices (henceforth, GGM), review the spin-1,/2
XXZ model phase diagram, and show evidence of criti-
cality and high entanglement entropy on a specific point
of the Hamiltonian. We then study the properties of the
ground state at that point. To do so, in section [[II] we
find the ground state of the GGM Hamiltonian. The
ground state is found by writing the Hamiltonian as a
sum of local projectors, a computation that is shown in
appendix [VI] In section [[V] we compute the Schmidt de-
composition of the ground state and we find the scaling
of the entanglement entropy, showing that it violates the
area law by a factor of log, L. Finally, we summarize the
results in section [Vl
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II. THE GGM HAMILTONIAN

We will study the following 1D Hamiltonian with local
interactions and periodic boundary conditions (PBC):

N
Hy = Z (Z Aidiy1 + A Z )\i)\i+1>a (5)

i=1 \A¢D AeD

where the A operators are the generalized Gell-Mann ma-
trices of dimension d, the generators of the SU (d) group.
D is the subset of diagonal GGM. When considering par-
ticles of spin s, the dimension is d = 2s + 1.

For dimension 2 (spin-1/2), the GGM are the Pauli
matrices, and the Hamiltonian in Eq. reads

N
Ho = Z (0fof1 +olol, + Aofafiy). (6)
i=1

This is the Hamiltonian of the XXZ model, where A is
an anisotropy parameter in the z axis. Thus, the Hamil-
tonian given in Eq. can be seen as a generalization
of the spin-1/2 XXZ model to any spin s. Usually, gen-
eralizations of this model to higher spins are done by
substituting the Pauli matrices with the spin operators.
In that case, the Hamiltonian can be written in terms of
the S? operator and the ladder operators, St and S—.

The XXZ model is known to exhibit critical behaviour
in the A € [—1,1] region, known as the XY phase [12].
For A < —1 the system is in the ferromagnetic Ising
phase, while for A > 1 it is in the Néel phase. The critical
region is conformally invariant in the range A € (—1,1],
and therefore it can be described by a conformal field the-
ory. For the XXZ model, ¢ = ¢ = 1 and the entanglement
entropy scales with the size of the chain as S ~ % log,y L,
according to Eq. .

However, the A = —1 point is not conformally in-
variant, and Eq. (4) is no longer valid. This point
is the boundary between the XY phase and the ferro-
magnetic phase, and is characterized by crossing of en-
ergy levels and a very high degeneracy. In the spin-1/2
case, the A = —1 point can be mapped to the SU(2)-
invariant Heisenberg antiferromagnetic model by the uni-
tary transformation vaz/lz 035;, that inverts every other
spin. The SU(2) invariance can be used to determine
the ground state multiplet and, since the transformation
does not change the entanglement, the entanglement en-
tropy of the XXZ A = —1 point can be computed [13].
One could try to generalize this transformation with the
set of diagonal GGM, but for higher spins each diago-
nal GGM would introduce different prefactors on each
operator A\;A;41.

The ferromagnetic A = —1 point retains some proper-
ties of the XXZ model when considering the GGM Hamil-
tonian. It is still a critical point where many energy levels
cross, characterized by a high degeneracy that is par-
tially broken in the ferromagnetic phase. As A — —17,
the entanglement entropy of the system grows, while at
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FIG. 1: Energy of the ground state and the first excited
states of the GGM Hamiltonian for spin-1 and a chain of
N = 12 particles. At A = —1, the energies converge to
—2N (1 - %) = —16. The inner plot’s x axis is logarithmic.
The behaviour around the ferromagnetic point is similar for
other spin dimensions.
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FIG. 2: Entanglement entropy of half a chain as a function
of A for different chains. The upper, blue curve is a spin-3/2
chain with 8 lattice sites; the central, green curve is a spin-1
chain with 12 lattice sites; and the lower, red curve is a spin-
1/2 chain of 20 lattice sites. As A — —17 the entanglement
entropy increases, and for A < —1 it vanishes because the
ground state is a product state with all spins aligned in the
same direction. The upper curve seems to grow slowly due to
the small size of the chain.

A < —1 the ground state is a product state and the en-
tropy of entanglement vanishes. Figs. and show
the energy crossing at A = —1 and the behaviour of the
entanglement entropy for different chains. The data has
been obtained by numerical diagonalization of the Hamil-
tonian.

III. GROUND STATE AT THE A = —17 POINT

In the appendix (VI) we compute how the GGM
Hamiltonian acts on a state. Using Eq. , in the
A = —1 point the Hamiltonian can be written as a sum
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of projectors and a constant term,

N
Ha = 22 Z |kj>i,i+1 <Jk| + ‘jk>i,i+1 <Jk" + Ej.
i=1 \j#k
(7)

The indices j and k run from 0 to d — 1. Ejy is the energy
of the ground state, whose value is £y = —2N (1 - é)
The structure of the ground state does not depend on Ej
or the factor 2, and is determined by the sum of positive
local projectors, making the Hamiltonian frustration free.
By inspection, one can see that there are two possibilities
for the projectors acting on positions 7,7+ 1 to annihilate
a state. The sum of projectors only contains terms where
j # k, and therefore states where both spins are equal
are annihilated. A state where both spins are different
will be annihilated if it is antisymmetric with respect to
the swapping of the spins,

> " lkj) (k| + |ik) (k| | (JIm) — ml)) =
Jj#k
|ml) + |lm) — |lm) — |ml) =0 (8)

Generalizing this result to the Hamiltonian acting on
each pair of particles we can see that the ground states
at the ferromagnetic point are equal weight superposi-
tions of states that are antisymmetric with respect to the
swapping of any two consecutive, different-valued spins.

Since the Hamiltonian in Eq. [7] can only swap the
spins, the set of numbers {N;}, i = 0,...,d — 1, where
N; is the number of i-valued spins, is a good quantum
number. This is the main difference with the XXZ Hamil-
tonian, that can change the value of the spins by a unity.
For the spin-1/2 case, both operations are the same, but
for higher spins they are not. For each valid set {N;}
there will be a ground state

1
NP =—S(=)™[0...d—1), (9
{Ni}) m;( )™ 5 (9)

where each spin 7 is repeated N; times. The sum is over
all multiset permutations of the spins, and m is the num-
ber of swaps of consecutive, different-valued spins, in or-
der to fulfill the condition we have found. The normal-
ization factor is the multinomial coefficient

N N!
C{Nl} (No,...,Nd1> No!...Nd,ll ( O>

The structure of the ground state is similar to that of a
permutation invariant state, but each state of the super-
position has a sign that is obtained by swapping consec-
utive pairs of different spins, making it different to both
the completely symmetric and antisymmetric states.

As an example, all five ground states for spin 1/2 and
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four lattice sites are:
|No = 4, N; = 0) = {0000},
1
[INo=3,N; =1) = 3 (|0001) — |0010) + |0100) — |1000})
1

V6
+]1001) — [1010) + |1100)) ,

INo = 2,Ny =2) = — (|0011) — |0101) + [0110)

1
[No=1,N1 =3) = o (|0111) — [1011) + [1101) — [1110))
|No =0, Ny =4) = [1111). (11)

It is worth noting that the periodic boundary con-
ditions impose a restriction on which sets {N;} can
produce a ground state. If we start with a state
[0...0...d—1...d — 1) and move the last i-valued spin
to the front of its group using the PBC, we would need
N — N; swaps and the resulting state would be a cyclic
permutation of all the spins, now with a 0 in the last po-
sition. If we now swap the last 0 back to the last place of
its group, we would need N — Ny changes to get back the
original state. Therefore the total number of changes is
2N — N; — Ny, and the sign of the resulting state would
be (—1)*N~Ni=No — (_1)N+No - Only when the parity
of N; and Ny is the same, the sign will be positive. If
Ny = 0, the reasoning in the same but replacing the 0
with the first value present in the state. We conclude
then that only those sets {N;} in which all the N; # 0
have the same parity can produce a ground state. As an
example, the state |001) is not valid, since moving the
1 to the right twice and then the last 0 to the left once
produces

001) — — [100) — |010) — — 001) . (12)

However, in the thermodynamic limit there are still
an infinite number of valid sets, and the ground state
is infinitely degenerate. For open boundary conditions
there is no restriction and all the sets are valid.

IV. BIPARTITE ENTANGLEMENT ENTROPY
OF THE GROUND STATE AT THE A = —17
POINT

The entanglement entropy can be computed using the
fact that the ground state has the structure of the sym-
metric state with some signs changed. The relative
phases between the superposition states do not change
the Schmidt coefficients, so their entanglement must be
the same. The entropy of the symmetric states of arbi-
trary local dimension has been studied [I4] [15], and it is
known to scale as

S ~ slog, L. (13)

In order to verify this result, we will compute the
Schmidt decomposition of the ground state and the en-
tanglement of a particular sector. Consider a bipartition
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of the chain with L and N — L consecutive spins. Re-
stricting to the block of L spins and a set {NF} com-
patible with {N;} (i.e. Nf < N; for all i), the possible
states of the L spins will be all the multiset permuta-
tions of any state with N/ i-valued spins. This is the
|[{N}}) given by Eq. (9), but now there is no restriction
on the possible sets because the boundary conditions are
open (the L-th spin is not interacting with the first). For
the same reason, the possible states of the rest of the
chain, containing N — L particles, will be of the form
of |{NiN_L}>O, where the subscript indicates that the
boundary conditions are again open. For a given ground
state of the whole chain of N particles, {IV;} is fixed, so
it must be NN~ = N; — N} for all 4. Up to a sign that
can be absorbed by either state, the Schmidt decomposi-
tion in subsystems of length L and N — L can be written
in terms of the OBC ground states of both bipartitions,

CineyCyn,—Ne
Ny = S TN NIy @

{N; = N[}, , (14)

Once we know the Schmidt coefficients, the bipartite
entanglement entropy can be computed numerically for
large blocks and spin dimensions using Eq. . In par-
ticular, we considered the ground states with the largest
entanglement entropy, given by the sets {N;} in which
all N; are equal. This is also the state approached by the
unique ground state in the A — —17F limit. The numer-
ics show that for spins 1/2, 1, 3/2 and 2, and chains up
to 500 lattice sites, the entanglement entropy of half a
chain scales as Eq. (see Fig. (3))-

T
1.983(1)log2(L)+0.520(7)

20 |- 1.4864(6)I0g2(L)+0.747(4) —w—vem-s 4
0.9912(5)I0g2(L)+0.786(3) wwrrereeeee
0.4953(1)log2(L)+0.583(1) -----

S(L)

FIG. 3: Entanglement entropy of half a chain as a function
of the chain length L. From up to down, the different curves
are for spin 2, 3/2, 1 and 1/2. The lines are logarithmic fits
starting from the first L > 10 to minimize finite size effects.

V. CONCLUSIONS

The GGM Hamiltonian at the ferromagnetic point
A = —1 generalizes some properties of the entanglement
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entropy of the spin-1/2 XXZ model. We have shown that
the ground state at this point is infinitely degenerate in
the thermodynamic limit, giving rise to a high entangle-
ment. In particular, we have seen that the entanglement
entropy scales as S ~ slog, L with the size of the subsys-
tem. Therefore, it violates the area law by a logarithmic
factor, although the system is not conformally invariant.

In this work we have computed the ground state an-
alytically, instead of performing a local unitary trans-
formation that leaves the entanglement unchanged, as
can be done in the spin-1/2 XXZ model. However, we
have proved that the ground state has the same struc-
ture, up to some signs, as the totally symmetric states.
This fact suggests that such a transformation could ex-
ist, since that is the ground state of the Hamiltonian

H=- Zz (Z,\ Aidit1).

VI. APPENDIX. ACTION OF THE GGM
HAMILTONIAN ON A STATE

The generalized Gell-Mann matrices of dimension n
are the generators of the SU (n) Lie group. They can be
divided in three sets. The non-diagonal ones are either
real symmetric or imaginary antisymmetric, which we
will write as AJ¥ and A\J¥, respectively. The third set are
the diagonal matrices, which we will write as A!. In the
standard qudit basis, the GGM of dimension d can be
constructed as follows [16].

1. The real symmetric matrices are:

NFE =) (k| + k) (j|, 0<j<k<d-—1. (15)

2. The imaginary antisymmetric are:

NF=—i(li) Kl =k G, 0<j<k<d—1. (16)

3. And the diagonal matrices are:

9 1-1
M= ViisD (;IM {m| =1 <ll> : (17)

1<I<d-1.

There are @ symmetric, d(d; L) antisymmetric and

d — 1 diagonal GGM, and d? — 1 in total.

We will now compute the action of the Hamiltonian of
Eq. on a given state |¥). Since the Hamiltonian is
local, we can restrict to states of two particles, |¥) = |jk),
and later generalize the results. We will work in the
standard qudit basis, where j and k run from 0 to d — 1.

Consider first the non-diagonal part of the Hamilto-
nian. For each real symmetric GGM (Eq. (I5))) there is
an imaginary, hermitian GGM (Eq. ) with entries in
the same positions. Matrices other than A% and M* will
annihilate |jk). The real matrix M¥ (or A7 if j > k)
acting on |jk) changes spin j to k and vice versa. The
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imaginary matrix AJ¥ does so but introducing a phase i if
acting on a j-valued spin, and —i if acting on a k-valued
spin. Therefore, for pairs of equal-valued spins the ac-
tion of the real and imaginary GGM cancel out, and for
different-valued spins it is doubled. The action of all the
non-diagonal part of the Hamiltonian is then:

Z Aidit1 |jk>i,i+1 =
A¢D

20k)i i i #k, (18)

The action of the diagonal part of the Hamiltonian is

A Nidiga k) = AZAz Lo k), - (19)

AeD

Since this part of the Hamiltonian is diagonal, the state
will not change. We can compute the prefactor using Eq.
(17). For a single particle in state |j),

. = . —
(I A 5) = la+1)<g;omwwm>—uﬂwaﬁ>
5 0, ifl<j
= w1, ifl=j (20)

W+ s

For a pair of consecutive particles we can suppose j >
k, without loss of generality. Then, the action of the
Hamiltonian is

d—1

D GIN1G) (kI k) =

-1 0, ifi<y 0, ifl<k
= x =l ifl=7x<=1l, ifl=k
(141 ’ ’
l:1(+) 1, ifl>y 1, ifl>k

0, ifl<j
N2 e itk
&+ —l, ifl=j>k
1, ifl>j
. d—1
2j 2 2
— 1—80) +
j+17 g+1( ”)ZEQJU+B
= 205k = +1 §:zz+1
2 2d—j—1 2
— 204 — = =2 — = 21
7" d j+1 wog @Y

As can be seen in the last expression, the action of the
diagonal part of the Hamiltonian does not depend on the
values of the spins, only on whether they are equal or

different. This action can be written in the following
form,
2820 |y ifj =k
. 5 ] =
A )\i)\i+1 |-7k>11 = 7,i+1 o )
);D o 2dA |-7 >i,z+1’ ifj#k
(22)

Finally, from Egs. and the action of the Hamil-
tonian restricted to sites i,7 + 1 can be written as

2A(d—1 . o
Hiit1|5k); 41 = 2 ik Vi1 ifj=*k
) 1,0+ 2 |kj>i,i+1 A |]k>l ey i j # i
(23)
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