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Abstract: In this work nuclear reactions of heavy ions are studied, focusing on elastic scattering.
A classical and quantum description is made in order to obtain some important parameters, such
as grazing angle, angular momentum or reaction cross sections, and to compare both descriptions.

I. INTRODUCTION. REACTION
MECHANISMS

The aim of this work is to study nuclear reactions be-
tween heavy ions. We consider heavy ions those with
mass number greater that carbon’s (A=12), although this
limit is not always considered to be the same [1]. The
great interest of this reactions has many reasons; first,
the complex nature of the particles allows the occurrence
of many different reactions; besides, fusion reactions may
produce nuclei with high excitation energy, which allows
studying nuclear matter in some special conditions not
commonly found in other ways.[2]

In these interactions different phenomena can take
place depending on parameters like the projectile energy
or the impact parameter. We can distinguish four
interaction regions: fusion, incomplete fusion and deep
inelastic collisions, peripheral and Coulomb regions.

When the two ions come very close to each other and
the incident energy is high enough, the interaction leads
to the formation of a compound nucleus; this is a fusion
reaction. The ordered motion from the projectile and the
target turns into a caothic thermal motion with a cascade
of nucleon-nucleon interactions, a process that leads the
nucleus to equilibrium (thermalization).

The interaction between both particles is described by
a complex potential from which we will only consider the
real part, this is:
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where the first term is the Coulomb potential, the second
one is the nuclear potential and the third one is the
centrifugal term. We will see later that this potential
has a well for certain values of the angular momentum
below a critical value. If the energy is higher than the
Coulomb barrier, the projectile can get trapped into the
well, where is affected by nuclear interaction and may
produce fusion. If the energy is lower, the projectile will
only be affected by the Coulomb interaction.

When the two ions pass each other a bit further, but
near enough to still allow a strong interaction, processes
like deep inelastic and incomplete fusion reactions can
take place. Due to this strong interaction, a considerable
fraction of kinetic energy turns into internal excitation
energy. In this region and for light projectiles binary
fragmentation often occur, leading to processes like
elastic or inelastic break-up (where both fragments come
out) or incomplete fusion (where one of the fragments is
emitted while the other is absorbed by the target, which
can be excited). Deep inelastic collisions take place
with heavier nuclei, with an incident energy of about
Ei ≈ 10MeV/nucleon.

For larger distances between both ions (or lower
energies) we come into the peripheral region, where
nucleon transfer can occur and, for even larger impact
parameters, elastic and inelastic scattering.

In inelastic scattering reactions, the projectile inter-
acts with the target nucleus transferring some energy to
it, so that the target can get excited. At low incident
energies and for highly charged particles, the excitation
of the target can be due to the Coulomb field (Coulomb
excitation); at higher energies the excitation is due to
both the nuclear interaction and the Coulomb field. In
nucleon transfer reactions one or more nucleons are trans-
ferred from the projectile to the target or viceversa; these
reactions can provide information about the structure of
nuclei.

In this work I will focuse on peripheral reactions and
particularly on elastic scattering. Therefore, a more de-
tailed explanation of the latter is given below.

II. ELASTIC SCATTERING. CLASSICAL
DESCRIPTION

Elastic collisions are those that leave unaltered the
state of the target. These will be described later through
the so called optical potential. However, I will start giv-
ing a brief classical description in order to be able to
compare with it the quantum optical potential model.[3]
From the classical non-relativistic mechanics we can
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remember that the fact that the force is central
(~F (~r) = F (r)r̂) leads to i) the conservation of angular

momentum(L = Mr2φ̇) and ii) the trajectory of the pro-
jectile is contained on a plane. r and φ are, respectively,
the radial and angular coordinates of the projectile posi-
tion.

The equations of motion can be written as

φ̇ = L/(Mr2), (2)

Mr̈ = F (r) +
L2

Mr3
(3)

The total energy can be expressed as:
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1
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Which, considering (2), can be rewritten as:
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from where we can isolate dφ and obtain:

dφ = ± L/r2√
2m(E − V )− L2/r2

dr.

Using the condition of closest approach |dr/dφ|r0 = 0 (r0
is the distance of closest approach) and considering that
2α+ ϑ = π (where ϑ is the deflection angle and α is the
angle between the position vector at r0 and the asymp-
tote of the outgoing trajectory), this gives the classical
trajectory for a particle in a force field affected by the
interaction potential V(r):

ϑ(L) = π − 2

∫ ∞
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If we consider only Coulomb interaction, the potencial
V (r) on on (4) is
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Z1Z2e

2

r
(5)

and the integral can be solved analytically, giving:
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However, for a more general potential that takes into
account the nuclear interaction we cannot obtain an
analytical solution and need to use numerical methods.

We can consider the scattering by a target nucleus of
a beam of particles, all of them with the same mass M
and energy E and each of them characterized by its an-
gular momentum L = bp (b is the impact parameter and
p = Mv the linear momentum). Then, the number of

scattered particles with angle between θ and θ+dθ (scat-
tering angle respect to the polar axis) is the same that
the number of particles that cross a plane perpendicular
to the polar axis with impact parameter between b and
b + db. Since the scattering cross-section is defined as
the number of scattered particles per unit time for unit
incident intensity, we can write:

J
dσ

dΩ
2π sin θdθ = J2πbdb

where J is the current density of the beam. From here
we can obtain the classical differential cross section:
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The scattering angle θ observed in experiments
(0 < θ < π) should be distinguished from the deflection
angle ϑ, which is the polar angle of the asymptote of
the outgoing trajectory, considering that the particle
may plunge or orbit around the centre of force and
therefore ϑ can be negative or greater than 2π. Both
angles are related by θ = ±ϑ − 2πn with integer
n such that 0 < θ < π. Eq. (7) is valid only in
the case that L(ϑ) is a single-valued function. If it is
multi-valued, the differential cross section takes the form:
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where we have considered the contributions form all the
branches of L(ϑ).

We consider now a repulsive Coulombian interaction
(5). Using the result from Eq. (8) and the expression
ϑ(L) for the Coulomb potential (6) we obtain the differ-
ential cross section of Rutherford [4]:
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We can see that does not depend on the signs of the
charges. In the case of a Coulomb potential, the differen-
tial cross section obtained from non-relativistic quantum
mechanics gives an identical result.
Integrating over all angles we obtain the total cross sec-
tion (defined as the nombre of particles scattered in all
directions per unit time for unit incident intensity):

σR = (
Z1Z2e

2

Mv2E
)2[

1

1− cos θ
]1−1

which is infinite. This is because of the infinite range of
the Coulomb interaction; actually σ will be infinite for
any scattering field different from zero at any distance
and will only be finite if the field has a cut. In quantum
mechanics, however, potentials that tend to zero faster
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than 1/r2 have finite total cross-sections.

If we add an atractive field (nuclear interaction) to
the Coulombian field, ϑ(L) gets modified and so the tra-
jectories of the projectile [5]. As we reduce the impact
parameter, the nuclear attractive field starts to modify
the orbit; the limit case when this happens corresponds
to the grazing trajectory. For lower b’s it is possible to
achieve a balance between nuclear and coulomb forces
and have an orbiting trajectory. For even smaller b’s, the
nuclear interaction can be stronger than the repulsive
force so that the orbit plunges, going out with negative
deflection angle.

III. ELASTIC SCATTERING. DESCRIPTION
BY THE OPTICAL MODEL POTENTIAL

The optical model consists on treating the scattering
and absorption of nucleons by a nucleus in a similar way
than scattering and absorption of light. As in optics,
where a complex refraction index is used, for the nuclear
reactions we can define a complex potential. This is done
because a real potential would only explain scattering
of the incident particles, but would not explain their
removal from the elastic channel by inelastic processes,
pre-equilibrium reactions and compound nucleus reac-
tions. Therefore, the imaginary part of the potential is
the one that takes away flux of particles from the elastic
channel.

In three dimensions we can solve the Schrödinger equa-
tion to find the elastic scattering differential cross section.
This is done using the quantum scattering formalism of
partial waves [6]. From the quantum scattering theory
we obtain the wave function Ψ:

Ψ = − 1

2ikr

∑
L

(2L+ 1)PL(cos θ)(e2iδLeikr − e−ikr)

(where δL are the phase-shifts) and we can find the angu-
lar distribution of the scattered nucleons, the total elastic
cross section (integrated for all angles) and the reaction
cross section.

The total optical potential can be expressed as:

V (r) = Vc(r) + U · fu(r) + iW · fw(r) + Vso(r) (10)

The first term on (10) is just the Coulomb potential
(11). The second term is the real part of the nuclear
potential and third is the imaginary part; both of which
(fu and fw) have a Saxon-Woods form. The fourth
is the spin-orbit term, which allows calculating the
polarization of the scattered beam, although we won’t
use this here.
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Typical parameters of the optical potential are: U ≈
50MeV , W ≈ 10MeV , r0 ≈ 1.2fm, a ≈ 0.65fm, Vso ≈
4MeV .

IV. RESULTS

In this section I will present the results obtained from
some calculations using the fortran programs ”traj hi1.f”,
”traj hi2.f” and ”traj hi3.f”[7], based on the classical the-
ory, and the program ”nvgopthi.f”[8], which uses the
quantum theory of the optical potential model. Some
magnitudes of interest in elastic scattering will be shown,
such as the effective potential, the distance of closest
approach in terms of the angular momentum, classical
trajectories, the values of L and θ corresponding to the
grazing trajectory and finally I will show some differen-
tial cross section values for different reactions in order to
compare the classical with the optical model results.

A. Effective Potential and r0(L)

As explained above, the effective potential between two
heavy nuclei includes the Coulomb and the nuclear inter-
action. Figure (1) shows this potential as a funtion of the
radial distance r between the two nuclei 16O and 88Sr
for an incident energy of ELAB = 60MeV , calculated us-
ing the program ”traj hi3.f”. The red line corresponds
to an angular momentum L=0 and the green one corre-
sponds to the grazing trajectory (the blue horizontal line
is the energy at the centre of mass frame of reference,
ECM = A2

A1+A2
ELAB = 50.769MeV ).

FIG. 1: Effective potential as a function of the radial distance
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FIG. 2: Distance of closest approach in terms of the angular
momentum for the reactions 16O +88 Sr and 16O +40 Ca.

Fig. (2) shows, for two different reactions, the distance
of closest approach as a function of the angular momen-
tum L. We can see a jump in r0, that corresponds to the
angular momentum of the grazing trajectory, Lgr. Be-
low, the nuclear interaction starts to make effect. The
distance of closest approach corresponding to the discon-
tinuity in fig.(2) can be compared (table I) to the strong
interaction radius Rint, which is the distance where nu-
clear interaction starts to be relevant:

Rint = R1 +R2 + 3.2fm

(Ri = 1.12A
1/3
i − 0.94A

−1/3
i are the half-density radii).

Reaction rgr0 ± 0.15(fm) Rint(fm) discrepancy
16O + 88Sr 10.2 10.4 0.2
16O + 40Ca 8.9 9.2 0.3

TABLE I: Comparison between the distance of closest ap-
proach corresponding to Lgr and the strong interaction dis-
tance Rint. We can see that both values are quite similar,
with a discrepancy within two times the error.

B. Trajectories

For the reaction 16O +88 Sr I have chosen a set of
L values around the approximate value of Lgr obtained
from fig.(2) (from 27 to 28.5 with intervals of 0.1, in units
of ~), and drawn some of their trajectories using the data
obtained by running ”traj hi1.f”. In fig.(3) we can see,
in black colour, the grazing trajectory corresponding to
the angular momentum

Lclassicalgr = (28.0± 0.1)~

The trajectories above suffer basically only the Coulomb
interaction and the ones beneath are affected by the nu-
clear interaction.

FIG. 3: Trajectories of the projectile 16O when interacting
with a nucleus of 88Sr. Each line corresponds to a different
vaule of the angular momentum L.

C. Optical model

Now we intend to obtain another estimation of Lgr
using the optical potential model. To do so we have used
the program ”nvgopthi.f”, which gives the differential
cross section as ratio to the Rutherford value in terms of
the scattering angle. The result of this is shown in fig.(4).

FIG. 4: σ/σR as a function of θ. The black line shows a simple
classical approach. For θ > θgr, σ for elastic scattering goes
to zero (the nuclei interact so strongly that an elastic collision
cannot take place), while for θ < θgr it takes the σR value.
In red is shown the optical model result, that presents some
oscillations and falls approximately exponentially.

The angle θgr of the grazing trajectory can be found
considering that θgr = θ1/4, where the ”quarter-point
angle” θ1/4 is the one that corresponds to σ/σR = 0.25
[9].

From the data obtained from numerical calculations
(file ”nvgopthi.dat”) we get:

θgr = (82± 1)o

that corresponds to σ/σR = 0.2399. We can obtain the
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grazing angular momentum using:

Loptgr = n · cot(
θ1/4

2
)

where n = Z1Z2e
2

~v∞ is the Sommerfeld parameter (v∞ is the

projectile initial velocity). For the reaction of 16O+88Sr,
with initial kinetic energy ELAB = 60MeV , and consid-

ering the units e2

~c = 1
137 , we obtain:

Loptgr = (28.6± 1.2)~

Comparing this result with that obtained on section B
(trajectories of the classical model) we can see that the
results are compatible, since d < 2 ·δ(L), and the relative
discrepancy is

d =
Lclassical − Loptical

Lclassical
= 0.0196 ≈ 2%

D. Reaction cross section

Reaction cross sections have been calculated for the
classical and optical methods for some reactions of 16O
with different targets [10]. The results obtained are
shown in Table (II).

Target σclassical
r (fm2) σoptical

r (fm2) relative discrepancy
92Mo 50.90 60.32 0.12
96Zr 70.88 80.91 0.12
92Zr 65.77 75.53 0.16
88Sr 75.33 85.14 0.12
86Sr 72.60 82.26 0.13
54Fe 108.96 117.18 0.07
52Cr 119.95 128.07 0.06
50T i 130.88 138.88 0.06
48Ca 141.77 149.60 0.05
40Ca 122.85 129.87 0.05
64Ni 112.81 121.84 0.07
62Ni 109.25 118.04 0.07
60Ni 105.59 114.25 0.08
58Ni 101.82 110.28 0.08

TABLE II: Reaction cross section values (integrated over all
angles) for the interaction of 16O with the different targets in
the first column.

We can see that the discrepancy between the two meth-
ods is not relevant; in other words, the classical descrip-
tion gives a very good aproximation for the cross section
with the considered reactions.

V. CONCLUSIONS

In fig.(2) we can see that for the 40Ca target (Z = 20)
the Lgr value is greater than for the 88Sr target
(Z = 38). This is because for smaller atomic number,
the Coulomb interaction is weaker (see (5)) and therefore
the limit value for angular momentum in which nuclear
interaction starts to be relevant increases.

Considering the results obtained either for the grazing
angular momentum and for the reaction cross sections,
we can conclude that the difference between the classical
description and the optical model is not very significant.
Even though the nuclear interactions treated occur in a
scale in which it would seem that quantum effects are
dominant, the heavy ions we consider have short wave-
lenghts and often large angular momentum, which im-
plies that the interactions can be described as classical
particles that move along a localized trajectory (fig.(3)).
When quantum effects (like interference or diffraction)
become relevant, the classical theory can be modified to
take them into account (this is called semi-classical ap-
proximation).
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