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Abstract: Total variation denoising filtering is proposed as an alternative to the Butterworth filter, which is widely 

used in the reconstruction of SPECT medical images. Its advantages lie in the preservation of the image edges while 

the noise is removed, as opposed to the blurring that characterizes Butterworth filtered images. However, results 

show that total variation filtering application to SPECT medical images doesn’t represent an improvement in terms 

of similarity to the reference image.

  

I. INTRODUCTION 

In order to use SPECT medical images as a diagnosis 

tool, a proper denoising process is required, due to the low 

signal to noise ratio of this kind of images, caused by the 

small amount of detected photons and their scattering that 

degrades the images increasing their noise.   

A Butterworth filter is commonly used for this purpose. 

However, its denoising effects carry a blurring of the image. 

It softs the edges of the image, as well as the noise, as they 

both come from the high frequency information of the image 

that is what a Butterworth filter removes. 

As opposed, Total Variation denoising filtering is 

characterized by the preservation of the image 

discontinuities. In this study we will compare the results of 

applying these two denoising methods.  

II. METHODS 

A. Filtered back projection with Butterworth filter 

The filtered back projection (FBP) consist in recovering 

the image f(x, y) from a set of projections pθ(t) from 

different angles θ that cover a full rotation. The image can be 

obtained doing the back projection (1) of the filtered 

projections, 
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where p′
θ

(𝑡) are the projections filtered by the ramp filter 

(the result of multiplying in the Fourier domain the Fourier 

transform of the projections pθ(t) with the ramp filter |ω|, as 

shown in equation (2)) 
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where 𝑃𝜃(𝜔) is the Fourier transform of the projection pθ(t) 

at angle θ. 

Summarizing, for each of the projections  pθ(t), we have 

to calculate its Fourier transform 𝑃𝜃(𝜔), then multiply it with 

the ramp filter |ω|, and do the inverse Fourier transform to 

get the filtered projections 𝑝′
𝜃

(𝑡). Finally, we do the back 

projection (1). 

For a deeper explanation of FBP and the detailed 

derivation, refer to [4]. 

We have considered two approaches for applying the 

Butterworth filter. The first one consist in applying it on the 

two dimensional projections before the FBP reconstruction. 

The second one is to include it in the FBP. The Butterworth 

filter can be included in the FBP multiplying the ramp filter 

as shown in equation (3) 
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The Butterworth filter cuts the image signal above a 

certain cutoff frequency 𝜔𝑐𝑢𝑡𝑜𝑓𝑓  (how sharp is the cutting 

depends on the order N of the filter). Therefore, the high 

frequency information of the image, such as the noise as well 

as the image details like the edges, is being removed. 

B. Proposed Total Variation filtering 

Total Variation (TV) denoising filtering was introduced 

by Rudin, Osher and Fatemi [1]. Its basic idea consists in the 

minimization of the total variation of the image maintaining 

the similarity to the original image (4).  

min
𝑦

𝑇𝑉(𝑦) +  
𝜆

2
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2
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where TV(y) is the total variation of the image that can be 

defined as 

𝑇𝑉(𝑦) = ‖𝑦‖𝑇𝑉 ≈ ∑ √|𝑦𝑖,𝑗 − 𝑦𝑖−1,𝑗|
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 where yij are the image values of the denoised image y. f is 

the original image and 𝜆 is a positive parameter that controls 

the denoising weight against the similarity to the original 

image. As 𝜆 is chosen greater, the differences between the 

denoised and original image tend to be more strongly 

minimized than the total variation of the denoised image, 

which will be less denoised but more similar to the original 

one.  

We have used the Split Bregman algorithm [2][3], which 

is implemented in the scikit-image Python library. 

The reason why TV filtering seems an attractive 

alternative is because the main characteristic of TV denoised 

images is the preservation of the sharpness of the image 

edges as opposed to the Butterworth filter which smoothing 

blurs the discontinuities. 

We will perform TV denoising combined with the FBP 

using only its implicit ramp filter. As in the previous method, 

two approaches have been considered. In the first one, TV 

denoising will be applied on the two dimensional projections 

before the FBP. The second approach consists in applying it 

after the FBP, on the reconstructed image. 
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III. FIGURE OF MERIT 

In order to perform a quantitative comparison between the 

different methods, we will use the Pearson correlation 

coefficient as a figure of merit. 

The Pearson correlation coefficient measures the linear 

correlation between two sets of data, in our case, the 

reconstructed images and the synthetic phantom reference 

images. It can be defined as 

 r = ∑
(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝜎𝑥𝜎𝑦

 

where xi and yi are the values of the compared images, 𝑥̅ and 

𝑦̅ are their means, and 𝜎𝑥 and 𝜎𝑦 are their standard deviation.  

IV. RESULTS 

The behaviour of the photons in SPECT imaging has been 

simulated with a Monte Carlo method from a phantom, 

giving us realistic noisy projections, with which we have 

performed the reconstruction of the images using the 

described methods in section II. These projections have been 

provided by the Biophysics and Bioengineering Unit from the 

Biomedicine Department of the University of Barcelona. 

We have 120 projections (with a size of 128x54) acquired 

from different angles that complete a 360º rotation. 

Therefore, the three dimensional phantom is composed by 54 

axial slices, each one having a size of 128x128. For the 

analysis we have only considered the slices from 3 to 45 due 

to the lack of data in the first and last ones. 

The images obtained corresponding to the axial slice 22 

of the phantom are shown in Fig. (1), and the horizontal 

profiles of a central row of the images are shown in Fig. (2). 
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FIG. 1: Comparison between the reconstructed images of the 

phantom axial slice 22 obtained using the following filters, shown 

with a ‘jet’ colour map. (a) Butterworth filter (cutoff frequency: 

0,17, order: 2,9) on the projections before FPB. (b) TV filter (λ: 

0,24) on the projections. (c) Butterworth filter (cutoff frequency: 

0,9, order: 2,9) used in the FBP multiplying the ramp filter. (d) TV 

filter (λ: 4,28) on the image reconstructed by FBP using only the 

ramp filter. (e) Phantom. (f) Only the ramp filter of the FBP. 
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FIG. 2 Horizontal profile of the row 70 (shown in (a)) of the 

reconstructed image, corresponding to the axial slice 22, obtained by 

using: (b) Phantom. (c) Only the ramp filter in FBP. (d) Butterworth 

filter (cutoff frequency: 0,17, order: 2,9) on the projections. (e) TV 

filter (λ: 0,24) on the projections. (f) Butterworth filter (cutoff 

frequency: 0,9, order: 2,9) used in the FBP multiplying the ramp 

filter. (g) TV filter (λ: 4,28) on the image reconstructed by FBP 

using only the ramp filter 

 

Fig.(1) shows that Butterworth filtered images are 

smoother than those obtained by TV. However, they have a 

higher contrast. This is clearly shown in Fig.(2), since the 

intensity differences in the profile are smaller. It is also 

shown in Fig.(2) that TV filtered images have a “staircase” 

effect while Butterworth images have a continuous profile. 

This effect causes the image to look sharper while the 

Butterworth image looks more blurred. Comparing them with 

the phantom reference image, it may be observed that this 

sharpness does not involve a better quality of the image as it 

is countered by the low contrast as well as the low resolution 

of SPECT images, that makes more difficult to recover the 

image details. These two TV filtering drawbacks were 

already noticed in [3]. 

In order to compare the goodness of the obtained images, 

we have calculated the Pearson correlation coefficient for all 

of the axial slices of the phantom, as shown in Fig.(3). The 

Butterworth filtering on the projections before the FBP has 

slightly higher correlation. However, the differences between 

the correlation coefficients of the different methods are non-

significant. The numeric values for the slice 22 are shown in 

the Table (I). 
 

 
FIG. 3 Pearson correlation coefficient for every axial slice obtained 

by the described methods in section II. 

 

 

Filter type 
Pearson correlation 

coefficient 

Butterworth before FBP 0,861 

TV on the projections 0,848 

Butterworth in FBP 0,852 

TV on the reconstructed image 0,851 
TABLE I: Pearson correlation coefficient of the obtained images 

that correspond to the axial slice 22 of the phantom. 

V. CONCLUSIONS 

 The use of TV filtering in SPECT medical imaging 

provide sharper images with a lower contrast than 

those obtained by the Butterworth filter. The 

overall effect does not involve a better quality of 

the image, since the loss of contrast counters the 

preservation of the image discontinuities. We shall 

conclude that in comparison with the Butterworth 

filter, TV denoising in SPECT images does not 

represent an improvement of the obtained images 

in terms of similarity to the reference images, that 

has been measured by the Pearson correlation 

coefficient, showing that there are not significant 

differences between both methods.  
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