

Bachelor’s Thesis

COMPUTER SCIENCE DEGREE

Faculty of Mathematics

University of Barcelona

SCRUM FRIEND – A WEB APPLICATION

FOR AGILE PROJECT MANAGEMENT

Author: Laurențiu Mărcuț

Advisor: Oscar Amoros Huguet

Affiliation: Applied Mathematics and

Analysis Department, UB

 Barcelona, July 30 2016

2

Contents

1. INTRODUCTION .. 5

1.1. State of the art ... 5

1.2. Motivation .. 8

1.3. Objectives ... 8

2. REQUIREMENTS ANALYSIS ... 11

2.1. Functional requirements .. 13

2.2. Non-functional requirements .. 17

3. PROJECT PLANNING AND MANAGEMENT ... 20

4. DESIGN AND ARCHITECTURE .. 22

4.1. Application logical architecture ... 22

4.1.1. Model View Controller pattern .. 22

4.1.2. Logical layering design ... 26

4.1.3. Data model ... 28

4.1.4. Project and dependency management .. 29

4.2. Application physical architecture ... 30

4.2.1. Three tier architecture ... 30

4.2.2. Amazon Web Services .. 32

4.2.3. Security ... 36

5. DEVELOPMENT ... 38

5.1. Development methodology ... 38

5.1.1. Version control ... 38

5.1.2. Deployment methodology ... 39

5.1.3. Integrated development environments ... 40

5.2. Front End features implementation ... 42

5.2.1. Dynamic web pages with JSP ... 42

5.2.2. Asynchronous communication using Ajax and Restful web services 45

5.2.3. Page fragmentation management with Apache Tiles .. 47

5.2.4. Styling and appearance .. 48

5.2.5. Drag and drop elements with jQuery UI .. 50

5.2.6. Integration of Summernote for advanced text edition .. 51

5.2.7. Create diagrams with Cloud Flare library ... 52

5.3. Back End features implementation .. 53

5.3.1. Dependency injection using Spring Core ... 53

5.3.2. Create the Sign up and Sign in system with Spring Security 54

5.3.3. Hitting the database with Spring and JDBC .. 56

3

5.3.4. Monitoring using logs ... 58

5.4. Database implementation .. 59

5.4.1. Infrastructure ... 59

5.4.2. Optimization policies .. 59

5.4.3. Data integrity .. 61

6. TEST .. 63

6.1. Unit testing ... 63

6.2. Integration testing .. 64

6.3. System testing .. 65

6.4. Acceptance testing ... 66

7. RESULTS .. 67

7.1. Final product review and user experience ... 67

7.2. Software metrics and measures ... 67

8. CONCLUSIONS .. 71

9. REFERENCES ... 72

10. ANNEXES .. 73

4

THANKS TO

 First, I would like to thank my family first and all the people who supported me

during these four years of academic training. I am grateful to all the teachers because I had

learned important things from each course.

 For this project I want to thank to my supervisor and all my work colleagues who

helped and guided me and all the person who participated on the real user test process.

5

1. INTRODUCTION

In recent years, the complexity of software applications has evolved a lot. As a

consequence, building quality products requires agile methods.

Agile methods grew out of the real-life project experiences of leading software

professionals who had experienced the challenges and limitations of traditional waterfall

development on project after project. The approach promoted by agile development is in

direct response to the issue associated with traditional software development, both in terms

of overall philosophy as well as specific processes.

Agile development, in its simplest form, offers a lightweight framework for helping

teams, given a constantly evolving functional and technical landscape, maintain a focus on

the rapid delivery of business value. As a result of this focus, the benefits of agile software

development are that organizations are capable of significantly reducing the

overall risk associated with software development. [4]

To handle the management of agile development process, any team needs a proper

tool. Nowadays, there are plenty of project management applications that help teams to

easily follow an agile development process.

1.1. State of the art

Scrum is an iterative and incremental agile software development framework for

managing product development.[7] It defines a flexible, holistic product development

strategy where a development team works as a unit to reach a common goal, challenges

assumptions of the “traditional, sequential approach” to product development, and enables

teams to self-organize by encouraging physical co-location or close online collaboration of

all team members, as well as daily face-to-face communication among all team members

and disciplines in the project.

Project management software gives any team the ability to organize, collaborate and

track details and responsibilities of their projects. The project management software is now

over $1 billion with hundreds of competitive solutions. Below is a look at the most popular

options as measured by a combination of their total number of customers, users and social

presence.

https://www.versionone.com/agile-101/agile-methodologies/

6

Table 1-1 Most popular list of product management software

Product Customers Users Facebook

followers

LinkedIn

followers

Twitter

followers

Microsoft Project 880,000 22,000,000 163,532 2,385074 13,810

Attlassian 23,000 30,000,000 35,325 33,411 12,872

Podia 500,000 2,500,000 8,880 4,974 4,682

Write 551,090 1,227,566 19,181 135,860 16,863

Basecamp 285,000 15,000,000 2,723 4,651 67

The previous list includes applications for which users must pay in order to have

access to all options and features. There are applications that are free or open source. They

have fewer functionalities and are targeted for smaller organizations with small or medium

teams and less complex projects.

The most important free project management software programs are:

1. Easy Backlog.

 Overview - Good user interface and API integration, very easy to manage, but there

are no tasks linked to user stories. [7] Only online access.

 Backlog administration [4] - Easy to create and reorder the product backlog item

concerning item priority. Nice drag and drop feature and a good experience for

adding and editing items due to the click-to-edit action on each section. The same

screen that shows also lets you edit all the information.

 Managing sprints [4], tasks, estimation and forecasting - Shows the user the story

estimation and the cost of it concerning your team man/hour value. You can

configure your team speed or get it after the first sprint. Does not have forecasting

among sprints. You cannot create tasks linked to the user stories. All the estimation

is done directly on the user story.

 Development team integration - All team members access the same place, but with

different permissions. You can manage it in the administration console. There is an

API integration so you can manage all your project integration with another software,

but you will need to develop it.

7

2. Visual Studio Online.

 Overview - Very strong, simple to operate and manage. Good integration with Excel

and Visual Studio that makes you get a lot of productivity. VS already comes with

source control.

 Backlog administration - Easy to create and order. Shows Kanban and list view. You

can edit your backlog query so you can see it the way you need. Interoperability with

Excel, what really makes you save time managing the backlog directly on Excel.

 Managing sprints, tasks, estimation and forecasting - You can create tasks and bugs

linked to your user story. Each task has its estimation and you can fill other fields

like “Remaining Work” to update your progress during the sprint. Tasks have the list

and Kanban view. A special feature is the forecasting, that virtually simulate where

each item would be moved for the next sprint if the development team keeps that

same velocity in the current sprint.

 Development team integration - You can manage your project in Visual Studio or in

the online portal. It means that developers can see the product backlog, sprints, tasks

and bugs directly on the same software that they use. All the code can also be

integrated in the same online repository.

3. Scrum Me.

 Overview - Very simple and fast, but there are no special functions.

 Backlog administration - Easy to create, but you cannot edit the item order in the

product backlog. The backlog is shown just in Kanban View; you cannot see it in a

simple list.

 Managing sprints, tasks, estimation and forecasting - You can choose your effort

measuring unit1. It is simple to edit the task status, just by dragging-and-dropping the

task in Kanban parts.

 Development team integration - Each team member accesses the same online

environment. There is no integration with development tools.

1 The measurement units of the effort in Agile methodologies are, in general, hours or points.

8

1.2. Motivation

As we have seen, neither of the free programs does fulfill all the necessities of the

clients. My principal motivation is to build an application that combines all these

functionalities and fills the missing gaps such as:

 A minimalist and user-friendly interface is needed so the user can focus only on the

content of the managed projects without being distracted by useless elements. If the

interface is not easy it may discourage some new users to use these methodologies.

 A clear hierarchy of user roles which offer the access only to the corresponding

functionalities, avoiding the possible errors produced by the confusion of the

responsibilities. This confusion may lead to problems like: wrong tasks states,

incorrect estimation, unclear priority.

 A wide range of diagrams and measurements which offer a graphic visualization of

the activity evolution. Not having them may make it more difficult to extract

conclusions from the data gathered by the tool.

 An automatic and intelligent recommendation of the actions that can be taken in order

to improve the errors which may occur during the project management process. For

example, if sprints end always incomplete, the tool may recommend users to plan

fewer tasks in the future sprints.

 Autocompleted templates which ease and motivate the users to correctly document

the details of different tasks.

This projects can help all developers that want to learn Agile methods and need to

develop small or medium projects using low resources. The universities that are teaching

these methods may use this software to practice with their students.

1.3. Objectives

As I mentioned in the previous sections, the main existing non paid option are Easy

Backlog, Visual Studio Online and Scrum Me. My goal is to do a minimum viable product

in where I can iteratively add all the features I think this kind of tool should have. For this

purpose, I’m going to use the MVP methodology that I explain next, and can be seen in

Image 1.1.

9

A minimum viable product has only the core features that make it good enough to be

deployed, and no more. [6] The MVP is the most pared down version of a product that can

still be released. An MVP has three key characteristics:

 It has enough value that people are willing to use it or buy it initially

 It demonstrates enough future benefit to retain early adopters

 It provides a feedback loop to guide future development

I followed the MVP model, and the first iteration of the application, (that I named

Scrum Friend) will be covered in this project and will have the following set of objectives:

 Scrum Friend will be a web application with a log in system, where the user can

manage multiple projects. The website must have a Product Backlog section where

the product owners can create tasks and establish a priority order. The tasks will have

the possibility to be assigned to sprints. There must be a relation between the tasks

and the members who create them or develop them, an estimation system and a

burndown chart diagram for the completed sprints.

Image 1.1 Minimum viable product

10

 The application must be available from any location with an Internet connection.

 The Scrum Friend’s interface has to be usable and user friendly.

 Zero cost. There are a lot of free tools and services on the market that can be used to

create a product like Scrum Friend with all the features needed.

 Speed to market. This project needs to be ready for production on 30th of June.

11

2. REQUIREMENTS ANALYSIS

To meet the objectives set in the previous chapter it is necessary to obtain and analyze

the requirements of the application.

Requirements analysis encompasses those tasks that go into determining the needs

to satisfy for a new or altered product or project. This should take into account the possibly

of conflicting requirements of the various stakeholders, as long as analyzing, documenting,

validating and managing software or system requirements. [6]

 Requirements analysis includes three types of tasks:

 Eliciting requirements: the task of communication with customers and users to

determine what their requirements are. This is also called requirements gathering.

The users involved are product owners, project managers, developers and testers.

They are asked about what would need a good project management application

and what’s missing in the applications they regularly use. As a result, I received

a different view on application requirements depending on the type of user

interviewed.

 Analyzing requirements: determining whether the stated requirements are

unclear, incomplete, ambiguous, or contradictory, and then solving these issues.

In this step I have combined all the information to get a unique perspective of

what it takes to get a functional application. I have established a boundary

between mandatory and optional requirements. Requirements were arranged in

ascending order according to the importance it.

 Recording requirements: requirements might be documented in various forms,

such as natural-language documents, use cases, user, stories, or process

specifications. The information was recorded on the use cases templates and they

have been established the acceptance conditions used to declare a requirement

accomplished.

To extract all these requirements, I used the FURPS+ model. FURPS+ is an acronym

representing a model for classifying software quality attributes (functional and non-

functional requirements):

 Functionality - What the customer wants! This includes security-related needs.

https://en.wikipedia.org/wiki/Functional_requirements
https://en.wikipedia.org/wiki/Non-functional_requirements
https://en.wikipedia.org/wiki/Non-functional_requirements
https://en.wikipedia.org/wiki/Requirements

12

 Usability - How effective is the product from the standpoint of the person who

must use it? Is it aesthetically acceptable? Is the documentation accurate and

complete?

 Reliability - What is the maximum acceptable system downtime? Are failures

predictable? Can we demonstrate the accuracy of results? How is the system

recovered?

 Performance - How fast must it be? What's the maximum response time? What's

the throughput? What's the memory consumption?

 Supportability - Is it testable, extensible, serviceable, installable, and

configurable? Can it be monitored?

The + reminds us of a few additional needs that a customer could have:

 Design constraints - Do things like I/O devices or DBMS constrain how the

software must be built?

 Implementation requirements - Do the programmers need to adhere to standards?

Is the use of TDD required? Is statistically sound testing in the context of

Cleanroom required?

 Interface requirements - What downstream feeds must be created? What other

systems must this one interface with? How frequent are feeds produced?

 Physical requirements - What hardware must the system be deployable on? Must

we be able to deploy to a machine no larger than 12" square, to be stationed in

the Iraqi desert?

Image 2.1 FURPS+ pyramid of quality criteria

13

2.1. Functional requirements

The functional requirements define the functions of the system or its components.

They are explored and described in the Use Cases Diagram (Annex 1).

A use case is a list of actions or event steps, typically defining the interactions

between a role (known in the Unified Modeling Language as an actor) and a system, to

achieve a goal. The actor can be a human or other external system.

This diagram contains two types of actors:

 The normal user - represents any person who accesses the application without

authentication.

 The logged user - represents an authenticated person which was previously

registered.

I will present the list of use case templates based on the Use Cases Diagram:

Case Register

Description Create an account to access and save all the user actions

Actor Normal user

Basic flow 1. Access the main page.

2. Introduce the correct information.

3. The user sends the information to the server.

4. The server validates the information.

5. The server creates the account.

Pre conditions The email is not registered

Post conditions The user will have a personal account

Case Log in

Description Enter into users account

Actor Normal user

Basic flow 1. Introduce the email and password.

2. The system validates the information.

3. The system shows the main page.

Pre conditions The user is registered

Post conditions The user will have access to all features

14

Case Log out

Description Sign out the account

Actor Logged user

Basic flow 1. The user logs out.

2. The system destroys de session and shows the register page.

Pre conditions The user is logged

Post conditions The user will lose the access to the features, but the work will be saved

Case Create project

Description Create a new project

Actor Logged user

Basic flow 1. The user inserts the required information.

2. The system validates the information.

3. The system creates the project and automatically assigns the

user as a member of the project.

4. The system shows the first project first in the list.

Pre conditions The user is logged

Post conditions The project it’s created with the user assigned as member

Case Remove project

Description Remove an existing project

Actor Logged user

Basic flow 1. The user sends the request.

2. The system deletes the project from the system and from the

list.

Pre conditions The project exists

Post conditions The project is removed from the system and from the list

Case Unfollow project

Description Revoke user membership from the project

Actor Logged user

Basic flow 1. The user unfollows the project.

15

2. The system removes the member from the project and the

project will disappear from his project list.

Pre conditions The user is assigned to the project

Post conditions The project will not be accessed anymore by this user

Case Assign member to project

Description Assign a new member to the current project

Actor Logged user

Basic flow 1. The user inserts the email of the new user.

2. The system checks if the email exists and if it is not assigned

to the project.

3. The system adds the member to the project and the project will

appear in the user list.

Pre conditions The user exists

Post conditions The project will be accessed by the new member

Case Load project

Description Select a project

Actor Logged user

Basic flow 1. The user selects the project.

2. The system shows the project information.

Pre conditions The project exists and the user is its member

Post conditions The user will access the project information

Case Create task

Description Create a new task to the project

Actor Logged user

Basic flow 1. The user inserts the required information and sends it to the

server.

2. The system validates the information.

3. The system creates and adds the new task at the end of the list.

Pre conditions A project is selected

Post conditions The task is created and it can be used

16

Case Edit task

Description Edit the extra information of a task

Actor Logged user

Basic flow 1. The user can modify the assigned member, cost and status.

2. The system updates the information.

Pre conditions The task is created

Post conditions The task will have the information updated

Case Remove task

Description Delete a task from the project

Actor Logged user

Basic flow 1. The user sends the delete request.

2. The system removes the task from the list and all the associated

information.

Pre conditions The task exists

Post conditions The task cannot be accessed

Case Create sprint

Description Create a new sprint

Actor Logged user

Basic flow 1. The user sends the request.

2. The system automatically creates a new sprint at the end of the

list.

Pre conditions A project is selected

Post conditions The sprint can be used with its features

Case Remove sprint

Description Remove sprint

Actor Logged user

Basic flow 1. The user sends the request.

2. The system removes the sprint from the list with all its

associated information.

Pre conditions The sprint exists

17

Post conditions The sprint cannot be accessed

Case Edit sprint

Description Edit sprint information

Actor Logged user

Basic flow 1. The user edits the sprint information: members, capacity, add

or remove tasks.

2. The system updates the information.

Pre conditions A project is selected

Post conditions The sprint will update the information

Case Consult burndown diagram

Description Visualize the sprints statistics

Actor Logged user

Basic flow 1. The user selects a sprint.

2. The system will build a burndown diagram and will show the

statistic information.

Pre conditions The sprint is completed

Post conditions The burndown diagram will be shown

The security related needs are included as functional requirements:

 On the registration page, the user must introduce his password twice.

 The password must have at least 8 characters.

 Does not allow sensitive data exposure (like passwords).

 A normal user can only access the registration page.

 The database has a daily automated backup system.

 Does not allow code injection on the input fields.

 Does not allow Cross Site Scripting.

2.2. Non-functional requirements

Non-functional requirements specify criteria that can be used to judge the operation

18

of a system, rather than specific behavior. They are contrasted with functional requirements

that define specific behavior or functions. The principal non-requirements are detailed on

the following. [6]

Usability (UX) - Human Factors, Aesthetics, Consistency, Documentation,

Responsiveness.

To build the interface requirements I used an iterative user design process. Starting

from the functional requirements I designed wireframes for each page of the application

(Annex 1, 2, 3). They were used to test the aesthetics, consistency and reaction time of the

real users. I used three iterations to reach a favorable outcome. These wireframes are the

starting point for the style and appearance of the application and may change during

development due to user’s feedback.

Regarding the usage of colors and effects, I obtained the following requirements:

 The selected project must be colored green to differentiate itself from other

projects.

 Unfollow project button must be red in order to avoid erroneous actions.

 When the user adds an element, the system must show the input form in a

centered modal.

 The blocked tasks must have a different color.

 The sprint will contain a progress bar that will show the percentages of all task

statuses.

 The system must communicate with the user in case of an error or an important

action state through messages. They will appear at the top center of the page.

 The tabs must have a color change effect on hover.

Reliability - Availability (Robustness, Durability, Resilience, Recoverability,

Survivability), Predictability (Stability), Accuracy (Frequency, Severity of Error).

The database must have a daily automated backup system. When the CPU frequency

reaches a high level of usage, a new server instance will be created in order to avoid slow

navigation. This may mean an extra cost but the system must be prepared for this scenario.

The RAM and HDD must have enough capacity and an alert us in case of an over 70% usage.

Performance - Speed, Efficiency, Resource Consumption (power, ram, cache, etc.),

Throughput, Capacity, Scalability.

https://en.wikipedia.org/wiki/Usability
https://en.wikipedia.org/wiki/Reliability_engineering
https://en.wikipedia.org/wiki/Computer_performance

19

The application uses a decent amount of resources on the client side in order to work

properly with any configuration. On the server side, the system must respond at a less than

a second rate.

Hardware limitation will be imposed by the hosting service free tier. It’s

recommended that the application should not require more than 1 GB RAM, 1 CPU and 20

GB HDD storage. Users from any part of the world can access the website and the system

must be auto scalable to offer optimal speed.

Supportability - Testability (Serviceability, Maintainability, Sustainability, Repair

Speed), Flexibility (Modifiability, Configurability, Adaptability, Extensibility, Modularity),

Installability, Localizability.

 The users around the world will need an internet connection to access this application

or they can deploy it on their private server. This later option one would increase the security

level.

The application will be available for all browsers on desktop environment. The

mobile and tablet version can be implemented optionally in the future. The code must be

modular and with the capacity to be extended in order to implement other functionalities. It

must support Unit test and will include Javadoc in order to be easy to understand by other

programmers.

Additional requirements

 The database type must be SQL and it must avoid the design constraint. This will

help us in the future if we want to change the database. The code implementation will be

using agile methodologies. The deploy system will be available from any location.

https://en.wikipedia.org/wiki/Serviceability_(computer)

20

3. PROJECT PLANNING AND MANAGEMENT

Project planning and management refers to the whole methodology and approach to

build this project, including its documentation and demo. This planning is done after

analyzing the requirements that were made since only after that, I can gather the information

about what needs to be implemented. However, the plan must include the dedicated time

towards the requirements analysis in order to have a good vision of the cost and time spent

at the end of the project.

 The planning was done keeping in mind the deadline set. Thus, according to the

priority requirements established in the previous chapter, there were planned only those tasks

whose implementation cost were included in the available time and those who were required

to provide a complete product.

For a better view of the process flow I will use a Gant chart (Annex 6). A Gantt

chart is a type of bar chart, adapted by Karol Adamiecki in 1896 and independently by

Henry Gantt in the 1910s, that illustrates a project schedule. Gantt charts illustrate the start

and finish dates of the terminal elements and summary elements of a project.

I divided the project planning into 6 modules:

1. Requirements – define the project requirements and create the UX interface

prototype.

2. Design and architecture – define the project structure, external dependencies,

server’s architecture, design patterns, database model and all necessary design to

mount the basic structure of the project.

3. Development – contains all the components or features necessary for the project

implementation.

4. Testing – the test mechanism used to ensure the quality of the final product.

5. Documentation – elaborate the project documentation with a minimum of 60

pages.

6. Demo presentation – create a Power point presentation and an application live

demo.

Each module requires an implementation of at least 50% of the previous module to

be started. Because the project is developed by a single person, I chose to finish each module

to be able to start on the next.

21

Module 4 was elaborated in parallel with Module 3 because I used a continuous test

during the development process. Some diagrams were elaborated in the Requirements or

Design and architecture modules but were used later in the documentation.

For better management of the project I relied on Agile methods, like Scrum. I used

Sprint planning every two weeks. Each task is estimated in hours and has four states:

 Ready – the task is defined and all the requirements are described. It contains the

user stories and the acceptance conditions.

 Ongoing – the task is on the implementation process. This process includes the

previous analysis.

 Test – each task has its own unit or integration test and must meet all his

acceptance conditions.

 Done – a task is finished after a successful test, master branch integration and

deployment.

For each encountered bug, I created a new task and I followed the same procedure.

Image 3.1 Scrum Friend's Kanban table

22

4. DESIGN AND ARCHITECTURE

The Design and architecture chapter will fit the base for the development step. Here

are included the software and hardware infrastructures, necessary to build a robust software

which can fulfill all the requirements set out in Chapter 2.

4.1. Application logical architecture

Application logical architecture refers to a detailed design which includes all major

components and entities, and their relationship. The objective of this design step is to ensure

that all components and functionality is accounted and well understood. It does not refer to

any physical server names or addresses, but they include any business services, application

names and details, and another relevant information for development purposes.

 This web application will use the Java EE programming language, which is a widely

used enterprise computing platform developed under the Java Community Process. The

version used for Java EE is 1.8.

4.1.1. Model View Controller pattern

The Model-View-Controller (MVC) is an architectural pattern that separates an

application into three main logical components: the model, the view, and the controller.

Each of these components are built to handle specific development aspects of an application.

MVC is one of the most frequently used industry-standard web development framework to

create scalable and extensible projects.

The MVC components are the following:

 Model: The Model component corresponds to all the data related logic that the

user works with. This can represent either the data that is being transferred

between the View and Controller components or any other business logic related

data. For example, a Task object will retrieve the task’s information from the

database, manipulate it and update it data back to the database or use it to render

data.

 View: The View component is used for all the UI logic of the application. For

example, the Task view would include all the UI components such as text boxes,

dropdowns, etc. that the final user interacts with.

23

 Controller: Controllers act as an interface between Model and View components

to process all the business logic and incoming requests, manipulate data using the

Model component and interact with the Views to render the final output. For

example, the Task controller would handle all the interactions and inputs from

the Task View and update the database using the Task Model. The same

controller would be used to view the Task data.

For the MVC implementation I used the Spring MVC framework, specially

designed for this type of web applications. The Spring MVC framework provides model-

view-controller architecture and ready components that can be used to develop flexible and

loosely coupled web applications. The MVC pattern results in separating the different

aspects of the application (input logic, business logic, and UI logic), while providing an

independency between these elements:

 The Model encapsulates the application data and in general they will consist of

POJO.

 The View is responsible for rendering the model data and in general it generates

HTML output that the client's browser can interpret.

 The Controller is responsible for processing user requests and building

appropriate model and passes it to the view for rendering.

Image 4.1 MVC diagram

24

Spring MVC framework is designed around a DispatcherServlet that handles all the

HTTP requests and responses. [1] The request processing workflow of the Spring Web

MVC DispatcherServlet is illustrated in the following diagram:

Following is the sequence of events corresponding to an incoming HTTP request

to DispatcherServlet:

1. After receiving an HTTP request, DispatcherServlet consults the

HandlerMapping to call the appropriate Controller.

2. The Controller takes the request and calls the appropriate service methods based

on used GET or POST method. The service method will set model data based on

defined business logic and returns view name to the DispatcherServlet.

3. The DispatcherServlet will take help from ViewResolver to pick up the defined

view for the request.

4. Once view is finalized, The DispatcherServlet passes the model data to the view

which is finally rendered on the browser.

Spring's web module includes many unique web support features [9]:

 Clear separation of roles. Each role (controller, validator, command object, form

object, model object, Dispatcher Servlet, handler mapping, view resolver etc.)

can be fulfilled by a specialized object.

Image 4.2 Spring MVC workflow

25

 Powerful and straightforward configuration of both framework and application

classes as JavaBeans. This configuration capability includes easy referencing

across contexts, such as from web controllers to business objects and validators.

 Adaptability, non-intrusiveness, and flexibility. Define any controller method

signature you need, possibly using one of the parameter annotations (such as

@RequestParam, @RequestHeader, @PathVariable etc.) for a given scenario.

 Reusable business code, no need for duplication. Use existing business objects

as command or form objects instead of mirroring them to extend a particular

framework base class.

 Customizable binding and validation. Type mismatches as application-level

validation errors that keep the offending value, localized date and number

binding, and so on instead of String-only form objects with manual parsing and

conversion to business objects.

 Customizable handler mapping and view resolution. Handler mapping and view

resolution strategies range from simple URL-based configuration, to

sophisticated, purpose-built resolution strategies. Spring is more flexible than

web MVC frameworks that mandate a particular technique.

 Flexible model transfer. Model transfer with a name/value Map supports easy

integration with any view technology.

 Customizable locale and theme resolution, support for JSPs with or without

Spring tag library, support for JSTL, support for Velocity without the need for

extra bridges etc.

 A simple yet powerful JSP tag library known as the Spring tag library that

provides support for features such as data binding and themes. The custom tags

allow for maximum flexibility in terms of markup code.

 A JSP form tag library, that makes writing forms in JSP pages much easier.

 Beans whose lifecycle is scoped to the current HTTP request or

HTTP Session. This is not a specific feature of Spring MVC itself, but rather of

the WebApplicationContext container’s that Spring MVC uses.

26

4.1.2. Logical layering design

Irrespective of the type of application that you are designing, and whether it has a

user interface or it is a services application that only exposes services you can decompose

the design into logical groupings of software components. These logical groupings are called

layers.

Layers help to differentiate between the different kinds of tasks performed by the

components, making it easier to create a design that supports reusability of components.

Each logical layer contains a number of discrete component types grouped into sub layers,

with each sub layer performing a specific type of task. [13]

Image 4.3 Application layering

27

By identifying the generic types of components that exist in most solutions, you can

construct a meaningful map of an application or service, and then use this map as a blueprint

for your design.

Dividing an application into separate layers that have distinct roles and

functionalities helps you to maximize maintainability of the code, optimize the way that the

application works when deployed in different ways, and provides a clear delineation between

locations where certain technology or design decisions must be made.

The names of the Scrum Friend application layers are inspired by the Spring core

annotations and are related with the classic layer’s names like: Data Access Object, Business

Object, Managers etc.

UI layer (Front end)

Represents the user interface layer. It should not contain any business logic, as well

as should not contain any Java code. In my case, I implemented this layer using JSP pages

with JSTL and Spring forms (Spring Tag Library). JavaScript is used to implement the

events for all elements and CSS and Bootstrap to apply the style and appearance of the

application. [13]

In general, JSTL is always used to represent data in JSP (lists, tables, etc.) and avoid

using Java code in the pages. Spring forms can help in building HTML forms and handling

forms submit in a more convenient way.

Server side (Back end)

 Controllers - are Java classes which handle all input requests from UI layer,

perform input parameters validation, call necessary services, handle service

responses, wrap response data in a convenient way and return back to the UI

layer.

 Services - are Java classes which implement all application business logic.

Ideally the service layer does not know anything about web requests or the

database layer. Services accept model classes, perform some application business

logic actions, call other services, call repositories layer and produce other model

classes as a result. Initially services are called from the controller layer. They

might use repository classes to load or safe any information in the data layer.

 Repositories - these Java classes provide access (read and write data) to the data

layer. Usually relational databases are used as a data layer, but it easily might be

something else – for instance, a NoSQL database or a file share.

28

Besides such application design provides a good loose coupling, such as code

separation allowing to unit test the web application in a convenient way. Each back end layer

can be easily covered with unit tests independently from each other.

4.1.3. Data model

To analyze the database infrastructure, I created the Database Entity Relationship

(ER) model from the Annex 5. The ER model defines the conceptual view of the database.

It works around real-word entities and the associated among them. At view level, the ER

model is considered a good option for designing databases.

 I chose MySQL database because it is the most popular Open Source Relational SQL

database management system. MySQL is one of the best RDBMS, being used for developing

web-based software applications.

So nowadays, I use relational database management systems (RDBMS) to store and

manage huge volume of data. This is called relational database because all the data is stored

into different tables and relations are established using primary keys or other keys known as

foreign keys. [5]

A Relational Database Management System (RDBMS) is a software that:

 Enables you to implement a database with tables, columns and indexes.

 Guarantees the Referential Integrity between rows of various tables.

 Updates the indexes automatically.

 Interprets an SQL query and combines information from various tables.

MySQL is a fast, easy-to-use RDBMS being used for many small and big businesses.

MySQL is becoming so popular because of many good reasons:

 MySQL is released under an open-source license. So you have nothing to pay to

use it.

 MySQL is a very powerful program in its own right. It handles a large subset of

the functionality of the most expensive and powerful database packages.

 MySQL uses a standard form of the well-known SQL data language.

 MySQL works on many operating systems and with many languages including

PHP, PERL, C, C++, JAVA, etc.

 MySQL works very quickly and works well even with large data sets.

29

 MySQL supports large databases, up to 50 million rows or more in a table. The

default file size limit for a table is 4GB, but you can increase this (if your

operating system can handle it) to a theoretical limit of 8 million terabytes (TB).

This type of database meets with the additional requirements established on the

Chapter 2.

4.1.4. Project and dependency management

For a good management of external libraries and internal structure of the project I

used Apache Maven.

Apache Maven is a build automation tool used primarily for Java projects. The

word maven means "accumulator of knowledge" in Yiddish. Maven addresses two aspects

of building software: first, it describes how software is built, and second, it describes its

dependencies.

Maven’s primary goal is to allow a developer to comprehend the complete state of a

development effort in the shortest period of time. In order to attain this goal there are several

areas of concern that Maven attempts to deal with:

 Making the build process easy.

 Providing a uniform build system.

 Providing quality project information.

 Providing guidelines for best practices development.

 Allowing transparent migration to new features.

Maven allows a project to build using its project object model (POM) and a set of

plugins that are shared by all projects using Maven, providing a uniform build system.

One of the strongest points of Maven is that it automatically manages project

dependencies. The developer just needs to specify which dependencies and in which version

are needed and Maven takes care of the rest, including downloading and storing them at the

right location and additionally packaging them into a final artifact (WAR).

https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Maven
https://en.wikipedia.org/wiki/Yiddish

30

This application is organized in a unique artifact and the principal use of Maven is

for the dependency management, project building and unit tests launching.

The POM file includes the ultimate version of all external libraries used: Spring,

Apache Tiles, JDBC, Validation API, Hibernate validator, Jackson, Log4j, MySQL

connector etc.

4.2. Application physical architecture

A physical design has all major components and entities identified within specific

physical servers and locations or specific software services, objects, or solutions. It includes

all known details such as operating systems, version numbers, and even patches that are

relevant. Any physical constraints or limitations should also be identified within the server

components, data flows, or connections.

This subchapter contains all the hardware infrastructure necessary to run the

application.

4.2.1. Three tier architecture

As the need for enterprise scalability is increasing, it challenged the traditional two

tier architecture. In 1995, a new variant of two tier architecture came into existence where

there was reduction in client-side headache. [12]

Image 4.4 Maven workflow

31

Such systems comprised of following three levels/tiers [12]:

1. User Interface Layer: This layer/tier comprised of functionality for simple GUI

required for communication with database server and it runs on end user’s

computer. It sometimes performs a role of validating the input at user’s side.

2. Business Logic & Data Processing Layer: It acts as a middleware which runs

on separate machine and whose responsibility is to handle business and

application logic. Sometimes it is also known as "Application Server".

3. Database Server: It stores the data required by middle layer. This layer may run

on separate server known as database server whose primary job is to handle all

database related requests from client side or through middle layer.

As there is clear separation between business logic and user interface, client will

require very few resources. So it is known as "Thin Client".

Advantages of 3-Tier Architecture:

 It is less expensive as client requires very limited amount of resources like

hardware, memory etc.

 Application maintenance is centralized with transfer of business logic for many

clients into a single application server.

 The added modularity makes it convenient for modification or replacement of

any of the tiers without affecting others.

Image 4.5 Three tier architecture

32

 Load balancing is easier with the separation of core business logic from database

functions.

This architecture easily maps to web environment with a web browser acting as "Thin

Client' and web server acting as application server. This architecture can be easily extended

to N tiers which will provide more flexibility and modularity.

To implement this type of architecture, the most recommended provider is Amazon

Web Services.

4.2.2. Amazon Web Services

Amazon Web Services (AWS), is a subsidiary of Amazon.com which offers a suite

of cloud computing services that make up an on-demand computing platform. These services

operate from 12 geographical regions across the world. I am using for this application the

Frankfurt region due to the short distance which offers the highest speed.

Amazon offers a free tier for students which gives us everything we need to build

hardware for our three tier application architecture.

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides

resizable compute capacity in the cloud. It is designed to make web-scale cloud

computing easier for developers. [8]

Amazon EC2 contains the Application server and it can be accessed by all IP’s

through ports 80 and 443. It has a 64bit Linux operating system installed with Tomcat 8 and

Java 8. All these features can be configured when the EC2 instance is created.

The instance type used on this application is an “t2.micro” from the free tier with one

CPU and 1 GB of RAM. This hardware configuration is enough for a demo presentation but

it is not recommended for a massive production environment.

The IP of the machine is 52.29.208.111 and it can be used to access the log files or

other server information or to configure the security access groups.

Benefits of using EC2:

 Elastic Web-Scale Computing - Amazon EC2 enables you to increase or decrease

capacity within minutes, not hours or days. You can commission one, hundreds

or even thousands of server instances simultaneously. Of course, because this is

all controlled with web service APIs, your application can automatically scale

itself up and down depending on its needs.

https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Cloud_computing
https://aws.amazon.com/what-is-cloud-computing/
https://aws.amazon.com/what-is-cloud-computing/
https://eu-central-1.console.aws.amazon.com/ec2/v2/home?region=eu-central-1#Addresses:search=52.29.208.111;sort=publicIp

33

 Completely Controlled - You have complete control of your instances. You have

root access to each one, and you can interact with them as you would with any

machine. You can stop your instance while retaining the data on your boot

partition and then subsequently restart the same instance using web service APIs.

Instances can be rebooted remotely using web service APIs. You also have access

to console output of your instances.

 Flexible Cloud Hosting Services - You have the choice of multiple instance types,

operating systems, and software packages. Amazon EC2 allows you to select a

configuration of memory, CPU, instance storage, and the boot partition size that

is optimal for your choice of operating system and application. For example, your

choice of operating systems includes numerous Linux distributions,

and Microsoft Windows Server.

 Designed for use with other Amazon Web Services - Amazon EC2 works in

conjunction with Amazon Simple Storage Service (Amazon S3), Amazon

Relational Database Service (Amazon RDS), Amazon SimpleDB and Amazon

Simple Queue Service (Amazon SQS) to provide a complete solution for

computing, query processing and storage across a wide range of applications.

 Reliable - Amazon EC2 offers a highly reliable environment where replacement

instances can be rapidly and predictably commissioned. The service runs within

Amazon’s proven network infrastructure and data centers. The Amazon EC2

Service Level Agreement commitment is 99.95% availability for each Amazon

EC2 Region.

 Inexpensive - Amazon EC2 passes on to you the financial benefits of Amazon’s

scale. You pay a very low rate for the compute capacity you actually consume.

See Amazon EC2 Instance Purchasing Options for a more detailed description.

 Easy to Start - Quickly get started with Amazon EC2 by visiting AWS

Marketplace to choose preconfigured software on Amazon Machine Images

(AMIs). You can quickly deploy this software to EC2 via 1-Click launch or with

the EC2 console.

 Secure.

https://aws.amazon.com/windows/
http://aws.amazon.com/ec2/purchasing-options/
https://aws.amazon.com/marketplace/ref=mkt_ste_ec2
https://aws.amazon.com/marketplace/ref=mkt_ste_ec2

34

With the management console I can read a list of metrics for different resources and

I configured an alarm with Cloud Watch which sends me an email when the usage of the

CPU surpasses 70%. This feature is related with the non-functional requirements from the

Chapter 2.

Amazon Relational Database Service (Amazon RDS) makes it easy to set up,

operate, and scale a relational database in the cloud. It provides cost-efficient and resizable

capacity while managing time-consuming database administration tasks, freeing you up to

focus on your applications and business. Amazon RDS provides you six familiar database

engines to choose from, including Amazon Aurora, Oracle, Microsoft SQL Server,

PostgreSQL, MySQL and MariaDB. [8]

The Scrum Friend application uses a MySQL database because of its free license and

it is hosted by the Amazon RDS. The server hardware configuration contains a “db.t2.micro”

instance with one CPU, 1 GB RAM and 20 GB magnetic storage.

Image 4.6 Amazon EC2 statistics

35

For a better security level, I configured the RDS IP’s to be accessed only from the

EC2 instance and my home location. The automatic backup is enabled and it is refreshing

every day.

Benefits of using RDS:

 Easy to Administer - Amazon RDS makes it easy to go from project conception

to deployment. Use the AWS Management Console, the AWS RDS Command-

Line Interface, or simple API calls to access the capabilities of a production-

ready relational database in minutes. No need for infrastructure provisioning, and

no need for installing and maintaining database software.

 Scalable - You can scale your database's compute and storage resources with

only a few mouse clicks or an API call, often with no downtime. Many Amazon

RDS engine types allow you to launch one or more Read Replicas to offload read

traffic from your primary database instance.

 Available and Durable - Amazon RDS runs on the same highly reliable

infrastructure used by other Amazon Web Services. When you provision a Multi-

AZ DB Instance, Amazon RDS synchronously replicates the data to a standby

instance in a different Availability Zone (AZ). Amazon RDS has many other

features that enhance reliability for critical production databases, including

automated backups, database snapshots, and automatic host replacement.

 Fast - Amazon RDS offers database server sizing choices up to 32 vCPUs and

244 GB, as well as storage choices for a wide range of application performance

requirements. You can choose SSD-backed storage optimized for high-

performance OLTP applications or for cost-effective general-purpose use. You

can also choose magnetic storage for workloads in which data is accessed less

frequently.

 Inexpensive - You pay very low rates and only for the resources you actually

consume. In addition, you benefit from the option of On-Demand pricing with no

up-front or long-term commitments, or even lower hourly rates via our reserved

pricing option.

 Secure.

https://console.aws.amazon.com/rds/home
http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference/Welcome.html
http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference/Welcome.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://aws.amazon.com/rds/details/#DB_Instance_Classes
https://aws.amazon.com/rds/details/read-replicas/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/

36

 The RDS instance can be monitored by the Amazon management console. I can see

the most recent events, the CPU or memory using. This instance is not recommended for a

massive production environment because of its low hardware configuration.

4.2.3. Security

These security features are related to the functional requirements. I will present what

Amazon gives us to maintain the security of the application.

Amazon EC2 works in conjunction with Amazon VPC to provide security and robust

networking functionality for your computer resources. [2]

 Compute instances are located in a Virtual Private Cloud (VPC) with an IP range

that you specify. You decide which instances are exposed to the Internet and

which remain private.

 Security Groups and networks ACLs allow you to control inbound and outbound

network access to and from your instances.

 You can connect your existing IT infrastructure to resources in your VPC using

industry-standard encrypted IPsec VPN connections.

 For additional isolation, you can provision your EC2 resources on Dedicated

Hosts or as Dedicated Instances. Both allow you to use EC2 instances in a VPC

on hardware dedicated to a single customer.

Image 4.7 RDS monitoring

https://aws.amazon.com/vpc/

37

My RDS security it’s based on security groups and automatic backups. The security

groups allow the access only for the Application Server and my home location IP.

Image 4.8 Amazon security workflow

Source: https://www.amazon.com

https://www.amazon.com/

38

5. DEVELOPMENT

In this chapter I will present the main features implemented in the application. This

is the next step after the architecture and design. It is more oriented to coding and offers a

certain vision of the software built and technologies used.

5.1. Development methodology

Describes the necessary tools for the development process, things like where the code

will be stored and how it will pass from application to hardware infrastructure.

5.1.1. Version control

GitHub is a web-based Git repository hosting service. It offers all of the distributed

revision control and source code management (SCM) functionality of Git as well as adding

its own features.

Unlike Git, which is strictly a command tool, GitHub provides a Web-based

graphical interface and desktop as well as mobile integration. It also provides access

control and several collaboration features such as bug tracking, requests, task, and wikis for

every project.

Image 5.1 GitHub commits list

https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Hosting_service
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Source_code_management
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Wiki

39

In addition to source code, GitHub supports the following formats and features:

 Putting the code on the cloud in order to accessed from any location.

 Documentation, including automatically-rendered README files in a variety

of Markdown-like file formats.

 Issue tracking including feature requests with labels, milestones, assignees and a

search engine.

 Commits history.

 Unified and split diffs.

 Reverting to an older version.

 Graphs: pulse, contributors, commits, code frequency, punch card, network,

members.

5.1.2. Deployment methodology

With AWS Elastic Beanstalk, you can quickly deploy and manage applications in the

AWS cloud without worrying about the infrastructure that runs those applications. AWS

Elastic Beanstalk reduces management complexity without restricting choice or control. You

simply upload your application, and AWS Elastic Beanstalk automatically handles the

details of capacity provisioning, load balancing, scaling, and application health monitoring.

You can also perform most deployment tasks, such as changing the size of your fleet

of Amazon EC2 instances or monitoring your application, directly from the Elastic Beanstalk

web interface.

To use Elastic Beanstalk, you create an application, upload an application version in

the form of an application source bundle (for example, a Java .war file) to Elastic Beanstalk,

and then provide some information about the application. Elastic Beanstalk automatically

Image 5.2 Deployment methodology with Elastic Beanstalk

Source: https://www.amazon.com

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Issue_tracking
https://www.amazon.com/

40

launches an environment and creates and configures the AWS resources needed to run your

code. After your environment is launched, you can then manage your environment and

deploy new application versions.

After you create and deploy your application, information about the application

including metrics, events, and environment status is available through the AWS

Management Console, APIs, or Command Line Interfaces.

5.1.3. Integrated development environments

The following list of tools are necessary for building the code of the application.

IntelliJ IDEA is a Java integrated development environment (IDE) for developing

computer software. The principal benefits of this IDE are:

 Deep intelligence - After IntelliJ IDEA's indexed your source code, it offers

blazing fast and intelligent experience by giving relevant suggestions in every

context: instant and clever code completion, on-the-fly code analysis and reliable

refactoring tools.

 Out-of-the-box experience - Mission-critical tools such as integrated version

controls systems and a wide variety of supported languages and frameworks are

at hand — no plugin hustle included.

 Smart code completion - While the basic completion suggests names of classes,

methods, fields, and keywords within the visibility scope, the smart completion

suggests only those types that are expected in the current context.

Image 5.3 Manage applications with Elastic beanstalk

Source: https://www.amazon.com

https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.amazon.com/

41

 Framework-specific assistance - While IntelliJ IDEA is an IDE for Java, it also

understands and provides intelligent coding assistance for a large variety of other

languages such as SQL, JPQL, HTML, JavaScript, etc., even when the language

expression is injected into a String literal in your Java code.

 Productivity boosters - The IDE predicts your needs and automates the tedious

and repetitive development tasks so you can stay focused on the big picture.

 Unobtrusive intelligence - The coding assistance in IntelliJ IDEA is not only

about the editor: it helps you stay productive when dealing with its other parts as

well: e.g. filling a field, searching over a list of elements; accessing a tool

window; or toggling for a setting, etc.

DataGrip is a database IDE developed by JetBrains that is tailored to suit specific

needs of professional SQL developers and DBAs. DataGrip has built in support for many

relational database platforms. I used this database client to construct the entire database

infrastructure and to insert SQL statements in order to create virtual data for testing.

 Intelligent query console - Allows you to execute queries in different modes and

provides local history that keeps track of all your activity and protects you from

losing your work.

 Efficient schema navigation - Lets you jump to any table, view, or procedure by

its name via corresponding action, or directly from its usages in the SQL code.

 Explain plan - Gives you an extended insight into how your queries work and

into database engine behavior so you can make your queries more efficient.

 Smart code completion - DataGrip provides context-sensitive code completion,

helping you to write SQL code faster. Completion is aware of the tables structure,

foreign keys, and even database objects created in code you're editing.

 On-the-fly analysis and quick-fixes - DataGrip detects probable bugs in your

code and suggests the best options to fix them on the fly. It will immediately let

you know about unresolved objects, using keywords as identifiers and always

offers the way to fix problems.

 Refactoring’s that work in SQL files and schemas - DataGrip correctly resolves

all references in your SQL code and helps you refactor them. When you rename

a variable or an alias, it will update their usages throughout the entire file. Even

https://www.jetbrains.com/

42

the actual table names in the database are updated when you rename references

to them from your queries.

 Version control integration - They provide unified support for all major version

control systems: Git, SVN, Mercurial and many others.

SourceTree is a powerful Git and Mercurial desktop client for developers on Mac

or Windows. SourceTree simplifies how you interact with your Git and Mercurial

repositories so you can focus on coding. Visualize and manage your repositories through

SourceTree's simple interface.

AWS Management Console is a simple and intuitive web-based user interface. You

can also use the AWS Console mobile app to quickly view resources on the go. I used this

console to manage all the server configuration. [8]

The Console provides cloud management for all aspects of your AWS account,

including monitoring your monthly spending by service, managing security credentials, or

even setting up new IAM Users.

With the AWS Console mobile app, you can quickly and easily view your existing

resources, including Cloud Watch alarms, and perform operational tasks from your mobile

device.

5.2. Front End features implementation

The Front End includes all the features of the presentation layer which is the interface

between the user and the back end. This part is related with the view layer of the MVC

pattern (Subchapter 4.1.1. Model View Controller pattern) and most of it runs in the browser,

which is the client tier (Subchapter 4.2.1. Three tier architecture).

5.2.1. Dynamic web pages with JSP

JavaServer Pages (JSP) is a technology that lets you add dynamic content to web

pages. In absence of JSP, to update the appearance or the content of plain static HTML pages,

you always have to do it by hand. Even if all you want to do is change a date or a picture,

you must edit the HTML file and type in your modifications. Nobody is going to do it for

you, whereas with JSP, you can make the content dependent on many factors, including the

http://aws.amazon.com/console/mobile/
http://aws.amazon.com/console/mobile/

43

time of the day, the information provided by the user, the user’s history of interaction with

your web site, and even the user’s browser type.

This capability is essential to provide online services in which you can tailor each

response to the viewer who made the request, depending on the viewer’s preferences and

requirements.

A crucial aspect of providing meaningful online services is for the system to be able

to remember data associated with the service and its users. That’s why databases play an

essential role in dynamic web pages. But let’s take it one step at a time.

The following steps explain how the web server creates the web page:

1. As with a normal page, your browser sends an HTTP request to the web server.

This doesn’t change with JSP, although the URL probably ends in .jsp instead of

.html or .htm.

2. The web server is not a normal server, but rather a Java server, with the

extensions necessary to identify and handle Java servlets. The web server

recognizes that the HTTP request is for a JSP page and forwards it to a JSP

engine.

3. The JSP engine loads the JSP page from disk and converts it into a Java servlet.

From this point on, this servlet is indistinguishable from any other servlet

developed directly in Java rather than JSP, although the automatically generated

Java code of a JSP servlet is not always easy to read, and you should never modify

it by hand.

Image 5.4 Dynamic JSP workflow

44

4. The JSP engine compiles the servlet into an executable class and forwards the

original request to another part of the web server called the servlet engine. Note

that the JSP engine only converts the JSP page to Java and recompiles the servlet

if it finds that the JSP page has changed since the last request. This makes the

process more efficient than with other scripting languages (such as PHP) and

therefore faster.

5. The servlet engine loads the servlet class and executes it. During execution, the

servlet produces an output in HTML format, which the servlet engine passes to

the web server inside an HTTP response.

6. The web server forwards the HTTP response to your browser. 7. Your web

browser handles the dynamically generated HTML page inside the HTTP

response exactly as if it were a static page. In fact, static and dynamic web pages

are in the same format.

The JavaServer Pages API allows you to define custom JSP tags that look like HTML

or XML tags and a tag library. A tag library is a set of user-defined tags that implements

custom behavior. The taglib directive declares that your JSP page uses a set of custom tags,

identifies the location of the library, and provides a means for identifying the custom tags in

your JSP page.

The list of taglibs used in this application is:

 http://www.springframework.org/tags

 http://java.sun.com/jsp/jstl/core

 http://www.springframework.org/tags/form

 http://java.sun.com/jsp/jstl/functions

 http://tiles.apache.org/tags-tiles

The principal advantages of using JSP in my application are:

 the construction of dynamic lists of elements (projects, tasks, sprints, members

etc.).

 variables for conditional cases (show the state of a task, sprint etc.).

 inclusion of other JSP files in the main pages (we avoid repeated code and I gain

modularity).

45

5.2.2. Asynchronous communication using Ajax and Restful web services

Ajax is a set of web development techniques using many web technologies on

the client-side to create asynchronous Web applications. With Ajax, web applications can

send data to and retrieve from a server asynchronously (in the background) without

interfering with the display and behavior of the existing page.

By decoupling the data interchange layer from the presentation layer, Ajax allows

for web pages, and by extension web applications, to change content dynamically without

the need to reload the entire page. Despite the name, the use of XML is not required (JSON is

often used in the AJAJ variant), and the requests do not need to be asynchronous.

The term Ajax has come to represent a broad group of Web technologies that can be

used to implement a Web application that communicates with a server in the background,

without interfering with the current state of the page. The following technologies are

incorporated:

 HTML (or XHTML) and CSS for presentation.

 The Document Object Model (DOM) for dynamic display of elements and

interaction with data.

 JSON or XML for the interchange of data.

 The XMLHttpRequest object for asynchronous communication.

 JavaScript to bring these technologies together.

RESTful web services are built to work best on the Web. Representational State

Transfer (REST) is an architectural style that specifies constraints, such as the uniform

interface, that if applied to a web service induce desirable properties, such as performance,

scalability, and modifiability, that enable services to work best on the Web.

In the REST architectural style, data and functionality are considered resources and

are accessed using Uniform Resource Identifiers (URIs), typically links on the Web. The

resources are acted upon by using a set of simple, well-defined operations. The REST

architectural style constrains an architecture to a client/server architecture and is designed to

use a stateless communication protocol, typically HTTP. In the REST architecture style,

clients and servers exchange representations of resources by using a standardized interface

and protocol.

The following principles encourage RESTful applications to be simple, lightweight,

and fast:

https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Client-side
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/JavaScript_Object_Notation
https://en.wikipedia.org/wiki/AJAJ
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/XHTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XMLHttpRequest
https://en.wikipedia.org/wiki/JavaScript

46

 Resource identification through URI: A RESTful web service exposes a set of

resources that identify the targets of the interaction with its clients. Resources are

identified by URIs, which provide a global addressing space for resource and

service discovery.

 Uniform interface: Resources are manipulated using a fixed set of four create,

read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a

new resource, which can be then deleted by using DELETE. GET retrieves the

current state of a resource in some representation. POST transfers a new state

onto a resource.

 Self-descriptive messages: Resources are decoupled from their representation so

that their content can be accessed in a variety of formats, such as HTML, XML,

plain text, PDF, JPEG, JSON, and others. Metadata about the resource is

available and used, for example, to control caching, detect transmission errors,

negotiate the appropriate representation format, and perform authentication or

access control.

 Stateful interactions through hyperlinks: Every interaction with a resource is

stateless; that is, request messages are self-contained. Stateful interactions are

based on the concept of explicit state transfer. Several techniques exist to

exchange state, such as URI rewriting, cookies, and hidden form fields. State can

be embedded in response messages to point to valid future states of the

interaction.

47

The Ajax technology is very useful in this application when the user adds, updates

or removes elements on the page. For example, when the user adds a new project, the web

page launches an event and then JavaScript calls an Ajax routine to a specify URL. The Web

Server receives and processes the JSON request and the data persists in the database. It

responds with a JSON and a state message for the user.

5.2.3. Page fragmentation management with Apache Tiles

 Apache Tiles is a free open-sourced templating framework for modern Java

applications. Based upon the Composite pattern it is built to simplify the development of

user interfaces. For complex web sites it remains the easiest and most elegant way to work

alongside any MVC technology.

Tiles allows authors to define page fragments which can be assembled into a

complete page at runtime. These fragments, or tiles, can be used as simple includes in order

Image 5.5 AJAX workflow

48

to reduce the duplication of common page elements or embedded within other tiles to

develop a series of reusable templates. These templates streamline the development of a

consistent look and feel across an entire application.

 The configuration of the Apache Tiles is contained in a XML file. Here I defined

each template and specified a path and a name for them. I have a unique template for the

header, menu and footer so I don’t need to duplicate any code. When I want to make a change

in the code I need to apply the modifications only on the specified template.

5.2.4. Styling and appearance

Cascading Style Sheets (CSS) is a style sheet language used for describing

the presentation of a document written in a markup language. Although most often used to

set the visual style of web pages and user interfaces written in HTML and XHTML, the

language can be applied to any XML document, including plain XML, SVG and XUL, and

is applicable to rendering in speech, or on other media. Along with HTML and JavaScript,

CSS is a cornerstone technology used by most websites to create visually engaging

webpages, user interfaces for web applications, and user interfaces for many mobile

applications.

CSS is designed primarily to enable the separation of document content from

document presentation, including aspects such as the layout, colors, and fonts. This

Image 5.6 HTML page organization

https://en.wikipedia.org/wiki/Style_sheet_language
https://en.wikipedia.org/wiki/Presentation_semantics
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/XHTML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Plain_Old_XML
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/XUL
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Web_applications
https://en.wikipedia.org/wiki/Separation_of_presentation_and_content
https://en.wikipedia.org/wiki/Separation_of_presentation_and_content
https://en.wikipedia.org/wiki/Page_layout
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Typeface

49

separation can improve content accessibility, provide more flexibility and control in the

specification of presentation characteristics, enable multiple HTML pages to share

formatting by specifying the relevant CSS in a separate .css file, and reduce complexity and

repetition in the structural content.

This separation of formatting and content makes it possible to present the same

markup page in different styles for different rendering methods, such as on-screen, in print,

by voice (when read out by a speech-based browser or screen reader) and on Braille-based,

tactile devices. It can also be used to display the web page differently depending on the

screen size or device on which it is being viewed. Readers can also specify a different style

sheet, such as a CSS file stored on their own computer, to override the one the author has

specified.

Changes to the graphic design of a document (or hundreds of documents) can be

applied quickly and easily, by editing a few lines in the CSS file they use, rather than by

changing markup in the documents.

The CSS specification describes a priority scheme to determine which style rules

apply if more than one rule matches against a particular element. In this so-called cascade,

priorities (or weights) are calculated and assigned to rules, so that the results are predictable.

The CSS specifications are maintained by the World Wide Web Consortium (W3C).

Bootstrap is a free and open-source front-end library for creating websites and web

applications. It contains HTML and CSS based design templates for typography, forms,

buttons, navigation and other interface components, as well as optional JavaScript

extensions. It aims to ease the development of dynamic websites and web applications. [3]

Bootstrap is a front end web framework, that is, an interface for the user, unlike the

server-side code which resides on the "back end" or server.

Bootstrap is modular and consists essentially of a series of Less stylesheets that

implement the various components of the toolkit. A stylesheet called bootstrap less includes

the components stylesheets. Developers can adapt the Bootstrap file itself, selecting the

components they wish to use in their project. [3]

Bootstrap features:

 Stylesheets - Bootstrap provides a set of stylesheets that provide basic style

definitions for all key HTML components. These provide a uniform, modern

appearance for formatting text, tables and form elements.

https://en.wikipedia.org/wiki/Accessibility
https://en.wikipedia.org/wiki/Screen_reader
https://en.wikipedia.org/wiki/Braille_display
https://en.wikipedia.org/wiki/Graphic_design
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/Typography
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Dynamic_web_page
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Front_and_back_ends
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Interface_(computer_science)
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Less_(stylesheet_language)

50

 Re-usable components - In addition to the regular HTML elements, Bootstrap

contains other commonly used interface elements. These include buttons with

advanced features, labels, advanced typographic capabilities, thumbnails,

warning messages and a progress bar. The components are implemented as CSS

classes, which must be applied to certain HTML elements in a page.

 JavaScript components - Bootstrap comes with several JavaScript components in

the form of jQuery plugins. They provide additional user interface elements such

as dialog boxes, tooltips, and carousels. They also extend the functionality of

some existing interface elements, including for example an auto-complete

function for input fields.

This project has a separated .css file for each page. Some elements can change

their style by assigning another class that contains jQuery or JavaScript. Bootstrap it’s very

useful for elements like buttons, panels, badges, menus, messages, tables, progress bar or

dialogs.

5.2.5. Drag and drop elements with jQuery UI

jQuery UI is a collection of GUI widgets, animated visual effects, and themes

implemented with jQuery, Cascading Style Sheets, and HTML. Both jQuery and jQuery UI

are free and open-source software distributed by the jQuery Foundation under the MIT

License.

 This library facilitates the drag and drop effect of the tasks by defining the lists

involved. This effect can be used on the same list or between different lists. We can control

the actions using a series of events from jQuery UI like:

 activate - This event is triggered when using connected lists, every connected list

on drag start receives it.

 beforeStop - This event is triggered when sorting stops, but when the

placeholder/helper is still available.

 change - This event is triggered during sorting, but only when the DOM position

has changed.

 create - Triggered when the sortable is created.

 deactivate - This event is triggered when sorting was stopped, it is propagated to

all possible connected lists.

https://en.wikipedia.org/wiki/JQuery
https://en.wikipedia.org/wiki/GUI_widget
https://en.wikipedia.org/wiki/Theme_(computing)
https://en.wikipedia.org/wiki/JQuery
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License
http://api.jqueryui.com/sortable/#event-activate
http://api.jqueryui.com/sortable/#event-beforeStop
http://api.jqueryui.com/sortable/#event-change
http://api.jqueryui.com/sortable/#event-create
http://api.jqueryui.com/sortable/#event-deactivate

51

 out - This event is triggered when a sortable item is moved away from a sortable

list.

 over - This event is triggered when a sortable item is moved into a sortable list.

 receive - This event is triggered when an item from a connected sortable list has

been dropped into another list. The latter is the event target.

 remove - This event is triggered when a sortable item from the list has been

dropped into another. The former is the event target.

 sort - This event is triggered during sorting.

 start - This event is triggered when sorting starts.

 stop - This event is triggered when sorting has stopped.

 update - This event is triggered when the user stopped sorting and the DOM

position has changed.

5.2.6. Integration of Summernote for advanced text edition

Summernote is a library that provides a user interface for editing the text area HTML

element.

With this library the user can enter a brief description of the task using:

 text styles like bold, italic, underline, strikethrough.

 Superscript and subscript.

 Unordered and ordered lists.

 Paragraphs.

http://api.jqueryui.com/sortable/#event-out
http://api.jqueryui.com/sortable/#event-over
http://api.jqueryui.com/sortable/#event-receive
http://api.jqueryui.com/sortable/#event-remove
http://api.jqueryui.com/sortable/#event-sort
http://api.jqueryui.com/sortable/#event-start
http://api.jqueryui.com/sortable/#event-stop
http://api.jqueryui.com/sortable/#event-update

52

The formatted text inserted by the user can be stored in the database like an HTML

code and shown to the user in the same format where they access the tasks description.

5.2.7. Create diagrams with Cloud Flare library

 Cloud Flare offers a free library for the burn down diagram construction. It is a

library based on jQuery, Css and HTML technology. I have to populate the information of

the diagram by providing:

 The list with Sprint days.

 The list with the ideal points.

 The list with burned points.

All this information is calculated on the server side.

Image 5.7 Summernote edit textbox

53

5.3. Back End features implementation

The Back End represent the data access layer and the business logic from the server

side. It is related with the Controller and the Model of the MVC pattern (Subchapter 4.1.1.

Model View Controller pattern) and it is hosted on the Amazon EC server, which is the

application server tier (Subchapter 4.2.1. Three tier architecture).

5.3.1. Dependency injection using Spring Core

Central to the Spring Framework is its inversion of control (IoC) container, which

provides a consistent means of configuring and managing Java objects using reflection. The

container is responsible for managing object lifecycles of specific objects: creating these

objects, calling their initialization methods, and configuring these objects by wiring them

together. [1]

Image 5.8 Cloud Flare burndown chart

Image 5.9 Spring inversion of control

https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Object_lifetime

54

Objects created by the container are also called managed objects or beans. The

container can be configured by loading XML files or detecting specific Java annotations on

configuration classes. These data sources contain the bean definitions that provide the

information required to create the beans.

Objects can be obtained by means of either dependency lookup or dependency

injection. Dependency lookup is a pattern where a caller asks the container object for an

object with a specific name or of a specific type. Dependency injection is a pattern where

the container passes objects by name to other objects, via either constructors, properties,

or factory methods.

In many cases it is not needed to use the container when using other parts of the

Spring Framework, although using it will likely make an application easier to configure and

customize. The Spring container provides a consistent mechanism to configure applications

and integrates with almost all Java environments, from small-scale applications to large

enterprise applications.

Dependency Injection offers at least the following advantages

 Loosely couple code.

 Separation of responsibility.

 Configuration and code is separate.

5.3.2. Create the Sign up and Sign in system with Spring Security

Spring Security is a customizable authentication and access service framework for

server side Java-based enterprise software applications. The Spring security OAuth provides

a method for making authenticated HTTP requests using a token - an identifier used to denote

an access grant with specific scope, duration, and other attributes. [1]

Tokens are issued to third-party clients by an authorization server with the approval

of the resource owner. Instead of sharing their credentials with the client, resource owners

grant access by authenticating directly with the authorization server which in turn issues a

token to the client. The client uses the token (and optional secret) to authenticate with the

resource server and gain access.

https://en.wikipedia.org/wiki/JavaBeans
https://en.wikipedia.org/wiki/Java_annotation
https://en.wikipedia.org/w/index.php?title=Dependency_lookup&action=edit&redlink=1
https://en.wikipedia.org/wiki/Constructor_(computer_science)
https://en.wikipedia.org/wiki/Property_(programming)
https://en.wikipedia.org/wiki/Factory_method_pattern

55

Two major areas of application security are “authentication” and “authorization”

(or “access-control”). These are the two main areas that Spring Security targets:

1. Authentication - is the process of establishing a principal2 is who they claim to

be.

2 A “principal” generally means a user, device or some other system which can perform an action

in your application.

Image 5.10 Spring security log in system

56

2. Authorization - refers to the process of deciding whether a principal is allowed

to perform an action within your application. To arrive at the point where an

authorization decision is needed, the identity of the principal has already been

established by the authentication process. These concepts are common, and not

at all specific to Spring Security.

Authentication is the assurance that the user is actually the user he is claiming to be,

for example, when the user logs into any application and gives his credentials, he

authenticates himself. At the authentication level, spring supports various authentication

models such as Http Basic authentication, Form Based authentication.

Authorization is the assurance that the user is allowed to access only those resources

that he is authorized to use. For example, in a corporate application, there are some parts of

an application where only admin has access and to some parts all the employees have access.

These access rules are determined by the access rights given to each user of the system. At

the authorization level, spring targets three main areas: authorizing web request, authorizing

whether methods can be invoked and authorizing access to individual domain object

instances.

Following are the some of the important facilities that Spring Security Framework

provides to its users:

 User authentication and authorization.

 Role based authorization control.

 Easy to configure with database based authentication and authorization.

 Encrypted password.

 Form authentication.

 File bases user authentication and authorization

5.3.3. Hitting the database with Spring and JDBC

A database transaction is a sequence of actions that are treated as a single unit of

work. These actions should either complete entirely or take no effect at all. Transaction

management is an important part of and RDBMS oriented enterprise applications to ensure

data integrity and consistency. The concept of transactions can be described with following

four key properties described as ACID [1]:

 Atomicity: A transaction should be treated as a single unit of operation which

means either the entire sequence of operations is successful or unsuccessful.

http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Form-based_authentication

57

 Consistency: This represents the consistency of the referential integrity of the

database, unique primary keys in tables etc.

 Isolation: There may be many transactions processing with the same data set at

the same time, each transaction should be isolated from others to prevent data

corruption.

 Durability: Once a transaction has completed, the results of this transaction have

to be made permanent and cannot be erased from the database due to system

failure.

The transactional annotation from Spring Framework is responsible to manage

all database transactions. I can put the annotation in the Repository or in the Service layer.

The advantage of managing the transactions in the Service layer is to not create a lot of

performance overhead. The Service can use multiple Repositories and will create a unique

transaction for the entire operation.

Image 5.11 JDBC transactions with Spring

58

5.3.4. Monitoring using logs

Log4j is a reliable, fast and flexible logging framework (APIs) written in Java, which

is distributed under the Apache Software License.

Log4j has been ported to the C, C++, C#, Perl, Python, Ruby, and Eiffel languages.

Log4j is highly configurable through external configuration files at runtime. It views the

logging process in terms of levels of priorities and offers mechanisms to direct logging

information to a great variety of destinations, such as a database, file, console, UNIX Syslog,

etc.

Log4j has three main components:

 loggers: Responsible for capturing logging information.

 appenders: Responsible for publishing logging information to various preferred

destinations.

 layouts: Responsible for formatting logging information in different styles.

The basic features of the Log4j are:

 It is thread-safe.

 It is optimized for speed.

 It is based on a named logger hierarchy.

 It supports multiple output appenders per logger.

 It supports internationalization.

 It is not restricted to a predefined set of facilities.

 Logging behavior can be set at runtime using a configuration file.

 It is designed to handle Java Exceptions from the start.

Image 5.12 Log example

59

 It uses multiple levels, namely ALL, TRACE, DEBUG, INFO, WARN, ERROR

and FATAL.

 The format of the log output can be easily changed by extending the Layout class.

 The target of the log output as well as the writing strategy can be altered by

implementations of the Appender interface.

 It is fail-stop. However, although it certainly strives to ensure delivery, log4j does

not guarantee that each log statement will be delivered to its destination.

5.4. Database implementation

A database is a separate application that stores a collection of data. Each database

has one or more distinct APIs for creating, accessing, managing, searching and replicating

the data it holds.

The database is hosted on the database server (Subchapter 4.2.1. Three tier

architecture) and follows the Entity Relationship model (Subchapter 4.1.3. Data model).

Other kinds of data stores can be used, such as files on the file system or large hash

tables in memory but data fetching and writing would not be so fast and easy with those

types of systems.

5.4.1. Infrastructure

Following the Entity Relationship model (Subchapter 4.1.3. Data model) I built the

database infrastructure. Each entity represents a table with a primary key. I used foreign keys

to reference other tables and an “on delete” statement which deletes the row once its

reference is removed. With features like this I do not need to make these operations on the

server side.

 The default “current timestamp” is very useful to automatically fill fields like

“created date” when a row is inserted.

5.4.2. Optimization policies

Looping queries - The most basic performance issues often will not be the fault of

the database itself. One of the most common mistakes is to query in a loop without need.

Most likely looped SELECT queries can be rewritten as a JOIN.

60

Picking only needed columns - It is common to see a wildcard used to pick all

columns but is not efficient. Depending on the number of participating columns and their

type (especially large types such as the TEXT variants), we could be selecting much more

data from the database than we actually need. The query will take longer to return since it

needs to transfer more data (from the hard-disk if it doesn't hit the cache) and it will take up

more memory doing so.

Picking only the needed columns is a good general practice to use, and avoids those

problems.

Filtering rows correctly and using indexes - My main goal is to select the smallest

number of rows we need in the fastest way possible. I want to filter rows using indexes, and

in general I want to avoid full table scans unless it is absolutely necessary (aside from special

cases where it actually improves the performance). The MySQL manual provides great

information regarding the optimization of the WHERE clause.

Filtering conditions include the WHERE, ON (for joins) and HAVING clauses. I

want those clauses to hit indexes as much as possible; unless I select a very large number of

rows index lookup is much faster than a full table scan. Those clauses should be used

alongside with the LIMIT clause in case it is relevant to filter the amount of rows / data

returned by the query. The LIMIT clause itself can lead to important optimizations for

queries if used correctly.

Since my goal is to hit indexes with the WHERE clause, an important rule would be

to avoid using calculations. When the filtering condition has to be calculated for each row,

the WHERE clause cannot use an index.

Indexing correctly - MySQL can use one index per table alias in a query, so I need

to plan our indexes to maximize their effectiveness. Using more indexes than necessary can

have negative effects because it could slow down the operation of INSERT and UPDATE

queries, while taking up more memory. Some indexes can even slow down

performance depending on their selectivity.

Caching - MySQL has an internal query cache that caches results from frequently

running queries if it meets certain requirements. If our queries are cached by MySQL (this

can be verified by running the queries several times), there is no need to cache it - we just

need to be aware that a MySQL service restart could cause a noticeable slow down while the

cache is being primed again.

http://www.mysqlperformanceblog.com/2006/06/02/indexes-in-mysql/
http://dev.mysql.com/doc/refman/5.5/en/where-optimizations.html
http://dev.mysql.com/doc/refman/5.5/en/where-optimizations.html
http://dev.mysql.com/doc/refman/5.5/en/how-to-avoid-table-scan.html
http://dev.mysql.com/doc/refman/5.5/en/how-to-avoid-table-scan.html
http://dev.mysql.com/doc/refman/5.5/en/limit-optimization.html
http://www.mysqlperformanceblog.com/2007/08/28/do-you-always-need-index-on-where-column/
http://www.mysqlperformanceblog.com/2007/08/28/do-you-always-need-index-on-where-column/
http://dev.mysql.com/doc/refman/5.1/en/query-cache-operation.html

61

Common options include caching to disk (files) or caching to memory (using

solutions such as mem cache or APC). Another form of caching is to the database - by de-

normalizing the schema to store data that is the result of expensive to run queries.

5.4.3. Data integrity

Use database constraints whenever possible. There are two main reasons why using

database constraints is a preferred way of enforcing data integrity. [10]

 First, constraints are inherent to the database engine and so use less system

resources to perform their dedicated tasks. We resort to external user-defined

integrity enforcement only if constraints are not sufficient to do the job properly.

 Second, database constraints are always checked by the database engine before

insert, update, or delete operations. Invalid operations are cancelled before the

operation is undertaken. So they are more reliable and robust for enforcing data

integrity.

Data integrity is enforced by database constraints. Database Constraints are

declarative integrity rules of defining table structures. They include the following 7

constraint types [10]:

1. Data type constrain - This defines the type of data, data length, and a few other

attributes which are specifically associated with the type of data in a column.

2. Default constraint - This defines what value the column should use when no value

has been supplied explicitly when inserting a record in the table.

3. Nullability constraint - This defines if a column is NOT NULL or it allows NULL

values to be stored in it.

4. Primary key constraint - This is the unique identifier of the table. Each row must

have a distinct value. The primary key can be either a sequentially incremented

integer number or a natural selection of data that represents what is happening in

the real world (e.g. Social Security Number). NULL values are not allowed in

primary key values.

5. Unique constraint - This defines that the values in a column must be unique and

no duplicates should be stored. Sometimes the data in a column must be unique

even though the column does not act as Primary Key of the table.

http://www.mysqlperformanceblog.com/2006/09/27/apc-or-memcached/

62

6. Foreign key constraint - This defines how referential integrity is enforced

between two tables.

7. Check constraint - This defines a validation rule for the data values in a column

so it is a user-defined data integrity constraint. This rule is defined by the user

when designing the column in a table. Not every database engine supports check

constraints.

63

6. TEST

The software is tested at different levels. Initially, the individual units are tested arid

once they are tested, they are integrated and checked for interfaces established between them.

After this, the entire software is tested to ensure that the output produced is according to user

requirements. There are four levels of software testing, namely, unit testing, integration

testing, system testing, and acceptance testing.

6.1. Unit testing

Unit testing is performed to test the individual units of software. Since the software

comprises various units/modules, detecting errors in these units is simple and consumes less

time, as they are small in size. However, it is possible that the outputs produced by one unit

become input for another unit. Hence, if incorrect output produced by one unit is provided

as input to the second unit then it also produces wrong output. If this process is not corrected,

the entire software may produce unexpected outputs. To avoid this, all the units in the

software are tested independently using unit testing. [11]

Unit testing is not just performed once during the software development, but repeated

whenever the software is modified or used in a new environment. Some other points noted

about unit testing are listed below.

 Each unit is tested separately regardless of other units of software.

Image 6.1 Levels of software testing

Source: http://ecomputernotes.com/

http://ecomputernotes.com/

64

 The developers themselves perform this testing.

 The methods of white box testing are used in this testing.

Unit testing is used to verify the code produced during software coding and is

responsible for assessing the correctness of a particular unit of source code. In addition, unit

testing performs the following functions:

 It tests all control paths to uncover maximum errors that occur during the

execution of conditions present in the unit being tested.

 It ensures that all statements in the unit have been executed at least once.

 It tests data structures (like stacks, queues) that represent relationships among

individual data elements.

 It checks the range of inputs given to units. This is because every input range has

a maximum and minimum value and the input given should be within the range

of these values.

 It ensures that the data entered in variables is of the same data type as defined in

the unit.

 It checks all arithmetic calculations present in the unit with all possible

combinations of input values.

Scrum Friend application has implemented unit test using the JUnit framework. The

unit test was implemented during the development process. JUnit is included in the Maven’s

POM file because it is an external dependency. Every time the project is build, Maven

automatically launches all unit tests. If a test fails, the build process is interrupted. All the

test classes are located in the test/main/java folder and have the same package name like the

tested classes.

6.2. Integration testing

Once unit testing is complete, integration testing begins. In integration testing, the

units validated during unit testing are combined to form a subsystem. The integration testing

is aimed at ensuring that all the modules work properly as per the user requirements when

they are put together.

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

65

The objective of integration testing is to take all the tested individual modules,

integrate them, test them again, and develop the software, which is according to design

specifications. Some other points that are noted about integration testing are listed below.[11]

 It ensures all modules work together properly and transfer accurate data across

their interfaces.

 It is performed with the intention to uncover errors that lie in the interfaces among

the integrated components.

 It tests those components that are new or have been modified or affected due to

any change.

In the development process after each task was implemented I did an integration test

to ensure the correct behavior of the application and to avoid conflicts with other features.

The test was done manually using the deployed version from Amazon Web Service.

6.3. System testing

Software is integrated with other elements such as hardware, people, and database to

form a computer-based system. This system is then checked for errors using system testing.

IEEE defines system testing as “a testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirement.” [11]

In system testing, the system is tested against non-functional requirements such as

accuracy, reliability, and speed. The main purpose is to validate and verify the functional

design specifications and to check how integrated modules work together. The system testing

also evaluates the system's interfaces to other applications and utilities as well as the

operating environment.

During system testing, associations between objects, control and infrastructure, and

the compatibility of the earlier released software versions with new versions are tested.

System testing also tests some properties of the developed software, which are essential for

users. These properties are listed below.

 Usable: Verifies that the developed software is easy to use and is understandable.

This test was made with real users like: product owners, project managers, testers,

developers and it is related to the UX prototype. This test was several times, after

each page implementation.

 Secure: Verifies that access to important or sensitive data is restricted even for

those individuals who have authority to use the software. I tested the security of

66

the application by trying to access the private data from another user (Cross site

scripting).

 Compatible: Verifies that the developed software works correctly in conjunction

with the existing data, software and procedures. I made the compatibility test

using the most popular browsers like: Chrome, Safari, Opera, Mozilla. Internet

Explorer.

 Documented: Verifies that manuals that give information about the developed

software are complete, accurate and understandable. The documentation of my

application includes Javadoc and it is available in English for all classes and

public methods.

 Recoverable: Verifies that there are adequate methods for recovery in case of

failure.

6.4. Acceptance testing

Acceptance testing is performed to ensure that the functional, behavioral, and

performance requirements of the software are met. IEEE defines acceptance testing as a

"formal testing with respect to user needs, requirements, and business processes conducted

to determine whether or not a system satisfies the acceptance criteria and to enable the user,

customers or other authorized entity to determine whether or not to accept the system.” [11]

During acceptance testing, the software is tested and evaluated by a group of users

either at the developer's site or user's site. This enables the users to test the software

themselves and analyze whether it is meeting their requirements. To perform acceptance

testing, a predetermined set of data is given to the software as input. It is important to know

the expected output before performing acceptance testing so that outputs produced by the

software as a result of testing can be compared with them. Based on the results of tests, users

decide whether to accept or reject the software. That is, if both outputs (expected and

produced) match, the software is considered to be correct and is accepted; otherwise, it is

rejected.

The acceptance test was the final test for the Scrum Friend application. With this type

of test, I verified that the project meets all the previous functional requirements from the Use

cases diagram. Also, the acceptance test was made after each task to check all the acceptance

conditions set out initially.

67

7. RESULTS

This chapter includes information about various results and statistics, after the

development process was completed and the application was ready for the production

environment.

7.1. Final product review and user experience

The final product is a professional application with minimalist design, great response

time and modular code, using the latest technologies. The application can be easily extended

with new functionalities and the database can be replaced with a NoSQL.

The product has been tested by real users. They had a very good opinion about it and

were impressed by these features:

 Very easy to use.

 All the elements are visible and easy to find.

 The sprint progress bar is very useful.

 The burndown charts are clear and very explicit.

 You can manage multiple projects.

Things that can be improved in the future:

 Selecting the project anywhere on the web.

 Editing options for all elements.

 Confirmation messages for important actions.

7.2. Software metrics and measures

In terms of size metrics, I calculated the lines of code using the Statistic plugin for

the IntelliJ IDE. This metrics do not include the external libraries I used. As we can see, Java

represents almost 50% of the total code and is running on the server side. The other 50%

resulted from the CSS, JS and HTML (JSP) files that are downloaded in the client side and

executed with the browser.

68

Table 7-1 Files length statistic

FILE TYPE EXTENSION SIZE (kb) LINES OF CODE

Cascade Style Sheet .css 40 690

Java classes .java 152 5601

JavaScript .js 307 2209

Java Server Faces .jsp 54 1140

Java properties .properties 1 25

XML configuration .xml 97 1521

Database script .sql 4 100

TOTAL 657 11293

With an advanced analysis of Java code, we can see more clearly the difference

between code formatting, Javadoc and programmed lines.

GitHub offers us a statistics of the commit history. As we can see, most commits

were carried out in March and April when the Product Backlog and Sprints tab were

constructed.

49%

38%

13%

Java code statistics

Source code lines Comment lines Blank lines

Image 7.1 Java code statistic chart

69

 GitHub also provides us the number of commits per day. In general, the commits

were made during Saturdays and Sundays.

All development tools used were free because I used student licenses. The MySQL

database is open source and all Amazon Web Services servers and applications belong to the

free tier and I can host the application there for 1 year without any charges. The external

libraries were also free to use.

 The books and the online material used for the documentation were free and are

mentioned in the References chapter.

The time spent is detailed on the following table:

Image 7.2 GitHub commits history

Image 7.3 GitHub distributed daily commits

70

Table 7-2 Time spent statistic

Module Hours Percentage %

Requirements 24 6.19

Analysis 32 8.24

Development and testing 200 51.54

Documentation 96 24.75

Presentation 36 9.28

Total time spent 388 100

As we can see for this project were required 388 hours or 49 working days if we

count that I worked 8 hours per day. To reach these values, a good planning was needed

together with previous knowledge and experience with complex projects.

71

8. CONCLUSIONS

After three and a half months of work I have fulfilled the initial objectives. Scrum

Friend is a complex application and ready to be published in production environment. To

achieve this, a good planning, previous requirements analysis, modern tools and

technologies, and a qualitative test system were needed.

During the development process I was impressed by several technologies. With the

Spring frameworks I got a modular code and well structured, Bootstrap offers a lot of

elements that can be used to obtain a professional interface, JSP makes your work very easy

when you have to deal with list of elements and Amazon Web Services facilitate a complete

console where you can configure and monitor all the server’s activity.

 The user feedback was good and that promises a good evolution in the production

environment. They proposed some improvements that could be implemented in the second

iteration of the development process.

 Next, I will present a list of new features that were proposed for future versions:

 Registration with email confirmation. This feature would increase the security

level.

 History of actions. Users could visualize the history of actions and who made the

changes.

 Rollback features and edit options. It could avoid errors due to user actions.

 Kanban view of the projects.

 Implementation of Google Analytics to make statistics about the user’s actions.

72

9. REFERENCES

Books:

[1] Walls, C. (2015). Spring in action Fourth Edition. Manning: New York.

[2] Wittig, M.; Wittig A. (2015). Amazon Web Services in Action. Manning: New York.

[3] Bhaumik S. (2015). Bootstrap Essentials. Packt Publishing: Birmingham.

[4] Stellman A.; Greene J. (2014). Learning Agile. O’Reilly Media: California.

[5] Schwartz B.; Zaitsev P.; Tkachenko V. (2012). High Performance MySQL 3rd

Edition. O’Reilly Media: California.

[6] Khorana R. (2011). Software Engineering (WBUT) 2nd Edition. Vikus Publishing

House: US.

Websites:

[7] Scrum Alliance. Retrieved from:

 https://www.scrumalliance.org/why-scrum/scrum-guide

[8] AWS Documentation. Retrieved from:

https://aws.amazon.com/documentation/

[9] Spring – MVC Framework. Retrieved from:

http://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm

[10] Data integrity. Retrieved from:

 http://www.geeksengine.com/

[11] Levels of software testing. Retrieved from:

 http://ecomputernotes.com/

[12] Using a Three-Tier Architecture Model. Retrieved from:

 https://msdn.microsoft.com/en-s/library/windows/desktop/ms685068(v=vs.85).aspx

[13] Layered Application Guidelines. Retrieved from:

 https://msdn.microsoft.com/en-us/library/ee658109.aspx

https://www.scrumalliance.org/why-scrum/scrum-guide
https://aws.amazon.com/documentation/
http://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
http://www.geeksengine.com/
http://ecomputernotes.com/
https://msdn.microsoft.com/en-s/library/windows/desktop/ms685068(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ee658109.aspx

73

10. ANNEXES

74

Annex 1: Backlog wireframe

75

Annex 2: Sprints wireframe

76

Annex 3: Statistics wireframe

77

Annex 4: Use cases diagram (UML)

78

Annex 5: Database Entity relationship (UML)

79

Annex 6: Gant diagram

