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Abstract:
The hemodynamics of a vascular vessel network can be affected by the presence of obstructions.

We present a theoretical analysis of the effect that obstructions have on a vessel network under
pulsatile inlet pressure, and analyze the importance of the level in which obstructions occur. The
elasticity of the vessels is implemented following a recently developed model. Flow and pressure
along the network are calculated for a network of equal vessels and for a network that follows
Murray’s law for radii. The effect of obstructions is evaluated in terms of an effective response,
which relates the pressure difference, between the inlet and the outlet of the network, with the
blood flow. Our calculations reveal that results obtained for a rigid network and those obtained by
taking into account the elasticity of the vessel walls, are qualitatively different. The response of the
network when a certain degree of obstruction is present is highly dependent on the level at which
the obstructions occur.

I. INTRODUCTION

The vascular system of mammals is of great complex-
ity, therefore sophisticated models are needed to under-
stand the impact of phenomena such as obstructions,
stenosis or vessels suppression. The flow at the vicin-
ity of a point where an obstruction occurs as well as
the pressure waveforms can be predicted for a concrete
morphology[1]-[3].

However, a tree-like network model can be used to
study the effect that obstructions have over the whole
network, [4],[5]. In several regions, nature provides a wide
variety of tree-like structured networks, such as succes-
sive bifurcations of large arteries that irrigate the limbs
or the microvasculature that irrigates the eyes. At the
characteristic frequencies of blood flow, blood exhibits
properties of a viscoelastic fluid, with a viscosity and
a relaxation time approximately constant, which allows
treating it as a Maxwell fluid.

The effect of obstructions on a rigid vessel network un-
der inlet pulsatile pressure can be obtained analytically
for rigid vessel networks, [6]. The effective response of
the network, which is related with its resistance to flow,
is obtained to be a function of the morphology of the
network, the fluid properties and frequency.

The presence of obstructions hinders fluid flow, and
its impact depends on the position of the obstruction
within the network and on the network morphology. For
example, for equal vessel networks obstructions have a
stronger effect when located at the network entrance. On
the other hand, for a network that follow Murray’s law,
the effect is stronger when they are located at the outlet
of the network.

For a rigid network, the effect of obstructions can be
quantified in terms of a global relation for the effective
response of the network [6], introduced by [4]. The effec-

tive response gives a relation between the total pressure
drop across the network and the total flow, which can
be calculated in terms of the network morphology, and is
independent of the pressures imposed at the boundaries.
A new model for the flow along a vascular vessel which
includes the elasticity of the vessel walls has been de-
veloped recently[7]. The model leads to a linear system
of equations in frequency domain that predicts the flow
and pressure along a vessel network. This new model has
been validated with 3D models and uses in-vivo measured
inflow as a boundary condition.

The aim of this project is to analyse the flow and pres-
sure of a vascular vessel network in the presence of ob-
structions by taking into account the elasticity of the ves-
sels. We first consider a symmetrically bifurcating elastic
vessel network without obstructions and characterize the
flow and pressure along the whole network. An oscilla-
tory pressure at the inlet and zero pressure at the outlet
is applied. We compare the flow properties in such a net-
work with the ones in a network of equal morphology but
composed of rigid vessels. An effective response of the
network to the pulsatile forcing, which relates the flow
along the network with the pressure gradient, is defined
as a generalization of the effective dynamic response of a
rigid network[5]. Those responses are used as reference to
evaluate the impact that obstructions have. We analyse
the effect of obstructions when placed at different levels
of the network. Two types of networks are considered: a
first case in which all vessels are identical and a second
case, in which radii are given by Murray’s law.
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II. METHODS

A. Network and obstructions models

We use a model which has been recently introduced
in order to study viscoelastic flow through a network of
tubes [4]. It consists of a tree-like network in which ves-
sels bifurcate always into identical vessels in such a way
that, at each bifurcation step, changes of the vessels radii
and lengths are allowed. Vessels belonging to the same
level are labelled with the same index and have the same
radius and length. Counting starts at the outer level,
consisting on a main branch and continues to the inner
levels, resulting of consecutive bifurcations. The network
is characterized, therefore, by the number of levels, N ,
and the cross-sectional area, Ai, and length, li of each
level i.

We consider obstructions to occur at half of the vessels
at a given level of the network, n. Although this choice
is not realistic for blood vessel networks, it provides a
systematic way of comparing equivalent obstructions at
different levels

In the medical and biological literature, obstructions
are characterized by the fraction, f, of cross sectional
area which is obstructed. Accordingly to this notation,
the obstructed vessels have a cross sectional area Anobs =

(1 − f)An and an effective radius rnobs =
√

(1− f)rn,
where An and rn are the area and the radius of the un-
obstructed vessels of level n respectively. Given the sym-
metry of the network, flow through the whole network
can be characterized by considering two different types
of paths. An unobstructed path, which goes from the first
to the last level without going through the obstruction,
and an obstructed path, in which an obstructed vessel is
crossed at some point. We refer to this two types of paths
with subindices unobs and obs respectively. A scheme of
the network can be seen in Fig. 1.

FIG. 1: Scheme of a network with obstructions at level
n.

B. Mathematical method: GDEM

The mathematical model used is the GDEM (Gener-
alized Darcy’s Elastic Model) [7],[8]. It is based on a
generalized Darcy’s model for rigid vessels, and it gives
equations for the flow and pressure along a vessel net-
work.

Each blood vessel is modelled as a deformable imper-
meable tube of cylindrical shape. Blood is considered to
be a Maxwellian fluid [9] of density ρ, viscosity η and
relaxation time tr. Non-slip boundary conditions are im-
posed at the average wall position, r. The flow, q̂, in
frequency domain, is given by a dynamic Darcy’s law for
a Maxwellian fluid. Such flow is defined as a velocity av-
eraged over the cross sectional area, A, times this cross
sectional area, A, and it is given in eq. (1) .

q̂ = −AK(ω)

η

∂p̂

∂x
. (1)

Here, K(ω) = − η
iωρ

[
1− 2J1(βr)

βrJ0(βr)

]
is the dynamic per-

meability, a measurement of the resistance to blood flow.
J0 and J1 are Bessel functions of order 0 and 1 respec-
tively and β2 = ρ

η (trω
2 + iω). Hats over hemodynamic

quantities denote their Fourier transforms.
The second assumption is that vessel walls are linear

elastic tubes which follow Hooke’s law. This assump-
tion gives an expression relating changes in pressure with
changes in the cross sectional area,which coupled to the
axial velocity by conservation of mass leads to eq. (2)

−iωCp̂+
∂q̂

∂x
= 0. (2)

C = 3πr3

2Eh is the vessel compliance, where E is the Young
modulus and h is the vessel wall thickness. E is calcu-
lated using

E = 3ρc2r/(2h), (3)

being c the pulse wave velocity, given (in m/s) by the
empirical relationship c = 13.3/(2r)0.3 [10], where r mea-
sured in mm. The rigid limit is recovered making C = 0.

Eqs. 1 and 2 yield an harmonic oscillator equation for
pressure in frequency domain,

∂2p̂

∂x2
= −k2

c p̂, (4)

with k2
c = iωCη

AK(ω) . Solving eq.4 with boundary conditions

pin and po for inlet and outlet pressure respectively yields
the following analytical expression for the pressure:

p̂(x) = p̂incos(kcx) +
p̂o − p̂incos(kcl)

sin(kcl)
sin(kcx), (5)

which substituted in eq. (1) leads to an analytical ex-
pression for the flow:
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q̂(x) = M

(
p̂insin(kcx)− p̂o − p̂incos(kcl)

sin(kcl)
cos(kcx)

)
,

(6)
where M2 = iωCAK(ω)/η.

FIG. 2: Nodes connection.

Now we consider a network composed by different ves-
sels connected, each of them fulfilling eqs. (1)-(7). A
system of equations can be constructed using eq. (6)
for the flow at each level and imposing flow conservation
at the nodes. We define a node S as the mathematical
point where bifurcation from level j to level j + 1 hap-
pens as shown in Fig. 2. Flow conservation is expressed
as q̂jo = 2q̂j+1

in . Making use of eq. (6):

M j

(
p̂[S−1] − p̂[S]cos(kjc l

l)

sin(kjc ll)

)
=

−2M j+1

(
p̂[S+1] − p̂[S]cos(kj+1

c lj+1)

sin(kj+1
c lj+1)

)
, (7)

where pj(x) and qj(x) denote pressure and flow of a vessel
of level j, sub indices in and o indicate the inlet and
the outlet of the vessel respectively and p[S] indicates
pressure at node S. Eq. (7) must be fulfilled in all the
nodes of both the obstructed and the unobstructed path.
At j = n− 1, vessels after the bifurcation have different
effective cross sectional area due to the obstruction in
one of them. Therefore, we must consider that the flow
is different between them: q̂jo = (q̂j+1

in )unobs + (q̂j+1
in )obs,

which gives:

Mn−1

(
p̂[S−1] − p̂[S]cos(kn−1

c l)

sin(kn−1
c ln−1)

)
=

−
[
Mn

(
p̂[S+1] − p̂[S]cos(knc l

n)

sin(knc l
n)

)]
unobs

−
[
Mn

(
p̂[S+1] − p̂[S]cos(knc l

n)

sin(knc l
n)

)]
obs

, (8)

where Mn and knc of the obstructed path are computed
using the effective radius rnobs. Application of eqs. 7 and
8 to the 2N-n-1 different nodes of the system (n-1 be-
fore the obstruction and twice N-n-1 from the obstruction
to the outlet, both for the obstructed and unobstructed
bath) and taking into account that p[S−1] = pin for at

first node and that p[S+1] = po at the last, leads to a
linear system of equations for pressure at the nodes in
the Fourier domain. pinandpo are known. We solve the
system numerically for different frequencies ω. Once the
pressure at the nodes is known, pressure and flow as a
function of the position, x, for each vessel can be obtained
by making use of eqs. 5 and 6.

The boundary conditions are: pulsatile forcing at the
inlet and zero pressure at the outlet:

pin(t) = ∆p0cos(ω0t) (9)

po(t) = 0, (10)

where ∆p0 is the magnitude of the oscillations at the inlet
and ω0 is its angular frequency of oscillation.

C. Parameters of the networks

Hemodynamics through a vessel network is highly af-
fected by its morphology. We consider two models for
the networks.

The first model that we consider has all the same
length and cross-sectional area in all the vessel, indepen-
dently of the level at which they are located. We refer
to this network as the equal vessel network. It could be
of interest for microfluidic elastic tubes studies. Further-
more, it can be found in the vascular system of mammal,
at the arteriole level. We take a network of 11 levels with
vessels of the size of the typical arterioles of a dog, of ra-
dius r = 10−5m and length l = 2·10−3m [16]. In order to
appreciate the effect of the elasticity of the vessel walls,
we take a high enough elasticity and refer to it as the
elastic case, with a Young modulus E = 105Pa. We also
consider the elasticity that such network would have in a
biological system, according to eq. (3). Young modulus,
E, of the vessel walls in biological conditions decreases
with r, according to eq. (3) and refer to it as the real
case. However, E is obtained to be of the order 107 Pa,
and at such low elasticity the hemodynamics are basi-
cally those of a rigid network. We also compute the rigid
case as a reference. We show graphics for both the rigid
and the elastic cases, the real case is omitted, although
the differences with the rigid case are commented.

The second model is a network which follows Murray’s
law. It considers that, at each node, when a vessel (which
is called the parent vessel and have radius rp) bifurcates
in two vessels (called the daughter vessels of radii rd1 and
rd2), rp, rd1 and rd2 fulfil the relation r2

p = r2
d1 + r2

d2. In
our case, in which the daughter vessels are equal, making
rd1 = rd2 leads for the following relation

ri =

(
1

2

)(i−1)/3

r1. (11)

Murray’s law was first derived from minimization of the
energy needed in order to keep circulating in a vascular

Treball de Fi de Màster. 3 Barcelona, June 2016



Flow in elastic networks subject to pulsatile forcing Laia González Mena

system [11]. Later physiological studies have validated
the agreement of Murray’s in vascular systems of mam-
mals and even for water transport in plants [12]-[14]. We
study a network that goes from the aorta to the capil-
laries taking the radii and length of a typical dog, which
needs of N =29 levels: r1 = 5 · 10−3m, rN = 8 · 10−6,
l1 = 0.4 m, l29 = 10−3 m. For the lengths of the vessels,
we adjust a power law that goes from l1 to l29.

We use parameters of normal dog blood [16]: ρ =
1050kg/m3, η = 1.5 · 10−2kg/(m · s), tr = 10−3s. We
work at the frequency of the resting heart rate of a dog,
ω0 = 2π1.5Hz.

D. Total flow

We define the total flow at a given position as the sum
of the flows that go through all the vessels at that po-
sition. For example, at level 3 in the network, we have
4 vessels. Accordingly, the total flow at the inlet of the
third level, is four times the flow at the inlet of a vessel
of the third level. In general, for level j, the total flow at
position x is

Qj(x) = 2j−1qj(x), (12)

where qj(x) is the flow that goes through a single vessel
of level j. The total flow is a quantity that must be con-
tinuous in order to fulfill mass conservation. In the rigid
case, it must be, in addition, constant along the whole
network, given that it is constant along every vessel.

E. Effective response function

In rigid networks, flow along the whole network is com-
monly described by means of the effective dynamic re-
sponse function, χ(ω), which is a measure of the flow
that goes through the network in relation with the pres-
sure difference between the inlet and the outlet. It is
introduced by integration of the Darcy’s law, as we ex-
plain next.

Integration of eq. (1) along a vessel leads to q̂i =

−KiAi∆p̂i
ηli

(for a rigid network, eq. (2) becomes ∇q̂i = 0,

so qi is constant along x) . Taking into account that
the total pressure drop of the whole network is given by
the sum of partial pressure drops at each level and that
flow is conserved (qi = 2qi+1), the following relation is
obtained:

q̂1 = −χ(ω)∆p̂(ω)

ηL
, (13)

where χ is defined as

1

χ
=

1

L

N∑
i=1

li
2i−1AiKi

. (14)

q1 of eq. (13) is the flow at the inlet, but given flow
conservation and that flow is constant along each vessel it
is the total flow at any of the network, q1 = Qi ≡ 2i−1qi.

For a general elastic network, we can still use a global
response function relating flow and pressure difference by
making a remark on the flow. However, eq. 14 does not
hold anymore. In eq. (13), q1 is a good global measure,
since the total flow, Qi is constant through the whole
network. On an elastic network, however, Q is not con-
stant anymore. We use instead of q1, the average flow
along the network:

< Q̂ > =
1

L

L∫
0

Q̂(x)dx =
1

L

N∑
i=1

li∫
0

2i−1q̂i(x)dx =

=
1

L

N∑
i=1

2i−1li < q̂i >,

where < q̂i >= −AiKi

ηli
∆p̂i, using eq. (7).

We define the global response function for an elastic
network as:

χ = −ηL < Q̂ >

∆p̂
. (15)

In the limit of a rigid network, eq. (16) coincides with
the deffinition for a rigid network in eq. (13).

We also introduce a measure of the heterogeneity of
the flow along the network, σ(χ).

σ(χ) = − ηL
∆p̂

√√√√ N∑
i=1

(< Q̂i > − < Q̂ >)2, (16)

which is a measure of how far is a network from its rigid
equivalent. For a rigid network, σ(χ) = 0. The hetero-
geneity is measured in the same units as χ, so the ratio
σ(χ)/χ is the relative uncertainty in the measure of χ.

III. EFFECT OF ELASTICITY ON AN
UNOBSTRUCTED NETWORK

In Figs. 3a, 3c we plot, for an equal vessel network, the
pressure profiles for the rigid and the elastic cases, respec-
tively. Each line corresponds to a different time, which
is measured as function of the period of oscillation of the
inlet pressure, T = 2π/ω0, and each color to a different
level in the network. In both cases, the pressure profile
goes to zero when approaching the outlet, decaying faster
near the inlet. At t = 0, in 3c, a little bump is observed
near the inlet and the lines at each level are not strictly
straight. In Fig. 3a, however, pressure is always either
monotonically increasing or decreasing from the inlet to
the outlet, depending on the time, and the pressure gra-
dient along each level is constant. Figs. 3b, 3d show the
time evolution of the pressure. Each color corresponds
to a different node, located at the corresponding color
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. Equal vessel network

(a) Rigid. p(x) (b) Rigid. p(t)

(c) Elastic. p(x) (d) Elastic. p(t)

(e) Amplitude of p(t)

FIG. 3: Pressure for an equal vessel network. At the
top, (a-b), for a rigid network (and the realistic case, as
it is deffined in section II.C). Below, (c-d), for an elastic
network. (a), (c): pressure profile along the network at

three different times. (b), (d): time evolution of the
pressure at the inlet and each node. Each color

corresponds to the node located at the corresponding
position in (a) and (c). (e): Amplitude of the

oscillations of the pressure as a function of the position
for the rigid, real and elastic cases in a blue solid,
orange dashed and green dotted lines, respectively.

in the pressure profiles. Fig 3d shows a phase difference
between the oscillations of the pressure, whereas in Fig
3b all nodes oscillate in phase. In Fig.3e, we compare
the amplitude pressure oscillations along the network for
the three different cases of elasticity. They all start at
110Pa, in accordance with the inlet boundary condition
and rapidly decay to zero. The elastic case decays faster
than the elastic and the real cases, which are coincident.
The real case has not been represented in Figs. 3a-d,
since the effect the elasticity has such a low impact that
no difference can be appreciated from the rigid case. We
conclude, that the effect of the elasticity on the pressure
is a faster decay along the network and a difference of

Network that follows Murray’s law

(a) Rigid. p(x) (b) Rigid. p(t)

(c) Elastic. p(x) (d) Elastic. p(t)

(e) Amplitude of p(t)

FIG. 4: Same graphics for pressure as in Fig.3 for a
Murray’s network.

phase between its oscillations at different points of the
network.

In Fig. 4, we make the same analysis as in Fig. 3 for
a Murray’s network. Some of the effects of the elasticity
on a Murray’s network are the same as those observed
for the equal vessel one. A curvature of the lines along
a vessel in Fig. 4c instead of straight lines for the rigid
case in Fig. 4a and a phase difference of the oscillations
at the different nodes in 4d instead of the oscillations in
phase of the rigid case in 4b. Some other features of the
pressure along a Murray’s network differ from those of
the equal vessel one. Fig. 4e shows that the amplitude
of the pressure along a rigid network decays very slowly
with a constant slope with x along the first levels of the
network, which is about the 90% of the total length of
the network, and that it drops fast to zero at the other
levels. The curve for the elastic case of the pressure os-
cillation amplitude, however, is is increasing for the two
first levels and then slowly decreasing, showing a maxi-
mum of the pressure amplitude between the second and
the third levels. At the very end of the network, pressure
amplitude sharply goes to zero, in the same way as for
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the rigid case.

Equal vessel network

(a) Rigid. Q(x). (b) Rigid. Q(t).

(c) Realistic. Q(x). (d) Realistic. Q(t).

(e) Elastic. Q(x). (f) Rigid. Q(t).

(g) Amplitude of Q(t).

FIG. 5: Total flow, Q, of an equal vessel network (eq.
(12)). (a-b), for a rigid network,, (c-d), for a realistic

network, (e-f) for an elastic network. (a,c,e): Q profile
along the network at three different times. (b,d,f): time
evolution of the total flow at the inlet (blue) and at the
outlet (orange) of the network. (g): Amplitude of the
oscillations of Q as a function of the position for the

rigid, real and elastic cases in a blue solid, orange
dashed and green dotted lines, respectively.

In Fig. 5, we present graphics for the total flow, Q,
for the equal vessel network. In Figs. 5a, 5c, 5e we plot
the profile of Q for the rigid, the realistic and the elastic
cases, respectively. Each line corresponds to a different
time and each color to a different level in the network.
For the rigid case in Fig. 5a, Q is constant along the
network at any time, consistently with theory. For the
elastic case in 5e, conversely, Q decays to nearly zero

Network that follows Murray’s law

(a) Rigid. Q(x) (b) Rigid. Q(t)

(c) Elastic. Q(x) (d) Elastic. Q(t)

(e) Amplitude of Q(t).

FIG. 6: Same graphics for the total flow, Q, as in Fig. 5
for a Murray’s network.

after some oscillations. The realistic case differs slightly
from the rigid case, showing a slope for t = 0. Figs. 5b,
5d, 5f show the time evolution of Q at the inlet, in blue,
and the outlet in orange. In Fig. 5b, for the rigid case,
Q at the inlet and the outlet coincide exactly. In Fig. 5f,
however, Q at the inlet is larger than in the rigid case
and at the outlet oscillates very close to zero (notice the
orange line almost overlapping the x axis). In fig. 5f a
little difference of phase between the inlet and the outle
total flow can be appreciated. In Fig. 5g, the amplitude
of the oscillations of Q along the network are compared,
for the rigid and the elastic cases. Total flow amplitude
at the inlet of the elastic network is about the double
than in the rigid one and it decays monotonically, more
rapidly near the inlet and softly when approaching the
outlet. For the rigid and the real cases, however, total
flow amplitude is kept constant along the whole network.
Elasticity in equal vessel networks leads to absorption of
the incoming pressure wave rather than transmitting it.

In Fig. 6, we make the same analysis as in Fig. 5 for
a Murray’s network. As well as for the pressure, some
of the effects of the elasticity on the total flow of a Mur-
ray’s network are the same as those observed on the equal
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vessel one and some are different. For the rigid case, Q
profile is constant along the network in Fig. 6a, whereas
for the elastic case, in Fig. 6c, the lines curve towards
the x axis when approaching the outlet. The time evo-
lution of Q of the rigid network (Fig. 6b) at the inlet
and the outlet of the network coincide. For the elastic
network, however, Fig. 6d, the amplitude of oscillation
and the inlet is larger than at the outlet and there is a
phase difference between them. The main difference with
respect to the equal vessel network can be seen in Fig. 6
(e). There, the amplitude of the oscillations of the total
flow decays approximately linearly with x and remains
always larger than in the rigid case.

(a) Equal vessel (b) Murray

FIG. 7: Absolute value of χ(ω) for the equal vessel
network, (a), and the unobstructed network, (b). χ is
presented in solid blue lines and σ(χ) is dashed orange
lines. χ for a rigid network is also included in dotted

black lines as a reference.

In Fig.7, the absolute value of the effective response
function is presented for the equal vessel network, (a),
and for Murray’s, (b). For both networks, the curve for
the elastic network coincides with the rigid case at ω = 0,
where σ(χ) = 0, which is consistent with the equations.
In Fig.7a, σ(χ) is larger than χ except for low frequencies
(below 5s−1), and in Fig.7b, for the Murray’s network is
of the order of χ. In both cases such a large σ reveals
a high heterogeneity of the flow along the network. For
the equal vessel network, Fig.7a, except for those low fre-
quencies at which the network behave similarly to its cor-
responding rigid network, the χ becomes nearly constant
with ω and remains lower than that of a rigid network.
σ grows smoothly, being several times larger than χ.

For a Murray’s network, Fig.7b, the behaviour of both
χ and σ(χ) rapidly differs from the rigid case with ω.
Both χ and ω(χ) are higher than χ of the rigid network
and oscillate with omega. Their highest value is found
between ω = 10s−1 and ω = 20s−1.

IV. EFFECT OF OBSTRUCTIONS

We evaluate the response function of the network,χ
and its root mean square deviation (RMSD), σ(χ). χ is
given in terms of the response of the same unobstructed
network, χun and σ(χ) in terms of χ, so that it can be
interpreted as a relative error. Both quantities are eval-
uated at frequency ω0.

In Fig. 8, we present the results for the equal ves-
sel network. Since the imaginary part of the response
function is one order of magnitude lower than the real
part, we focus on the real part of χ and σ. The points,
joined by solid lines, belong to the elastic network and
the dashed lines to the rigid one. Colours blue, orange
and green correspond to a level of obstruction, f , of the
30%, 60% and 90%, respectively.

Equal vessel network with obstructions

(a) (b)

FIG. 8: Real part of the response function, χ, in (a);
and its relative error, σ/χ, in (b), for an obstructed

elastic network of equal vessels as function of the level
at which obstructions occur. Colours blue, orange and
green correspond to 30%, 60% and 90% of obstructed

cross section, respectively. Dashed lines in (a)
correspond to the rigid case. σ(χ)/χ of the elastic

network. For a rigid network, σ(χ)/χ = 0, so the rigid
case is not represented in (b).

In Fig. 8 (a), we see that when obstructions are placed
before the fifth level, χ increases with nobs. It is re-
markable that when obstructions are placed in the mid-
dle levels,5th and 6th, the response function is larger
than that of an unobstructed network. Conversely,
when obstructions are placed at the inner levels, above
5, Re[χ]/Re[χun] decays with nobs to a value near 1.
The effect of obstructions is higher the higher the per-
centage of obstruction is and therefore the curve for
f = 90% is always the furthest from 1, i.e. it is the
highest when Re[χ]/Re[χun] > 1 and the lowest when
Re[χ]/Re[χun] < 1. Lines for different f cross at some
points, near nobs = 3 and nobs = 8. When obstructions
are located between the 4th and the 8th levels, χ of an
elastic network is larger than without, in opposition to
the rigid network, in which χ/χun is always less than
1. In Fig. 8 (b), we see that σ(χ)/χ is about twice the
value of χ. Given this high heterogeneity of the response
along the network, the average response of the network
could not be representative of what happens at each level
and further study focussing on local response may be of
importance to understand the physical origin of the max-
imum.

In Fig. 9, the same analysis is done for the Murray’s
network. In this case, the real and the imaginary part
of the response function happen to be of the same order
of magnitude and to have a similar dependence on nobs.
We present therefore the absolute value of χ and σ, be-
ing representative of both their real and imaginary parts.
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Results for the 10% of obstructions and for the 60% of
obstructions are plotted in Figs. 9 (a-b) and (c-d) respec-
tively. The shape of the curves in (a) and (c) are similar,
but in (c) the effect of the obstructions is stronger than
in (a) by a factor 10. χ is, in general, lower than χun.
χ/χub exhibits a peak at level 20 and stays close to 1 until
the deepest levels, where obstructions have their least im-
pact. Therefore, the effect of the obstructions is highest
when they are placed at the outer levels. When they are
close to level 20, the average response is mainly the same
as when there are no obstructions. It also coincides with
a peak of σ(χ), Fig. 9 (b) and (d). Therefore, at level 20
is where χ is closest to χun and also where the response
of the network is more heterogeneous. The effect of a
rigid network is opposite: obstructions have their great-
est effect when increasing nobs, being maximum at the
deepest level for f = 10% and near level 23 for f = 60%.
. In Fig. 9 (b) and (d) we see that the value of σ/χ is
between 3.60 and 3.65 for f = 10% and between 3.5 and
4 for f = 60%.

Murray’s network with obstructions

(a) (b)

(c) (d)

FIG. 9: Absolute value of the response function for an
obstructed network that follows Murray’s law. (a) and

(b): 10% of obstructed cross section, (c) and (d): 60% of
obstructed cross section. (a) and (c): Re[χ]/Re[χun]. In
solid lines with dots the response of an elastic network
and in dashed lines the rigid case. (b) and (d): σ(χ)/χ
of the elastic network. For a rigid network, σ(χ)/χ = 0.

In Figs. 10 and 11, we analyse in more detail the im-
pact that the position of the obstruction in the network
on the hemodynamics of the network. We take the par-
ticular case of nobs at a level near the inlet (at levels 2 and
3 for equal vessels and Murray, respectively) and near the
outlet (at levels 10 and 20 for equal vessels and Murray,
respectively). We plot the amplitude of oscillation of the
pressure of each node and the average flow amplitude
of oscillation at each level. Since the flow is reduced at
each level due to flow conservation at the bifurcations,
we multiply, at each level i, the flow amplitude by a fac-

tor 2i−1 in order to compare the flow between different
levels. Results are presented both along the obstructed
and the unobstructed path and they are compared with
the corresponding unobstructed network.

From Fig. 8, we know that the equal vessel network
has a minimum response for nobs = 2. In Fig. 10, the
amplitude of oscillation of the pressure at each node, (a),
and the average flow amplitude at each level, (b) are pre-
sented in logarithmic scale. It is clear that the effect of
obstructions on the obstructed path is larger than on the
unobstructed path for both pressure, (a), and flow, (b).
The effect of the obstruction along the obstructed path
is clear in both Fig. 10a and 10b. Pressure and flow
along the obstructed path are about one order of mag-
nitude below their values for an unobstructed network.
Conversely, the value of those magnitudes along the un-
obstructed path are over the values of the unobstructed
network by less than a factor two. The ratio between
the obstructed and the unobstructed path is kept along
the levels. In (b), we see that, even though the average
total flow does not differ much from the average flow of
an unobstructed network, the obstruction has severely
hindered flow along the obstructed path.

Equal vessels
f = 60%, nobs = 2

(a) (b)

f = 60%, nobs = 10

(c) (d)

FIG. 10: Pressure and flow profiles of a network of
equal vessels for 60% os obstructions at level 2 and level
10, in (a-b) and (c-d) respectively. (a,c): Amplitude of

oscillation at each bifurcation. (b,d): amplitude of
oscillation of the flow averaged along a vessel of level i
multiplied by 2i−1. In blue, the unobstructed path, in

orange, the obstructed path and in dotted black lines de
case for the same unobstructed network. In (b), the

green line corresponds to the average total flow
(between the obstructed and the unobstructed paths)

and the horizontal dashed black line is the average flow
amplitude along the whole network.

For a network that follows Murray’s law, we analyse
networks with obstructions at two different levels for
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f = 60%. At level 3, in Fig. 11, which we know to have
the lowest response from Fig. 9, and at level 20, which
is the less affected by the obstructions on the average
response function. Results are presented in linear scale.
Flow and pressure on a network that follows Murray’s law
is affected by obstructions in a similar way as the equal
vessel network is: both the pressure amplitude and the
average amplitude flow at each level along the obstructed
path differ more from the unobstructed network quanti-
ties than the unobstructed network than those quantities
along the unobstructed path. Flow and pressure at the
obstructed path are diminished and at the unobstructed
path are enlarged by the obstructions. The magnitude
of the variations, however, is much lower in the Murray’s
network, i.e for nobs = 3 (Fig. 11), pressure is dimin-
ished by a factor 0.7 at the obstructed path and enlarged
by a factor 1.1 at the unobstructed path with respect to
the unobstructed network and similar values are found
for the average flow amplitude. It is also noticeable a
decrease of the flow amplitude at the outer levels of the
network, before the obstruction. Therefore, the effect of
the obstructions is not local, but affects the whole net-
work. Notice that the average total flow (Fig. 11 (b),
in green) is always below the flow of the unobstructed
network.

Murray
f = 60%, nobs = 3

(a) (b)

f = 60%, nobs = 20

(c) (d)

FIG. 11: Same graphics for pressure and flow profiles of
a network that follows Murray’s law for 60% of

obstructions at level 3 and level 20, (a-b) and (c-d)
respectively.

V. CONCLUSIONS

Vessel wall elasticity has a profound impact in the pres-
sure and flow distribution along a tree-like network with
respect to the rigid case. When an oscillatory pressure

is applied at the inlet, the effect of the elasticity on the
transmission of the perturbation to the outlet highly de-
pends on the geometry of the network.

If we consider a network of equal vessels, the amplitude
of the pressure oscillations along the network drops faster
when going to the inner levels than in a rigid network.
In the rigid case, the oscillatory flow at the inlet, con-
sequence the inlet pulsatile forcing, is fully transmitted
to the outlet, where there is no pressure. On an elastic
network, however, flow at the outlet is diminished with
elasticity and, for elastic enough networks, no flow oscil-
lations are measured at the outlet, the perturbation has
not been transmitted to the outlet. It can be understood
as the elasticity of the vessel walls absorbing the energy
of the inlet perturbation. Since the pressure has rapidly
gone to zero when going deeper in the network, there is
no pressure gradient to originate the flow. Elasticity has
a strong effect at ranges of elasticity higher than the typ-
ical elasticity of the dog arterioles, for example for elastic
microfuidic experiments.

For a network that follows Murray’s law, in which the
outer vessels are wider and longer and their size is re-
duced when going to the inner levels, the perturbation
at the origin is enlarged along the network by elastic-
ity. Pressure oscillations grow when going deeper and
they produce an oscillatory flow which is larger along the
whole network than if the vessel walls were rigid. Just
at the very end of the network, pressure oscillations drop
to zero. Flow oscillations of an elastic network of these
characteristics are larger at the inlet than at the outlet
of the network, they monotonically decrease when going
deep across the levels. Therefore, part of the energy of
the oscillations at the inlet is absorbed by the elasticity
of the vessel walls.

A global response function of an elastic network can
be introduced as a generalization of the response func-
tion of a rigid network, relating the average flow along
the network with the pressure difference at its extremes.
Additionally, a measure of the response function hetero-
geneity along the network, which can be several times
larger than the response function itself, complements the
information given by the response function.

On a network of equal vessels, the impact of obstruct-
ing part of the vessels at a given level is to decrease the
response of the network. That effect, is larger the outer
the obstruction are and have their lowest effect when they
are placed at the innermost level. An elastic network of
the same characteristic becomes more affected by the ob-
structions at the outer level and not as much at the mid-
dle and inner ones. It must be taken on account, how-
ever, the heterogeneity of the response function along the
network.

On a network that follows Murray’s law, the behaviour
of the response function with the place at which obstruc-
tions occur is basically inverted with respect to the same
rigid network. Instead of having the largest effect of re-
ducing the response of the network at the inner levels and
weakly depending on the place at which they occur at the
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outer and middle levels, the response function is mono-
tonically increased with the level at which obstructions
are. Therefore, the greatest effect of the obstructions is
at the outer levels, in a similar way to the equal vessel
network.

Local flow study of the flow along a network with ob-
structions show that the effect of the obstruction is not
local but affect the flow of the whole network. The most
affected part is the path after the obstruction, where flow
is diminished. Flow along the unobstructed path from
the level of the obstruction until the outlet, however be-
comes enlarged. Finally, flow before the obstruction is
also modified, being diminished near the obstruction and
enlarged close to the inlet. The equal vessel network has
been shown to be more sensible than the Murray’s net-
work to the same level of obstruction.

Further study of the impact of obstructions on the net-
work response to a pressure gradient needs to take into
account the heterogeneity of the flow along the network.
The ratio between flow along the obstructed path and at

its corresponding unobstructed network has been found
to be constant along the network and could be a starting
point for later studies.
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VI. APPENDIX

For an unobstructed network of equal vessels, we find
a couple of relations which must be identically fulfilled.
The first relation can be obtained by integrating eq. (1)
along a trajectory, i.e. integrating over positions along a
vessel from the first to the last levels. Continuity of the
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pressure at the bifurcations is imposed.

< q̂ >traj =
1

L

N∑
i=1

∫ li

0

q̂i(x)dx = (17)

= −
N∑
i=1

∫ li

0

AK(ω)

ηL

∂p̂i(x)

∂x
dx = −KA

η

∆p̂TOT
L

,

where ∆p̂TOT is the pressure difference between the
inlet and the outlet of the network, in Fourier do-
main. Eq. (17) permits to define a quantity: χ1(ω) =
<q̂>traj/∆p̂TOT

KA/(ηL) For an unobstructed network, χ1(ω) = 1

and for an obstructed network, it gives how the response

of the network deviates from the unobstructed one. No-
tice that χ1(ω) = 1 just for a network of equal vessels, in
which K and A do not depend on the level.

The second relation can be obtained by applying eq.
(1) at the inlet and the outlet of the network and making
the difference of flows.

q̂outN − q̂in1 = −iω(
CN
k2
cN

∇p̂outN − C1

k2
c1

∇p̂in1 ) (18)

Eq. (18) leads to a second definition of the response of

the network: χ2(ω) = − q̂out
N −q̂in1

iω(
CN
k2
cN

∇p̂out
N − C1

k2
c1
∇p̂in1 )

Treball de Fi de Màster. 11 Barcelona, June 2016


