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Abstract

Streptococcus pneumoniae is the leading cause of vaccine-preventable deaths globally. The objective of this study was to
determine the distribution and clonal type variability of three potential vaccine antigens: Pneumococcal serine-rich repeat
protein (PsrP), Pilus-1, and Pneumococcal choline binding protein A (PcpA) among pneumococcal isolates from children
with invasive pneumococcal disease and healthy nasopharyngeal carriers. We studied by Real-Time PCR a total of 458
invasive pneumococcal isolates and 89 nasopharyngeal pneumococcal isolates among children (total = 547 strains)
collected in Barcelona, Spain, from January 2004 to July 2010. pcpA, psrP and pilus-1 were detected in 92.8%, 51.7% and
14.4% of invasive isolates and in 92.1%, 48.3% and 18% of carrier isolates, respectively. Within individual serotypes the
prevalence of psrP and pilus-1 was highly dependent on the clonal type. pcpA was highly prevalent in all strains with the
exception of those belonging to serotype 3 (33.3% in serotype 3 isolates vs. 95.1% in other serotypes; P,.001). psrP was
significantly more frequent in those serotypes that are less apt to be detected in carriage than in disease; 58.7% vs. 39.1%
P,.001. Antibiotic resistance was associated with the presence of pilus-1 and showed a negative correlation with psrP.
These results indicate that PcpA, and subsequently Psrp and Pilus-1 together might be good candidates to be used in a
next-generation of multivalent pneumococcal protein vaccine.
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Introduction

Invasive disease caused by Streptococcus pneumoniae is responsible

for more than 1.6 million childhood deaths worldwide every year

[1]. In certain developed countries, including Spain, despite

vaccination with a 7-valent conjugate vaccine against capsular

polysaccharide (PCV-7), pneumococcal pneumonia remains a ma-

jor cause of pediatric hospital admission [2,3,4]. PCV-7 is

composed of capsular polysaccharide from serotypes 4, 6B, 9V,

14, 18C, 19F, and 23F individually conjugated to diphtheria

CRM197 and has proved to be effective in preventing pneumo-

coccal disease caused by these serotypes in children [5]. PCV7 also

prevents invasive pneumococcal disease (IPD) in adult and non-

vaccinated children by an indirect effect (herd immunity) on

pneumococcal transmission [5,6]. Importantly, nowadays evi-

dence exists of the emergence of non-vaccine serotypes in children

and adults to occupy this vaccine-emptied niche, thereby partially

eroding the benefit of PCV-7 [3,7,8,9]. For example, in Spain

disease caused by serotype 19A was responsible for 13.5% of

pediatric IPD during the period 2000–2008, whereas in 2000, at

the time of introduction of PCV-7, serotype 19A only accounted

for 4.6% of pediatric infections [10]. The pneumococcus is also

a primary cause of otitis media and PCV-7 only slightly reduces

the rate of disease [11]. At present, more than 1,500,000 cases

occur annually in the United States, with an estimated cost of

440 million U.S. dollars [12]. Thus, pneumococcal disease

remains a major medical problem with an urgent need for an

improved vaccine.

Due to these limitations, other conjugate vaccines with a larger

number of serotypes have been recently commercialized. These

include a 10-valent conjugate vaccine (PCV10), which includes the

seven serotypes of PCV7 plus serotypes 1, 5 and 7F and PCV13

(PCV10 plus additional serotypes 3, 6A and 19A). These vaccines

will most likely continue to reduce the burden of invasive

pneumococcal disease and are becoming increasingly available

in underdeveloped countries due to efforts of institutions such as

The Bill and Melinda Gates Foundation through GAVI Alliance

[13,14]. However, due to the high cost of the conjugation process,

these vaccines are limited in the number of serotypes that can be

included in an affordable vaccine. The current cost for each dose

of PCV13 is $100–125, with three immunizations recommended.

An alternate vaccine strategy is the use of a serotype-

independent vaccine using conserved common pneumococcal

protein antigens. These might stand alone, or replace the
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diphtheria toxoid in the conjugate vaccine and thereby enhance

coverage of the existing vaccines. To date, numerous preclinical

studies have shown that different pneumococcal proteins confer

protection against pneumococcal challenge and that a combina-

tion of multiple proteins confers superior protection. The main

advantage of a protein vaccine is that protection would not be

serotype dependent and fewer antigen candidates could offer a

high coverage with a lower cost of manufacturing. For these

reasons, studies are warranted in determining if a next-generation

of a multivalent protein vaccine against pneumococcus is feasible

and desirable.

The objective of the present study was to determine the

distribution and clonal type variability of three novel potential

vaccine candidates: Pneumococcal serine-rich protein (PsrP), Pilus-

1, and Pneumococcal choline binding protein A (PcpA). PsrP is a

serine rich repeat protein (SRRP) previously demonstrated to be

responsible for lung-cell attachment and in vivo biofilm formation

[15,16]. Pilus is a long organelle that, like PsrP, extends beyond

the polysaccharide capsule and acts as an adhesin [17]. Finally,

PcpA is a choline-binding protein with a role in pneumococcal

adhesion and biofilm formation [18,19]. Determining the preva-

lence and distribution of these proteins in strains that cause IPD

and their correlation with disease and antibiotic resistance could

be of great value for future vaccine formulations.

Methods

Clinical Isolates
All pediatric invasive pneumococcal isolates characterized by

the Molecular Microbiology Department at University Hospital

Sant Joan de Deu in Barcelona, Spain from January 2004 to

December 2010 were included in this study. The department

performs molecular surveillance of pneumococci in Catalonia,

Spain. Clinical isolates were obtained from patients admitted to

Sant Joan de Déu Hospital and, since 2009, from patients attended

in 30 health centers throughout Catalonia region. In addition, we

also included eighty-nine pneumococcal strains isolated from

nasopharynx of healthy children during 2004–2008.

Serotyping and Antimicrobial Susceptibility
All isolates were serotyped by Quellung reaction at the National

Pneumococcus Reference Centre (Majadahonda, Madrid). Pneu-

mococcal isolates collected since 2009 were also serotyped by

Real-Time PCR (RT-PCR) using published protocols [20].

Serotypes were classified according to coverage of the existing

7,10, and 13-valent conjugate vaccines and their attack rate

according to the studies of Brueggemann et al. [21] and Sleeman

et al. [22]. Serotypes with high attack rate (those that are less apt to

be detected in carriage than in disease) included: 1, 4, 5, 7F, 9V,

14, 18C and 19A. Serotypes with low attack rate (that are less apt

to be detected in disease than in carriage) included: 3, 6A, 6B, 8,

9N, 10A, 11A, 12F, 13, 15A, 15BC, 16F, 17F, 19F, 20, 21, 22F,

23A, 23B, 23F, 24F, 27, 31, 33F, 35B, 35F, 37 and 38. Agar

dilution technique was used to determine the minimal inhibitory

concentrations (MICs) of penicillin and other antibiotics. Antibi-

otic susceptibility was defined according to the 2008 meningeal

breakpoints established by the Clinical Laboratory Standards

Institute [23]. Isolates with intermediate or high level resistance

were defined as non-susceptible.

Extraction of DNA
Genomic DNA was extracted from bacteria using Chelex-100

resin (BioRad Laboratories, Hercules, California, USA). Briefly,

pneumococci scraped from blood agar plates were suspended in

100 ml of PBS-buffer; 50 ml were transferred to a new micro-

centrifuge tube and vigorously vortexed with 150 ml of 20% w/v

Chelex-100 in PBS. The bacteria/resin suspensions were incubat-

ed for 20 minutes at 56uC followed by a 10-minute incubation at

100uC. After cooling and centrifugation, the supernatant was used

as a DNA template in PCR reactions.

Multilocus Sequence Typing (MLST)
Genetic characterization of pneumococci was performed using

MLST. In brief, internal fragments of the aroE, gdh, gki, recP, spi, xpt

and ddl genes were amplified by PCR using the primer pairs

described by Enright and Spratt [24]. PCR products were

sequenced using an ABI 3130xl GeneticAnalyzer (Applied

Biosystems). The sequences at each of the seven loci were then

compared with all of the known alleles at that locus. Sequences

that are identical to a known allele were assigned the same allele

number whereas those that differ from any known allele were

assigned new allele numbers. The assignment of alleles at each

locus was carried out using the software at the pneumococcal web

page: www.mlst.net. The alleles at each of the seven loci define the

allelic profile of each isolate and their sequence type (ST). Allelic

profiles are shown as the combination of 7 alleles in the order aroE,

gdh, gki, recP, spi, xpt and ddl. A clone is defined as a group of isolates

with identical allelic profile or ST.

Real-Time PCR Assay
We analyzed the nucleotide sequence of psrP, pilus-1 subunit rrgC,

and pcpA for primers in all publically available S. pneumoniae genomes

available through the United States National Center for Bio-

technology Information web site (http://www.ncbi.nlm.nih.gov/).

The primers and probe selected for psrP detection were: forward

primer: 59-CTTTACATTTACCCCTTACGCTGCTA; reverse

primer 39 CTGAGAGTGACTTAGACTGTGAAAGTG and

probe: FAM-CTGGTCGTGCTAGATTC (Quencher MGB).

These primers identified a conserved region within Basic Region

domain of PsrP. For pilus-1 detection the primers and probe were:

forward primer: 59-TTGTGACAAATCTTCCTCTTGGGA; re-

verse primer: 39-GTCACCAGCTGATGATCTACCA and probe:

FAM-CAGTGGCTCCACCTCC (Quencher MGB). These prim-

ers identified a conserved region within the structural subunit

protein RrgC encoded in the rlrA islet of pilus type 1. For pcpA

detection the primers and probe were: forward primer: 59-

GAAAAAGTAGATAATATAAAACAAGAAACTGATGTAGC-

TAAA; reverse primer: 39-ACCTTTGTCTTTAACCCAAC-

CAACT and probe: FAM-CTCCCTGATTAGAATTC (Quench-

er MGB). These primers identified a conserved region of N-terminal

fragment of PcpA. Finally, as a positive control and to test PCR

inhibitors and DNA quality, detection of ply gene by Real-Time

PCR was performed as previously described in all strains [25]. Ply

encodes the pneumolysin, a toxin found within all S.pneumoniae.

The reaction volume for each gene detected was a total of 25ml

and contained 5ml of DNA extract from samples or controls and

12.5ml 2X TaqMan Universal Master Mix (Applied Biosystems),

which includes dUTP and uracil-N-glycosylase; each primer was

used at a final concentration of 900 nM. The TaqMan probes

were used at a final concentration of 250 nM. DNA Amplification

was done performing universal amplification conditions: incuba-

tion for 2 min at 50uC (uracil-N-glycosylase digestion) and 10 min

denaturation at 95uC, 45 cycles of two-step amplification (15 s at

95uC, 60 s at 60uC). Amplification data were analyzed by SDS

software (Applied Biosystems). The reporter dye was measured

relative to the internal reference dye (ROX) signal to normalize for

non-PCR related fluorescence fluctuations occurring from well to

well. The cycle threshold (CT) value was defined as the cycle at

PcpA, PsrP and Pilus-1 of Streptococcus pneumoniae
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which the reporting dye fluorescence first exceeds the background

level.

Statistical Analysis
Statistical analysis was performed with the PASW software

package (version 17.0). Continuous variables were compared using

the t test (for approximately normally distributed data) or the

Mann-Whitney U test (for skewed data) and described as mean

values and standard deviations or median and interquartile range

P25–P75 (IQR) according to the presence of normal distribution.

Chi-square test or Fisher’s exact test (two-tailed) was used to

compare categorical variables. Comparison between groups was

performed by Kruskal-Wallis test. Statistical significance was set at

a P value of ,0.05.

Results

Strain Properties
Of the total 461 pediatric invasive pneumococcal isolates in our

library, 3 of them could not be recovered from stocks and were

thereby excluded from the study. As such, we examined a total of

458 invasive pneumococcal isolates and 89 nasopharyngeal

pneumococcal isolates among children (total = 547 strains).

The clinical syndromes were: pneumonia 257 (111 of them with

empyema), bacteremia 114, meningitis 68, arthritis 13, appendi-

citis 4, pericarditis 1 and peritonitis 1.

The most frequent serotypes detected among invasive isolates

were serotype 1 (n = 134), 19A (n = 84), 7F (n = 35), 5 (n = 34) and

14 (n = 19). Among carriers the most frequent serotypes were 19A

(n = 9), 6A (n = 9), 19F (n = 7), 15B (n = 6) and 23B (n = 6).

Figure 1. Prevalence of pcpA, psrP and pilus-1. (A) Prevalence for pcpA, psrP and pilus-1 alone and for their combinations (isolates with al least
one of the three combinations) in 458 pneumococcal isolates of patients with invasive pneumococcal disease (IPD) and in 89 pneumococcal isolates
of healthy nasopharyngeal carriers. (B) Prevalence of strains that carry all three proteins, and two of possible protein combinations including pcpA and
psrP, psrP and pilus-1, pcpA and pilus-1 among pneumococcal isolates of patients with IPD and healthy nasopharyngeal carriers.
doi:10.1371/journal.pone.0041587.g001

PcpA, PsrP and Pilus-1 of Streptococcus pneumoniae
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Among IPD isolates, the prevalence of serotypes included in the

commercialized conjugate vaccines PCV7, PCV10 and PCV13

were 14.2% (65 isolates), 58.3% (267 isolates) and 83.6% (383

isolates) respectively. The prevalence of serotypes included in the

three vaccines among isolates from the nasopharynx of healthy

carriers was 23.6% (21 isolates), 27% (24 isolates) and 50.6% (45

isolates).

With respect to clonal properties the most frequent clonotypes

among invasive isolates were ST306 (n = 107), ST191 (n = 31),

ST1223 (n = 25), ST304 (n = 22), ST276 (n = 17). A high variety of

clonotypes were detected in carriers (56 different clonotypes in 89

strains); the most frequent being ST2372 (n = 5), ST97 (n = 4),

ST42 (n = 3), ST63 (n = 3), ST180 (n = 3), ST838 (n = 3) and

ST2690 (n = 3). Finally, antibiotic susceptibility study was avail-

able in 543 of the 547 strains with 134 (24.5%) having diminished

penicillin susceptibility (MIC $0.12). The percentage of isolates

with diminished penicillin susceptibility was 23.4% (107 of 454)

among invasive isolates and 30.3% (27 of 89) among carriers.

Figure 2. Prevalence of pcpA, psrP and pilus-1 according to clinical syndrome among pneumococcal invasive isolates.
doi:10.1371/journal.pone.0041587.g002

Table 1. Prevalence of pcpA, psrP and pilus-1 according to antimicrobial susceptibility.

Antimicrobial agent pcpA psrP pilus-1

MIC Isolates % %Positive P %Positive P %Positive P

Penicillin

#0.06 409 75.3 90.2 ,.000 62.6 ,.000 8.8 ,.001

$0.12 134 24.7 100 17.9 34.3

Cefotaxime

#0.5 482 88.8 91.7 0.01 56.4 ,.000 9.3 ,.001

$1 61 11.2 100 13.1 60.7

Erythromicine

#0.25 415 76.4 90.6 0.001 58.3 ,.000 10.8 ,.001

$0.5 128 23.6 99.2 29.7 28.9

Tetracycline*

#2 409 75.9 91.4 0.07 58.9 ,.000 11.2 0.001

$4 130 24.1 96.2 28.5 27.7

Chloramphenicol**

#4 515 95.2 92.8 0.4 50.7 0.02 15.7 0.09

$8 26 4.8 88.5 73.1 3.8

The study was non-available in four* and six** isolates.
doi:10.1371/journal.pone.0041587.t001
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Overall Prevalence of PcpA, PsrP and Pilus-1
The individual prevalence of pcpA, psrP, and Pilus-1 in the 547

strains of our collection were 92.7%, 51.2% and 15% without

significant differences occurring between invasive and carrier

isolates: for pcpA 92.8% vs. 92.1%; P = 0.8, for psrP 51.7% vs.

48.3%; P = 0.5 and for pilus-1 14.4% vs. 18%; P = 0.3, respec-

tively. Given the high prevalence of pcpA the potential coverage

with at least one protein of a multivalent vaccine including these

three candidates would be high: 96.5% among invasive isolates

(442 of 458 isolates) and 94.4% among carriers (84 of 89 isolates).

Figure 1A shows the prevalence for each protein alone and for at

least 1 of the proteins in the specific combinations (PcpA/PsrP/

Pilus-1, PcpA/PsrP, PcpA/Pilus-1 and PsrP/Pilus-1). Notably, in

Figure 1B, we show that 96% of the invasive isolates carried at

least two of the three proteins, whereas 92% of the carrier isolates

did the same. Likewise, 6% of isolates carried all 3 proteins, (4%

and 8% of the invasive and carrier isolates, respectively). Thus, the

majority of individuals immunized with a vaccine composed of

these three antigens would have antibodies for at least 2 of these 3

proteins.

Prevalence Based on Clinical Symptom and Antibiotic
Resistance

The prevalence of pcpA among all strains was too high to have

any correlation with any clinical condition. In contrast, the

prevalence of psrP was significantly higher in patients with non

complicated pneumonia (58.2; %P,.001) or empyema (59.5%;

P,.001) than in children with bacteremia (40.4%). Inversely, the

prevalence of pilus-1 was greater in patients with bacteremia than

in patients with non-complicated (22.8% vs. 9.6%; P = 0.005) and

complicated pneumonia (11.7%; P = 0.04) (Figure 2). We also

observed significant differences in the prevalence of psrP and pilus-

1 according to susceptibility for different antimicrobials (Table 1).

Overall psrP was significantly more frequently detected in

penicillin, cefotaxime, erythromycin and tetracycline susceptible

isolates while pilus-1 and, to a modest level pcpA, were more

frequently detected in isolates non susceptible to these antimicro-

bials. In contrast, psrP was significantly more frequently detected in

chloramphenicol non-susceptible isolates.

Prevalence of pcpA, psrP and Pilus-1 According to
Serotype and Clonotype

Prevalence of these proteins was strongly associated with specific

serotype and clonotypes. Table 2 shows significant differences in

the prevalence of pcpA, psrP and pilus-1 according to serotype. pcpA

is highly prevalent in almost all serotypes, the exception being

serotype 3. pcpA was only detected in 7 of 21 isolates of serotype 3

(33.3%) vs. 500 of 526 non serotype 3 isolates (95.1%; P,.001).

Interestingly, for certain serotypes the prevalence of psrP was high

but occurred with an absence of pilus-1 or vice versa. For example,

the prevalence of psrP among 136 strains tested of serotype 1 was

80.1% (109 isolates) but pilus-1 was not detected in any strain of

Table 2. Prevalence of pcpA,psrP and Pilus-1 according to
serotype of isolates.

Serotype Isolates pcpA Pos % psrP Pos % pilus Pos %

Overall 547 507 92.7 280 51.2 82 15.0

1 136 132 97.1 109 80.1 0 0.0

19A 93 90 96.8 44 47.3 26 28.0

7F 36 36 100.0 4 11.1 0 0.0

5 34 28 82.4 30 88.2 0 0.0

6A 22 21 95.5 11 50.0 4 18.2

3 21 7 33.3 2 9.5 0 0.0

19F 20 16 80.0 13 65.0 6 30.0

14 19 19 100.0 1 5.3 16 84.2

6B 14 14 100.0 5 35.7 8 57.1

15B 13 13 100.0 10 76.9 2 15.4

9V 12 12 100.0 3 25.0 9 75.0

23B 12 12 100.0 1 8.3 0 0.0

24F 10 10 100.0 1 10.0 0 0.0

23F 10 10 100.0 1 10.0 0 0.0

10A 9 9 100.0 2 22.2 1 11.1

23A 6 6 100.0 4 66.7 0 0.0

18C 6 6 100.0 5 83.3 0 0.0

15C 6 6 100.0 5 83.3 1 16.7

38 6 3 50.0 2 33.3 2 33.3

21 5 5 100.0 3 60.0 0 0.0

4 5 3 60.0 4 80.0 4 80.0

15A 4 4 100.0 1 25.0 0 0.0

24 4 4 100.0 2 50.0 0 0.0

35B 3 3 100.0 1 33.3 1 33.3

22F 3 3 100.0 3 100.0 0 0.0

16F 3 3 100.0 3 100.0 0 0.0

12F 3 3 100.0 0 0.0 0 0.0

9N 2 2 100.0 1 50.0 0 0.0

37 2 2 100.0 0 0.0 0 0.0

34 2 1 50.0 0 0.0 1 50.0

31 2 2 100.0 0 0.0 0 0.0

29 2 2 100.0 1 50.0 0 0.0

28 2 1 50.0 0 0.0 0 0.0

27 2 1 50.0 0 0.0 0 0.0

22 2 2 100.0 1 50.0 0 0.0

16 2 2 100.0 2 100.0 0 0.0

6C 1 1 100.0 0 0.0 0 0.0

35F 1 1 100.0 1 100.0 0 0.0

33F 1 1 100.0 0 0.0 0 0.0

24B 1 1 100.0 0 0.0 0 0.0

17F 1 1 100.0 1 100.0 0 0.0

11A 1 1 100.0 0 0.0 0 0.0

47 1 1 100.0 0 0.0 1 100.0

39 1 1 100.0 1 100.0 0 0.0

17 1 1 100.0 0 0.0 0 0.0

13 1 1 100.0 1 100.0 0 0.0

11 1 1 100.0 1 100.0 0 0.0

Table 2. Cont.

Serotype Isolates pcpA Pos % psrP Pos % pilus Pos %

10 1 1 100.0 0 0.0 0 0.0

8 1 1 100.0 0 0.0 0 0.0

2 1 1 100.0 0 0.0 0 0.0

Pos: positive detection.
doi:10.1371/journal.pone.0041587.t002
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serotype 1. This observation was also detected for serotype 5

where psrP was detected in 88.2% of the 34 strains but Pilus-1 was

absent. In contrast, for serotypes 14 or 6B the prevalence of psrP

was significantly lower than the prevalence of pilus-1 (5.3% vs.

84.2% among serotype 14 isolates (n = 19) and 35.7% vs. 57.1%

among serotype 6B isolates (n = 14). Other serotypes without pilus-

1 included serotype 7F (none of 36 strains) and serotype 3 (none of

21 strains). psrP was also very low in these serotypes (11.1% for

serotype 7F and 9.5% for serotype 3). In fact, of all 547 strains

tested, only 4.2%, tested positive for both psrP and pilus-1.

Using the designation of serotypes having high or low attack

rate [21,22] psrP was significantly more frequent in serotypes

categorized as having high attack rate (those less apt to be detected

in carriage than in disease) than in serotypes categorized as low

attack rate (those less apt to be detected in disease than in carriage)

(58.7% vs. 39.1%; P,.001). pcpA was also more frequently

detected in serotypes with high attack rate (95.6% vs. 87.5%;

P = 0.01). Pilus-1 distribution was similar in high and low attack

rate serotypes (16.1% vs. 13.6%; P = 0.4). Considering only

penicillin susceptible isolates, the prevalence of psrP between high

and low attack rate serotypes was different (72.3% vs. 44.9%;

P,.001). The distribution of pcpA among these susceptible isolates

was also higher in high attack rate serotypes vs. low attack rate

serotypes (94.3% vs. 81.9%; P = 0.01). Among penicillin suscep-

tible isolates, the prevalence of Pilus-1 was higher in those

expressing serotypes that are less apt to be detected in disease than

in carriage (13.4% vs. 6.4%; P = 0.02). Figure 3 shows the

prevalence of PcpA, PsrP and Pilus-1 according to serotypes within

the commercialized conjugate vaccines. Pilus-1 was more frequent

detected among PCV7 serotypes vs. non PCV7 serotype 50% vs.

8.5%; P,001). In contrast, psrP was more frequent detected

among non PCV7 isolates vs PCV7 isolates (53.8% vs. 37.2%;

P = 0.005).

Finally, we observed stark and significant differences in

prevalence of these proteins according to clonotype among isolates

expressing the same serotype (Table 3). psrP was detected in almost

all ST306 (106 of 109 isolates; 97.2%) while practically in none of

the isolates with ST304 (1 of 22 isolates; 4.5%). Pilus-1 was totally

absent in these clonotypes. The same phenomenon was observed

for the penicillin susceptible clone ST1201: all isolates with this

clone (n = 19) have psrP, while none have Pilus-1. The opposite

was observed for multiresistant clone ST320, which all (n = 16)

have pilus-1 yet lack psrP. Even in pcpA, which has a high

prevalence within the entire collection, significant differences

according to clonotype were detected in strains expressing the

same serotype. For example, among isolates expressing serotype 3,

pcpA was detected in 100% of strains with ST260, ST1220,

ST1377 or ST2590 (6 isolates) while only in 6.6% of ST180 (1 of

15 isolates).

Discussion

Among IPD isolates, the prevalence of disease caused by

serotypes included in the commercialized conjugate vaccines

increased from 14.2% in PCV7 to 83.6% in PCV13. In contrast,

the overall prevalence of serotypes included in PCV13 in

nasopharynx was only 50.6%. Thus, even though the newly

introduced PCV13 vaccine had robust coverage against disease, its

intermediate coverage of the current colonizing serotypes leaves

open the possibility of serotype replacement by current invasive

clones or continuing serotype shift. In the same way that an

indirect effect of PCV7 preventing disease in adults and non-

vaccinated children had been observed [5,6], it is expected indirect

protection offered by herd immunity using multivalent pneumo-

coccal protein vaccines [26,27].

PcpA was highly prevalent in our collection, suggesting that it is a

conserved pneumococcal component. While previous studies,

including our own, have examined the prevalence of psrP or

pilus-1 alone among clinical isolates [28–31], to our knowledge no

information exists on the prevalence of pcpA. As indicated PcpA is

an adhesin, and immunization with recombinant protein has been

demonstrated to reduce the number of bacteria in the lungs of

mice challenged with S. pneumoniae and to increase survival time in

a mouse sepsis model following intraperitoneal challenge [19].

Most recently, PcpA has been shown to be required for in vitro

biofilm formation [32], upregulated in response to Zn(2+) [33],

and capable of eliciting antibodies during human nasopharyngeal

colonization and acute otitis media [34], but not during

bacteremia in infants [35]. Our finding that pcpA was present in

500 of the 526 serotypes, excluding serotype 3 isolates, underlines

Figure 3. Prevalence of pcpA, psrP and pilus-1 according to serotypes within the commercialized conjugate vaccines.
doi:10.1371/journal.pone.0041587.g003
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Table 3. Prevalence of pcpA. psrP and pilus-1 according to clonotypes (ST) detected in the study.

pcpA psrP pilus-1

ST Isolates Serotype Positive % Positive Positive % Positive Positive % Positive

306 109 1 (n = 109) 107 98.2 106 97.2 0 0.0

191 32 7F (n = 32) 32 100.0 3 9.4 0 0.0

1223 25 5 (n = 25) 23 92.0 21 84.0 0 0.0

304 22 1 (n = 22) 22 100.0 1 4.5 0 0.0

1201 19 19A (n = 19) 18 94.7 19 100.0 0 0.0

276 18 19A (n = 18) 18 100.0 3 16.7 0 0.0

320 16 19A (n = 16) 16 100.0 0 0.0 16 100.0

180 15 3 (n = 15) 1 6.7 1 6.7 0 0.0

156 13 14 (n = 13) 13 100.0 0 0.0 13 100.0

2013 13 19A (n = 13) 13 100.0 2 15.4 0 0.0

2372 12 23B (n = 10) 10 83.4 1 8.3 0 0.0

19A (n = 1) 1 8.3 1 8.3 1 8.3

23F (n = 1) 1 8.3 0 0 0 0

97 11 10A (n = 11) 11 100.0 2 18.2 1 9.1

289 8 5 (n = 8) 4 50.0 8 100.0 0 0.0

63 7 15A (n = 4) 4 57.1 1 14.3 0 0.0

15B (n = 1) 1 14.3 1 14.3 0 0.0

15C (n = 1) 1 14.3 0 0.0 0 0.0

38 (n = 1) 1 14.3 1 14.3 0 0.0

4677 6 24F (n = 6) 6 100.0 0 0.0 0 0.0

2100 6 19F (n = 6) 6 100.0 1 16.7 0 0.0

1167 6 19F (n = 5) 1 16.7 5 83.3 4 66.6

19A (n = 1) 0 0.0 1 16.7 1 16.7

838 6 9V (n = 6) 6 100.0 0 0.0 6 100.0

230 6 24F (n = 3) 3 50.0 0 0.0 0 0.0

24 (n = 2) 2 33.3 0 0.0 0 0.0

24B (n = 1) 1 16.7 0 0.0 0 0.0

202 6 19A (n = 6) 5 83.3 2 33.3 5 83.3

113 6 18C (n = 6) 6 100.0 5 83.3 0 0.0

199 5 19A (n = 4) 4 80.0 4 80.0 0 0.0

15B (n = 1) 1 20.0 1 20.0 0 0.0

42 5 23A (n = 5) 5 100.0 4 80.0 0 0.0

1262 4 15B (n = 2) 2 50.0 2 50.0 0 0.0

15C (n = 2) 2 50.0 2 50.0 0 0.0

433 4 22 (n = 1) 1 25.0 0 0.0 0 0.0

22F (n = 1) 1 25.0 1 25.0 0 0.0

19A (n = 1) 1 25.0 0 0.0 0 0.0

28 (n = 1) 1 25.0 0 0.0 0 0.0

416 4 19A (n = 4) 4 100.0 4 100.0 1 25.0

386 4 6B (n = 4) 4 100.0 1 25.0 2 50.0

90 4 6A (n = 2) 1 25.0 0 0.0 2 50.0

6B (n = 2) 2 50.0 0 0.0 2 50.0

81 4 19A (n = 2) 2 50.0 2 50.0 0 0.0

19F (n = 1) 1 25.0 1 25.0 0 0.0

23F (n = 1) 1 25.0 1 25.0 0 0.0

30 4 16 (n = 2) 2 50.0 2 50.0 0 0.0

16F (n = 2) 2 50.0 2 50.0 0 0.0

2690 3 29 (n = 2) 2 66.7 1 33.3 0 0.0
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the importance of this protein for pneumococcal biology and

strongly supports its inclusion in any protein vaccine.

Surprisingly, pcpA was only present in 7 of the 21 serotype 3

isolates tested. The absence of adhesins in serotype 3 isolates is not

unprecedented; Choline binding protein A (CbpA; also known as

PspC), which binds to both polymeric immunoglobulin receptor

and laminin receptor, and has been implicated in biofilm

formation, has a low prevalence within serotype 3 isolates [36].

Serotype 3 isolates are distinct from most other pneumococcal

serotypes in that they are exceedingly encapsulated, and therefore

appear highly mucoid on blood agar plates. The absence of these

adhesins and a distinct clinical profile suggest that serotype 3

isolates might have a pathogenesis dissimilar to other pneumo-

coccal isolates, as numerous studies indicate that capsular

polysaccharide inhibits bacterial adhesion, and serotype 3 isolates

are frequently associated with necrotizing pneumonia. This

suggests that a distinct protein vaccine formulation would be

required for protection against serotype 3-mediated disease. This

notion is supported by studies in experimentally infected mice,

where a serotype 3 clinical isolate remained in the lungs but

replicated to high titers, whereas clinical isolates of serotype 2 and

4 replicated to lower titers but caused disseminated disease [37].

PsrP is both an intraspecies and interspecies adhesin, mediating

attachment to Keratin 10 on lung cells and promoting the

presence of bacterial aggregates in vivo and biofilm formation

in vitro [38]. Pilus also functions as an adhesin, having been

demonstrated to mediate attachment to laminin and may also

contribute to the invasiveness of strains [39].

Importantly, considerable evidence indicates that immunization

of mice with either the basic region domain of PsrP or with

individual components of Pilus-1 mediates protection [16,40].

Using Real-Time PCR, we detected psrP in 51.2% of all clinical

isolates, whereas we detected pilus-1 in 15% of all isolates. This

was consistent with a past study where the prevalence of psrP in

clinical isolates was found to be 52.4% and with studies of

numerous other investigators where the prevalence of pilus-1 in

clinical isolates was found to be between 10–30% [30,31,41,42].

Our study expands on these past studies by providing the

prevalence of these candidate vaccine antigens simultaneously.

There by assessing the potential coverage of a multivalent vaccine

composed of pcpA, psrP and pilus-1. In all, 96% of the strains

examined carried at least 1 of these proteins, 96% carried 2, and

6% carried all 3. Our analysis determined that psrP and pilus-1

have a negative correlation in multiple serotypes raising the

possibility that psrP and pilus-1 may have redundant roles, or that

their production might be metabolically expensive and that an

individual strain cannot support production of both of these

extremely large proteins. Briefly, PsrP is a glycosylated surface

protein that separates at a molecular weight .2000 kDa, whereas

Pilus-1 is primarily composed of multiple repeats of the subunit

RrgB. Both extend beyond the bacterial capsule to mediate

adhesion. Interestingly, our study shows that psrP was found

significantly among serotypes that are less apt to be detected in

carriage than in disease, while Pilus-1 was not associated with

these virulent serotypes. These data could suggest that PsrP is in

part responsible for the increased virulence of high attack rate

serotypes. Along this line, it is known that variation in virulence

exists among isolates of the same serotype, due to the contribution

of serotype-independent factors associated with clonal type [43].

The variability of the prevalence of pcpA, psrP and pilus-1

according to clonal type in strains expressing the same serotype

confirms that the presence of these factors appears to be a clonal

property. This fact has been reported for Pilus-1 by other authors

[41].

Table 3. Cont.

pcpA psrP pilus-1

ST Isolates Serotype Positive % Positive Positive % Positive Positive % Positive

21 (n = 1) 1 33.3 0 0.0 0 0.0

1684 3 31 (n = 2) 2 66.7 0 0.0 0 0.0

1 (n = 1) 1 33.3 0 0.0 0 0.0

1143 3 6A (n = 3) 3 100.0 3 100.0 1 33.3

310 3 38 (n = 2) 0 0.0 0 0.0 2 66.7

34 (n = 1) 0 0.0 0 0.0 1 33.3

280 3 9V (n = 2) 2 66.7 2 66.7 0 0.0

9N (n = 1) 1 33.3 1 33.3 0 0.0

224 3 6A (n = 3) 3 100.0 0 0.0 0 0.0

193 3 21 (n = 2) 2 66.7 2 66.7 0 0.0

15B (n = 1) 1 33.3 1 33.3 0 0.0

101 3 15C (n = 2) 2 66.7 2 66.7 0 0.0

15B (n = 1) 1 33.3 0 0.0 0 0.0

72 3 24 (n = 2) 2 66.7 2 66.7 0 0.0

24F (n = 1) 1 33.3 1 33.3 0 0.0

Other ST detected with 2 isolates each: ST62, ST109, ST162, ST177, ST338, ST393, ST439, ST447, ST558, ST989, ST1011, ST1220, ST1377, ST1624, ST1692, ST2611, ST2948,
ST4310, ST4828, ST5223, and ST5740.
1 isolate each: ST9, ST66, ST88, ST94, ST110, ST124, ST143, ST176, ST179, ST205, ST217, ST228, ST245, ST260, ST274, ST311, ST315, ST327, ST343, ST392, ST404, ST425,
ST446, ST450, ST460, ST494, ST557, ST614, ST876, ST994, ST1012, ST1064, ST1264, ST1475, ST1504, ST1577, ST1589, ST1611, ST1664, ST1844, ST1848, ST2319, ST2333,
ST2376, ST2377, ST2467, ST2557, ST2590, ST2592, ST2594, ST2595, ST2618, ST2946, ST2947, ST2949, ST3254, ST3259, ST3436, ST3437, ST3438, ST3490, ST3609, ST3787,
ST4306, ST4676, ST4796, ST4826, ST4832, ST4834, ST5224, ST5741, ST5825, ST5829, ST6006, ST6040, ST6394, ST6518 and ST6519.
doi:10.1371/journal.pone.0041587.t003
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Antibiotic resistance was associated with the presence of pilus-1

and showed a negative correlation with psrP. The association of

pilus-1 with antibiotic resistance has been reported previously, but

the reasons for this association are not clear. It could be that the

rrlA islet and specific resistance genes might be recombined

together. Moschioni et al. suggest that pilus aid in adhesion during

colonization of the nasopharynx and that pilus expressing strains

could be selected as a result of antibiotic treatment [44]. The

reason for negative association of psrP with resistant strains is

unknown. Interestingly, psrP had greater correlation with strains

isolated from individuals with pneumonia, both uncomplicated

and complicated, whereas Pilus-1 had a predilection for strains

associated with bacteremia. This observation is consistent with the

known roles of PsrP as a lung cell adhesin and Pilus-1 as a

mediator of invasive disease [17].

A limitation of the study is that the absence or presence of these

genes/proteins is based on PCR results of wellknown and

published genes [15,18,44] but potential primer divergence could

implied that a PCR negative result is not necessary equivalent of

the absence of the protein and viceversa.

In summary, our results indicate that pcpA is highly prevalent

and its addition to a multivalent pneumococcal protein vaccine

would result in considerable coverage. In contrast, psrP and pilus-1

have less robust individual coverage but, since psrP is present in

high attack rate strains and pilus-1 in antibiotic resistant strains,

could be added in an effort to reduce the likelihood of disease. The

inverse correlation of these proteins suggests that they could be

paired as part of a multi-valent vaccine to compensate for each

other. This notion is highlighted by the fact that 96% of all strains

carried pcpA and either psrP or pilus 1. Future studies are planned

to determine the protective efficacy of this trivalent vaccine against

invasive disease caused by multiple clinical isolates.
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Nens, Barcelona); R Bartolomé, F Moraga (Hospital del Vall d’Hebron,

Barcelona); E Palacin, JM Gairi (Institut Universitari Dexeus, Barcelona);

M Sierra, P Sala (Hospital de Barcelona); M Curriu (Hospital Sant

Bernabe, Berga); C Galles, A Puig, E Corrales (Hospital Sant Jaume,

Calella); C Esteva, L Selva, S Hernandez-Bou, MF de Sevilla, M Iñigo, E
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Tarragona); F Gómez-Bertomeu, A Soriano (Hospital Joan XXIII,
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Rapid and Easy Identification of Capsular Serotypes of Streptococcus
pneumoniae by Use of Fragment Analysis by Automated Fluorescence-
Based Capillary Electrophoresis

Laura Selva, Eva del Amo, Pedro Brotons, and Carmen Muñoz-Almagro

Molecular Microbiology Department, University Hospital Sant Joan de Déu, Barcelona, Spain

The purpose of this study was to develop a high-throughput method for the identification of pneumococcal capsular types. Mul-
tiplex PCR combined with fragment analysis and automated fluorescent capillary electrophoresis (FAF-mPCR) was utilized.
FAF-mPCR was composed of only 3 PCRs for the specific detection of serotypes 1, 2, 3, 4, 5, 6A/6B, 6C, 7F/7A, 7C/(7B/40), 8, 9V/
9A, 9N/9L, 10A, 10F/(10C/33C), 11A/11D/11F, 12F/(12A/44/46), 13, 14, 15A/15F, 15B/15C, 16F, 17F, 18/(18A/18B/18C/18F), 19A,
19F, 20, 21, 22F/22A, 23A, 23B, 23F, 24/(24A/24B/24F), 31, 33F/(33A/37), 34, 35A/(35C/42), 35B, 35F/47F, 38/25F, and 39. In or-
der to evaluate the assay, all invasive pneumococcal isolates (n � 394) characterized at Hospital Sant Joan de Déu, Barcelona,
Spain, from July 2010 to July 2011 were included in this study. The Wallace coefficient was used to evaluate the overall agreement
between two typing methods (Quellung reaction versus FAF-mPCR). A high concordance with Quellung was found: 97.2% (383/
394) of samples. The Wallace coefficient was 0.981 (range, 0.965 to 0.997). Only 11 results were discordant with the Quellung
reaction. However, latex reaction and Quellung results of the second reference laboratory agreed with FAF-mPCR for 9 of these
11 strains (82%). Therefore, we considered that only 2 of 394 strains (0.5%) were not properly characterized by the new assay.
The automation of the process allowed the typing of 30 isolates in a few hours with a lower cost than that of the Quellung reac-
tion. These results indicate that FAF-mPCR is a good method to determine the capsular serotype of Streptococcus pneumoniae.

Pneumococcal disease is a bacterial infection caused by Strep-
tococcus pneumoniae. Its morbidity and mortality have a huge

impact on global health. The organism causes at least 1.6 million
deaths each year worldwide, of which 800,000 occur among chil-
dren aged under 5 years (19).

The capsular polysaccharide represents an important virulence
factor and characterizes S. pneumoniae by 93 distinct serotypes
(8). Only certain polysaccharide types appear to be more liable to
cause invasive disease (7, 16). Conjugate vaccines against sero-
types 7, 10, and 13 (PCV7, PCV10, and PCV13) have been shown
to be effective in preventing pneumococcal infections (32, 35, 38).
However, the increase of disease caused by nonvaccine serotypes is
a special concern (21, 42). Therefore, continuous monitoring of
changes in serotype distribution is necessary for epidemiological
surveillance and evaluation of vaccines.

The Quellung reaction or Neufeld test is the gold standard for
serotyping (2). This test requires isolation of pneumococci by cul-
ture followed by serological determination of the capsular type by
using specific polyclonal antibodies. The antibody binds the pneu-
mococcal capsule and induces a capsular swelling that is visible
under the microscope. Quellung reaction is expensive because it is
necessary to buy all antisera to identify the different serotypes. In
addition, it is labor-intensive because pneumococcal isolates are
sequentially tested first against pooled antisera and then against
each of the individual antisera included in the reactive pool. Sub-
jective interpretation and technical expertise requirements are
other serious drawbacks of the system.

Other methods used to perform pneumococcal serotyping are
dot blot assay (15) and latex agglutination test (36). The interpre-
tation of blots is time-consuming and is not recommended for
routine serotyping (6). The latex agglutination test is an easy and
rapid test but is also expensive and limited to a few serogroups/
serotypes. Several authors have published multiplex PCR schemes

to deduce specific pneumococcal serotypes from isolate sets (20,
29) and also from clinical specimens (3, 23, 31, 33, 44). Multiplex
PCR-based methods offer a simple and economical approach for
the surveillance of pneumococcal disease. The main advantages in
relation to classical serotyping are a lower cost than Quellung
reaction (29), rapidity (39), and the capacity to detect secondary
serotypes in mixed cultures (29). However, these developed
schemes are limited to a small number of primer pairs per reaction
(from two to four primers pairs); therefore, it is necessary to per-
form up to eight sequential multiplex reactions to identify 30 dif-
ferent serotypes/serogroups (44). Other molecular technologies
for rapid S. pneumoniae serotyping have been described. Elberse et
al. (14) have developed the capsular sequence typing (CST)
method to genotype the capsular locus in order to assess the sero-
type. Bentley et al. (4) have designed a microarray on the basis of
serotype-specific oligonucleotides within the cps locus for 90
known serotypes. Recently, Yu et al. (43) have developed a pneu-
mococcal serotyping system which combines the PCR and mono-
clonal antibody (MAb)-based approaches that can test all known
serotypes.

Capillary electrophoresis by using multicapillary automated
DNA sequencers has been widely used in the separation of PCR
products. It offers advantages of fast separation, high-resolution
analysis, and small reagent consumption over traditional agarose
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gel electrophoresis (17, 22, 41). The fluorescent PCR-based tech-
nology combined with fragment analysis by automated fluores-
cent capillary electrophoresis could greatly simplify the serotyping
of pneumococci with good sensitivity and specificity. The assay
combines the power of multiplex PCR with the use of fluores-
cently labeled primer pairs and provides high detection sensitivity
of amplified fragments (22). This technology is being applied suc-
cessfully for the genotyping of human papillomavirus (9, 24, 40)
and can be developed with the simplicity expected for the charac-
terization of S. pneumoniae.

The purpose of this study was to develop a method for the
identification of pneumococcal capsular types by multiplex PCR
combined with fragment analysis and automated fluorescent cap-
illary electrophoresis (FAF-mPCR) and to compare it to conven-
tional serotyping.

MATERIALS AND METHODS
Bacterial isolates. In order to evaluate the assay, all invasive pneumococ-
cal isolates characterized by the Molecular Microbiology Department at
University Hospital Sant Joan de Déu in Barcelona, Spain, from July 2010
to July 2011 were included in this study. The department performs mo-
lecular surveillance of pneumococci from patients attending 30 health
centers throughout the Catalonia region. These 30 health centers captured
40.5% of all hospital admissions and, specifically, 63% of pediatric hospi-
tal admissions during 2009 (27).

Isolates were cultured on blood agar plates (Columbia agar supple-
mented with 5% sheep blood; bioMérieux) and were incubated overnight
at 37°C in 5% CO2. Each pneumococcal isolate was identified using stan-
dard microbiological tests, including colony morphology and optochin
susceptibility.

S. pneumoniae serotyping by Quellung reaction. All isolates were
serotyped by Quellung reaction at the National Pneumococcus Reference
Centre (Majadahonda, Madrid, Spain) by using rabbit polyclonal antise-
rum from the Statens Serum Institute (Copenhagen, Denmark) and the
chessboard system as previously described (37). Briefly, the Quellung re-
action was performed by adding a drop of polyvalent S. pneumoniae an-
tiserum to an air-dried drop of the pneumococcal isolate to be studied. A
reaction to the antiserum being tested was considered positive when cap-
sular swelling was observed with a phase-contrast microscope (magnifi-
cation, �1,000). The capsular test was carried out with 14 successively
antiserums pools and 46 specific antiserum groups or types until a positive
reaction was obtained.

Pneumococcal isolates with serotype discordance between Quellung
and FAF-mPCR were serotyped in our laboratory by latex agglutinations
using the Pneumotest latex kit (Statens Serum Institut, Copenhagen,
Denmark). In addition, these strains were also sent to another interna-
tional reference laboratory to be retyped by Quellung reaction.

Molecular serotyping of S. pneumoniae. (i) DNA extraction from
bacterial isolates. Genomic DNA was extracted from bacteria using
Chelex-100 resin (Bio-Rad Laboratories). Briefly, pneumococci scraped
from blood agar plates were suspended in 100 �l of phosphate-buffered
saline (PBS) buffer; 50 �l was transferred to a new microcentrifuge tube
and vigorously vortexed with 150 �l of 20% (wt/vol) Chelex-100 in PBS.
The bacterial/resin suspensions were incubated for 20 min at 56°C, fol-
lowed by a 10-min incubation at 100°C. After cooling and centrifugation,
the supernatant was used as a DNA template in PCRs.

(ii) Multiplex PCR combined with fragment analysis detection by
automated fluorescent capillary electrophoresis. Forty primer pairs
were used to target serotypes 1, 2, 3, 4, 5, 6A/6B, 6C, 7F/7A, 7C/(7B/40), 8,
9V/9A, 9N/9L, 10A, 10F/(10C/33C), 11A/11D/11F, 12F/(12A/44/46), 13,
14, 15A/15F, 15B/15C, 16F, 17F, 18/(18A/18B/18C/18F), 19A, 19F, 20, 21,
22F/22A, 23A, 23B, 23F, 24/(24A/24B/24F), 31, 33F/(33A/37), 34, 35A/
(35C/42), 35B, 35F/47F, 38/25F, and 39 (Table 1). Some serotypes were
indistinguishable from other closely related serotypes, most of which be-

longed to the same serogroup. The sequences for the type-specific prim-
ers have been published by different authors (10, 12, 29, 30) and are
available at the CDC web page (http://www.cdc.gov/ncidod/biotech
/strep/pcr.htm). Primers were previously designed on the basis of
DNA sequences of the wzy gene [serotypes 1, 2, 4, 5, 7F/A, 8, 9V/A,
11A/D/F, 14, 15A/F, 15B/C, 16F, 18/(18A/18B/18C/18F), 19A, 19F,
23A, 23F, 24/(24A/24B/24F), 31, 33F/(33A/37), 34, 35F/47F, 38/25F,
39] and wzx gene [serotype 9N/9L, 10F/(10C/33C), 12F/(12A/44/46),
13, 21, 23B, 35A/(35C/42)], except for serotypes 3 (galU), 6A/6B and
17F (wciP), 7C/(7B/40) (wcwL), 10A (wcrG), 20 (wciL), 22F/A (wcwV),
and 35B (wcrH). Primers specific to the cpsA (wzg) gene were used as
an internal positive control. This gene is part of the cps locus and is very
common to all capsular serotypes.

In the present study, forward primers of each pair of primers were
labeled with 6-carboxyfluorescein (FAM), 2=-chloro-7=phenyl-1,4-di-
chloro-6-carboxy-fluorescein (VIC), 2=-chloro-5=-fluoro-7=,8=-benzo-
1,4-dichloro-6-carboxyfluorescein (NED), or PET fluorochrome; prim-
ers pairs were synthesized by Applied Biosystems. In addition, primers
were grouped together based on the size of the fragment and the fluoro-
chrome selected.

The PCRs were carried out in a final volume of 25 �l with 12.5 �l of 2�
Qiagen multiple PCR master mix (Qiagen), primers at the concentrations
specified in Table 2, and distilled water to a final volume of 23 �l. Two
microliters of DNA extract were used as the template for each PCR. Ther-
mal cycling was performed in a GeneAmp PCR system 9700 (Applied
Biosystems) under the following conditions: 95°C for 15 min, followed by
25 amplification cycles of 94°C for 30 s, 57°C for 30 s, and 72°C for 60 s,
and a final extension step at 72°C for 10 min. Each amplification run
contained a negative control (water).

Fluorescent fragment size analysis was performed on an ABI 3130xl
genetic analyzer (Applied Biosystems). Data were collected with ABI
3130xl data collection software (version 3.0; Applied Biosystems) and
interpreted using GeneMapper software (version 4.0; Applied Biosys-
tems). For capillary electrophoresis, 2-�l aliquots were added to the
capillary electrophoresis mixture containing 20 �l of Hi-Di formam-
ide (Applied Biosystems) and 0.6 �l of the GeneScan 1200 LIZ size
standard (Applied Biosystems). The capillary sample mixture was de-
natured for 5 min at 95°C and rapidly cooled on ice prior to analysis.
The ABI 3130xl genetic analyzer was set up according to the manufac-
turer’s instructions to use performance-optimized POP-7 polymer for
microsatellite analysis.

Economic evaluation of FAF-mPCR versus Quellung reaction. Eco-
nomic cost of reagents and manual labor for FAF-mPCR were compared
to the chessboard typing system of the Quellung reaction. We considered
the cost of all reagents and hands-on labor time necessary to achieve a
serotype result by Quellung versus FAF-mPCR.

Statistical analysis. The congruence between Quellung reaction and
the new method was studied by means of the Wallace coefficient (34). This
coefficient indicates the probability that a pair of isolates which is assigned
to the same type by one typing method is also typed as identical by another
method (13). All calculations were performed using the freely available
online tool Comparing Partitions, located at www.comparingpartitions
.info.

RESULTS

During the study period, a total of 394 invasive isolates were re-
ceived in our laboratory and 37 serogroup/serotypes were as-
signed by Quellung reaction. Nine serotypes (7C, 7B, 10F, 10C,
33C, 35A, 35C, 40, and 42) were not available in this collection and
could not be included in the comparative analysis with FAF-
mPCR. The serotypes/serogroups included in this validation were
1 (n � 55), 19A (n � 40), 3 (n � 37), 7F (n � 36), 12F (n � 26), 14
(n � 26), 22F (n � 14), 8 (n � 11), 24F (n � 11), 5 (n � 9), 6C
(n � 9), 4 (n � 8), 9N (n � 8), 23F (n � 8), 6B (n � 7), 9V (n �
7), 16F (n � 7), 31 (n � 7), 10A (n � 6), 23A (n � 6), 6A (n � 5),
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11A (n � 5), 19F (n � 5), 23B (n � 5), 38 (n � 5), 11F (n � 4), 15B
(n � 4), 15A (n � 3), 17F (n � 3), 18C (n � 3), 15C (n � 2), 29
(n � 2), 33F (n � 2), 34 (n � 2), 35B (n � 2), 20 (n � 1), 35F (n �
1), 39 (n � 1), and nontypeable (n � 1). Therefore, 62.4% of them
were serotypes included in PCV13, 41.6% were included in
PCV10, and 16.2% were in PCV7.

Selection of primers and optimization of three multiplex
PCRs. The primers were ordered according to the different sizes of
products (range, 98 to 816 bp). Distinct fluorophores were used in
the products with the most similar sizes in order to obtain better
discrimination of products.

The concentrations of the primers were adjusted to achieve
similar levels of amplification of the products with the same am-
plification conditions and to avoid unspecific products in the re-
action. Finally, we combined all primers in three multiplex PCRs
as shown in Table 2. All three reactions included primers to detect
cpsA as an internal control.

Concordance of serotyping by FAF-mPCR versus Quellung
reaction. Results of the FAF-mPCR and Quellung reaction
agreed for 97.2% (383/394) of the samples. Specific detection
of serotype by FAF-mPCR was accurate and objective, as shown
in Fig. 1. The congruence between FAF-mPCR and Quellung
reaction as examined by the Wallace coefficient was 0.981
(range, 0.965 to 0.997). Only 11 results were discordant with
the Quellung reaction. However, latex and Quellung reaction
results of the second reference laboratory agreed with FAF-
mPCR for 9 of the 11 (82%) strains (Table 3). Therefore, we
considered that only 2 of 394 strains (0.5%) were not properly
characterized by the new assay.

Comparison of economic cost of FAF-mPCR to that of Quel-
lung reaction. In the present study, we performed the three
reactions with all isolates in order to validate the technique, but
we considered a sequential approach to the three reactions with
the purpose of estimating the cost of the new technique.
Among the 394 isolates, serotypes of 171 (43.4%) isolates were
detected in the first reaction with a reagent cost of €605, 164

(41.6%) were detected in the second reaction (estimated cost of
€1,331), and 56 (14.2%) were detected in the third reaction
(estimated cost of €1,499). Finally, 3 (0.7%) isolates were not
detected in any reaction (estimated cost of €32.9). Two of these
isolates corresponded to serotype 29 by Quellung reaction,
which is not included in the typing scheme of FAF-mPCR, and
the third isolate corresponded to a nontypeable serotype by
either of the two techniques. Therefore, the total PCRs per-
formed for serotyping the 394 isolates were 676 with a total cost
of €2,560 (€6.5 per isolate), while a total of 2,924 reactions were
needed to complete the serotyping of isolates by Quellung re-
action, with a total cost of €6,433 (€16.3 per isolate).

The FAF-mPCR has a high throughput, and a batch of 90 re-
actions can be carried out in 90 min. Consequently, the 676 reac-
tions were performed in 11.3 h of manual labor. In contrast, a
minimum of 3 min is necessary for each Quellung reaction. There-
fore, the 2,924 reactions performed according to the chessboard
system of Quellung needed a total of 146.2 h of work.

DISCUSSION

To our knowledge, this is the first report that determines the cap-
sular type of S. pneumoniae using fragment analysis by automated
fluorescent capillary electrophoresis. The assay described in this
article assigned the serotype of 99.2% of our isolates by using only
three PCRs. Moreover, two of the three isolates not characterized
by the new assay were not characterized by Quellung either (non-
typeable isolates). This multiplex PCR is rapid and easy and only
needs basic PCR knowledge that is already broadly available in
microbiology departments.

The concordance of results with Quellung reaction was high;
moreover, the few discrepancies between Quellung and FAF-
mPCR were resolved in favor of FAF-mPCR when we used latex
agglutination and when samples were retyped by Quellung reaction
in another laboratory. The reading of results of FAF-mPCR is objec-
tive and does not demand a high level of expertise for the interpreta-

TABLE 2 Primer concentrations in the three multiplex PCRs used in the present study

Reaction and primers
Primer concn
(�M)

1
8-f, 8-r, 39-f, 39-r 0.1
14-f, 14-r, 1-f, 1-r, 33F/(33A/37)-f, 33F/(33A/37)-r, 15A/15F-f, 15A/15F-r, 15B/15C-f 0.15
15B/15C-r, 35F/47F-f, 35F/47F-r, 6A/6B-f 0.15
6A/6B-r, 7C/7B/40-f, 7C/7B/40-r, 5-f, 5-r, 3-f, 3-r 0.15
23F-f, 23F-r 0.3

2
21-f, 21-r 0.1
35A/(35C/42)-f, 35A/(35C/42)-r, 11A/11D/11F-f, 11A/11D/11F-r, 4-f, 4-r, 19A-f, 19A-r 0.15
7F/7A-f, 7F/7A-r, 16F-f, 16F-r 0.2
12F/(12A/44/46)-f, 12F/(12A/44/46)-r, 22F/22A-f, 22F/22A-r 0.3
17F-f, 17F-r, 23A-f, 23A-r, 19F-f, 19F-r, 35B-f, 35B-r, 9V/9A-f 0.3
9V/9A-r, 20-f, 20-r 0.3

3
24/(24,24B,24F)-f, 24/(24,24B,24F)-r, 23B-f, 23B-r 0.1
10F/(10C/33C)-f, 10F/(10C/33C)-r, 2-f, 2-r, 34-f, 34-r, 38/25F-f 0.15
38/25F-r, 18/(18A/18B/18C/18F)-f, 18/(18A/18B/18C/18F)-r 0.15
9N/L-f, 9N/L-r, 10A-f, 10A-r, 13-f, 13-r, 31-f, 31-r, 6C-f, 6C-r 0.2
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tion of results. In contrast, Quellung reaction is subjective and a high
level of experience is required to assign the correct serotype.

Different authors have adapted the original multiplex PCR as-
say developed by Pai et al. (29) and recommended by the CDC (1,
3, 11, 12, 18, 26, 28, 31). All authors agree that multiplex PCR is an
accurate, simple, and economical method which can be used for
determining capsular type. However, the classical multiplex PCR

approach used by the different authors implies a high number of
PCRs. Due to technical limitations, only a small number of primers
(maximum of 4) can be used in each reaction. The use of multiple
assay tubes to prepare the different PCRs increases the risk for pi-
petting errors and contaminations. The FAF-mPCR method im-
proves on the original multiplex PCR by using fragment analysis by
automated fluorescent capillary electrophoresis. This technology be-
comes a fast, easy, and accurate system for PCR product detection
and interpretation of results. The utilization of primers labeled with
fluorescent dyes allows multiplexing more than 15 sets of primers in
a single PCR mixture. After PCR amplification, PCR products of sim-
ilar size but marked with different fluorophors can be distinguished
from one another without overlap by using automating software. The
system recognizes fluorescent peaks according to specific color and
size and awards the corresponding capsular type accurately. In addi-
tion, the use of automatic DNA sequencers enables a high-through-
put analysis, and a single technician can process a large number of
samples in a few hours.

Our system has some limitations. Like in other multiplex
PCRs, we cannot identify some serotypes (3, 25, 26, 44) or distin-
guish genetically related serotypes (i.e., 7C/7B/40 and 10F/10C/
33C). In order to identify these serotypes, it is still necessary to
perform conventional manual methods based on polyclonal fac-
tor sera or specific DNA tests.

The present assay was validated in clinical isolates from pa-
tients with invasive pneumococcal disease. The next step will be to
validate assay performance directly on clinical samples from cul-
ture-negative patients.

FIG 1 Electropherogram of reaction 1 with the positive detection of serotype 3.

TABLE 3 Analysis of discrepant resultsa

Strain

Result by:

FAF-
mPCR

Quellung
1

Quellung
2 Latex agglutination

1 18 22F 18B 18(18F/18A/18B/18C)
2 11A/11D 31 11A 11(11F/11A/11B/11C/11D)
3 10A 11F 10A 10(10F/10A/10B/10C)
4 7F/A 31 7A 7(7F/7A/7B/7C)
5 22F/A 7F 22F 22(22F/22A)
6 3 18C 3 3
7 7F/A 31 7A 7(7F/7A/7B/7C)
8 5 17F 5 5
9 19A 23F 19A 19(19F/19A/19B/19C)
10 18 38 25A 25(25F/25A), 38, 43, 44,

45, 46, 48
11 18 38 25A 25(25F/25A), 38, 43, 44,

45, 46, 48
a FAF-mPCR, multiplex PCR combined with fragment analysis and automated
fluorescent capillary electrophoresis; Quellung 2, results of retyped strains by Quellung
reaction.
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According to other authors (5, 29), compared to Quellung re-
action, multiplex PCR systems are cost-effective in terms of re-
agent costs and labor time requirements. This is also valid for
FAF-mPCR, as shown in our cost analysis. However, we must
consider that FAF-mPCR requires expensive instrumentation
(automatic DNA sequencer). In spite of this, multicapillary auto-
mated DNA sequencers are highly available in the clinical labora-
tories because these instruments are utilized in numerous labora-
tory tasks. Therefore, the requirement of sequencer use would not
be an important limitation for the introduction of the new tech-
nique.

In conclusion, the FAF-mPCR method for identification of
capsular serotypes of S. pneumoniae may be a useful alternative to
more widely accepted methodologies, particularly multiplex PCR.
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1. Introduction

Streptococcus pneumoniae is a leading cause of invasive disease,
such as meningitis and bacteraemia, and the most frequent bacterial
cause of community-acquired pneumonia, otitis media and sinusitis in
paediatric populations worldwide. Children aged less than two years
are at greatest risk.

Pneumococcus commonly colonizes the upper respiratory tract of
healthy children and is easily transmitted, usually by droplet
secretions, from person to person. When the balance between host
and pathogen is disturbed, S. pneumoniae can spread to adjacent
mucosal tissues to cause mucosal infections or invade the blood-
stream to cause invasive infections. Although most children are
colonised at some point during the first two years of life, only a small
minority will develop an invasive infection (Bogaert et al., 2004).

Several factors have been associated with increased prevalence
of carriage, including overcrowding (e.g., attending daycare centres
(DCC), residing in orphanages), younger age, family contacts,
exposure to cigarette smoke, colder months of the year, frequent
respiratory tract infections and an excessive use of antibiotics
(Principi et al., 1999).

The introduction of the 7-valent pneumococcal conjugate vaccine
(PCV7) in the United States in 2000 was followed by a significant
reduction in invasive pneumoccocal disease (IPD) and nasopharyn-
geal (NP) carriage due to vaccine serotype (VT) rates (Black et al.,
2000; Whitney et al., 2003). Despite the effectiveness of this vaccine,
the emergences of nonvaccine serotypes (NVT) in both IPD and NP
isolates and changes in antimicrobial susceptibilities have been
documented around the world [Frazao et al., 2005; Gonzalez et al.,
2006; Farrell et al., 2007; Muñoz-Almagro et al., 2008; Muñoz-
Almagro et al., 2009; Sa-Leao et al., 2009; Huang et al., 2009). In 2010,
two pneumococcal conjugate vaccines that included additional
emerging serotypes were licensed: the 10-valent pneumococcal
conjugate vaccine (PCV10; Synflorix®), adding serotypes 1, 5, and
7F, and the 13-valent pneumococcal conjugate vaccine (PCV13;
Prevenar-13®), adding serotypes 1, 3, 5, 6A, 7F, and 19A.

PCV7 became available in Spain in June 2001, although at present
in our region (Catalonia) it is not subsidized by the national public
health system. A study carried out in 2005 in Catalonia found an
estimated vaccination rate of 30% (Calbo et al., 2006). There are
limited data on pneumococcal serotypes involved in carriage in our
country, particularly since the introduction of PCV7 (García de Lomas
et al., 1997; Lopez et al., 1999; Sánchez-Tatay et al., 2008).

Because NP carriage is a major factor in the transmission of
pneumoccocal disease, continuing careful surveillance of colonized
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children is essential to increase understanding of changes in the
serotype distribution and antibiotic susceptibility of IPD isolates.

Themain objectives of this studywere 1) to determine the carriage
rate, serotype distribution and antibiotic susceptibility patterns of
S. pneumoniae in oropharyngeal (OP) carrier healthy children of our
community, 2) to assess the potential serotype coverage of the
recently licensed pneumococcal conjugate vaccines PCV10 and PCV13
against pneumococcal carriage in our population, and 3) to evaluate
the reported risk factors for pneumococcal carriage.

2. Materials and methods

2.1. Study population

From April 2004 through March 2006, OP swabs from 502 children
aged between 6 months and 6 years of age were obtained. The
children were attended for minor surgical procedures at the
Outpatient Department of Sant Joan de Déu Hospital. During the
study period, this was tertiary-care children's and maternity hospital
in Barcelona (Catalonia, Spain) with 345 beds and an average referral
population of 210,000 children under 18 years of age (data obtained
from the Statistical Institute of Catalonia [Institut d'Estadística de
Catalunya], http://www.idescat.net, accessed August 2011]).

The samples were obtained uniformly during the study period
except in August, when no cases were recruited because of researcher
vacation. Children suffering from fever or acute upper or lower
respiratory tract infection were excluded. During the first year of the
study period OP swabs were also collected from the patients’mothers.

A structured interview was conducted to elicit the following data:
age, gender, number of siblings, passive smoking, relatives with
chronic respiratory illness, DCC attendance, and medical history,
including underlying disorders, PCV7 status (not vaccinated, partially
vaccinated, or vaccination up-to-date for age at the time of
enrolment), hospital admissions or ear infections within the previous
three months, and recent antibiotic use (defined as use at time of
study or in the immediately prior month). No specific information
from the patients’ mothers was recorded.

Signed informed consent was obtained from the parents or legal
guardians of participating children prior to OP swabbing.

2.2. Sampling

One sample from each individual (mother and child) was obtained
at the same visit. OP swab specimen was taken by direct inspection of
the posterior wall and tonsil regions using rigid cotton-tipped
wooden applicators. The swabs were then inoculated as previously
described by the WHO working group (O'Brien et al., 2003). In order
tominimize possible distortion due to different collectionmethods, all
the specimens were obtained exclusively by the researcher herself,
having been trained in advance.

2.3. Bacteriology

Swabs were inoculated onto Columbia Agar with 5% sheep blood
and 5.0 μg of gentamicin/ml and were incubated aerobically at 37ºC
for 48h. S. pneumoniae isolates were identified by standard microbi-
ological procedures. Agar dilution technique was used to determine
the minimum inhibitory concentrations (MIC) of penicillin, cefotax-
ime, erythromycin, tetracycline, levofloxacine, and chloramphenicol.
Antibiotic susceptibilities were interpreted according to the 2008
meningeal break points defined in Clinical Laboratory Standards
Institute (CLSI) document M100-S18 (CLSI, 2008) so, isolates with
MIC to penicillin≥ 0.12μg/mlwere defined as penicillin-nonsusceptible
S. pneumoniae (PNSP). Multidrug resistance was defined as resistance
to three or more classes of antimicrobial agents. Serotyping was
performed with the Quellung reaction. Pneumococccal isolates were
classified as PCV7 serotypes (VT), non-PCV7 serotypes (NVT) (all
other serotypes), or non-typable (NT). All strains were sent to the
National Pneumococcus Reference Centre (Majadahonda, Madrid,
Spain) for determination of both MICs and serotypes.

2.4. Statistical analysis

Sample size calculation was performed according to an estimated
carriage prevalence of 25%, an alpha level of 0.05 and a power of 90%.
All clinical, epidemiological and microbiological variables analyzed
were introduced into a computerized data base (Microsoft Access 97).
Quantitative and qualitative variables were tabulated. Statistical
studies were carried out using the SPSS program (version 17.0) for
Windows. The chi-square test and Fisher's exact test were used for the
analysis of qualitative variables. Univariate analysis was performed to
determine the relative risk of being a carrier according to different risk
factors. The confidence interval was calculated at 95%. Two-tailed
tests to determine the significance of risk factors were performed at
the 5% significance level. Statistical significance was defined as a
P value of ≤ 0.05.

3. Results

3.1. Study population characteristics

OP swabs were obtained from 502 children between 6months and
6 years of age during the study period. Mean age was 36.9 months
(standard deviation: 18.8 months) and 317 (63.1%) were males.
Three-hundred forty-five (68.7%) children attended DCC and 57
(11.3%) had more than one sibling. One hundred and twelve (22.3%)
children had received antibiotic treatment in the previous month. Of
497 patients with available data about PCV7 immunization, 25.3% had
received at least one dose; this rate increased from 20.1% (45 of 224
patients) during the first year of the study to 29.7% (81 of 273
patients) during the second year.

3.2. Prevalence of carriage and risk factors

S. pneumoniaewas isolated from the oropharynx of 118 of the 502
children, representing an overall colonization rate of 23.5% (95% CI:
19.9- 27.5). This rate ranged from 5.9% (children aged between 6 and
12 months) to 32.3% (children aged between 24 and 36 months).
Univariate risk factors for pneumococcal carriage are shown in
Table 1. S. pneumoniae was isolated from the oropharynx of 6 (2.4%)
of the 248 mothers included during the first year of the study; in one
case it was also isolated from the child. Because of this low prevalence,
no OP swabs were collected from mothers during the second year of
the study.

3.3. Serotype distribution and antibiotic susceptibility of the OP isolates
in healthy children

A single pneumococcal isolate was recovered from each carrier.
Serotyping was performed on 116 (98.3%) of 118 isolates. A total of 31
serotypes were identified, with 6 isolates being NT. The predominant
serotypes were 19F (16 cases; 13.8%), 6A (12 cases; 10.3%), 23F (8
cases; 6.9%) and 19A (7 cases; 6.0%) (Fig. 1). Overall, 36 (31.0%) of the
isolates were contained in the PCV7, 39 (33.6%) in the PCV10, and 62
(53.4%) in the PCV13.

Carriage of VT pneumococci among PCV7 unvaccinated
children was significantly higher than among partially and
completely vaccinated children (40.5% vs. 20.0% and 10.5%
respectively, P = 0.009).

The onlymother-child pair of S. pneumoniae carriers was colonized
with the same serotype (19F). The serotypes isolated in the other 5

http://www.idescat.net


Table 1
Demographic and clinical characteristics of the 502 children included in the study. Univariate risk factors for pneumococcal carriage.

Characteristic (n) N Carriers (118)No. (%) Non-carriers (384)No. (%) P OR ( 95%CI)

Age ≥ 24 months (502)
Yes 348 97 (27.9) 251 (72.1) 0.001 2.45 (1.46-4.10)
No 154 21 (13.6) 133 (82.4)

Gender (502)
Male 317 68 (21.5) 249 (78.5) 0.155 0.74 (0.48-1.12)
Female 185 50 (27.0) 135 (73.0)

Daycare attendance (502)
Yes 345 101 (29.3) 244 (70.7) b0.001 3.41 (1.96-5.93)
No 157 17 (10.8) 140 (89.2)

Number of siblings (502)
≤ 1 445 106 (23.8) 339 (76.2) 0.643 0.85 (0.43-1.67)
N 1 57 12 (21.1) 45 (78.9)

Underlying disordersa (502)
Yes 119 22 (18.5) 97 (81.5) 0.139 0.68 (0.40-1.14)
No 383 96 (25.1) 287 (74.9)

PCV7 status (497)
Not vaccinated 371 85 (22.9) 286 (76.1) 0.442 0.75 (0.43-1.31)
Partially vaccinated 52 10 (19.2) 42 (80.8) 0.60 (0.26-1.41)
Completely vaccinated 74 21 (28.4) 53 (71.6) reference

Antibiotic last month (502)
Yes 112 14 (12.5) 98 (87.5) 0.002 0.39 (0.26-0.72)
No 390 104 (26.7) 286 (73.3)

AOM last 3 months (502)
Yes 81 18 (22.2) 63 (77.8) 0.766 0.96 (0.52-1.62)
No 421 100 (23.8) 321 (76.2)

Hospitalisation last 3 monthsb (502)
Yes 26 0 (0) 26 (100) 0.04 0.93 (0.91-0.96)
No 476 118 (24.8) 358 (75.2)

Passive smoking (502)
Yes 256 59 (23.0) 197 (77.0) 0.805 0.89 (0.58-1.35)
No 246 59 (24.0) 187 (76.0)

Colder months (502)
Yes 280 60 (21.4) 220 (78.6) 0.218 0.77 (0.51-1.17)
No 222 58 (26.1) 164 (73.9)

Relatives with CRI (502)
Yes 30 7 (23.3) 23 (76.7) 0.98 0.99 (0.41-2.37)
No 472 111(23.5) 361 (76.5)

CI = confidence interval; OR = odds ratio; AOM = acute otitis media; Colder months = October to March; CRI = chronic respiratory illness.
a Underlying disorders: metabolic-endocrine (25 cases), neurological disease (22 cases), respiratory disease (19 cases), immunosuppressant (10 cases), alimentary allergy (10 cases),

haematological disease non immunosuppressant (9 cases), dermatological disease (7 cases), congenital cardiac disease (5 cases), renal disease (5 cases) and others (7 cases).
b Hospitalisationlast3months:infectiousdisease(12cases),decompensatedunderlyingdisease(5cases),minorsurgicalprocedures(4cases),broncospasm(3cases),andseizure(2cases).
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mothers colonized were 6A (two cases), and one each of 19A, 23F
and 7F.

Forty-four strains (37.9%) were penicillin-nonsusceptible. VT
strains were more likely to be PNSP than NVT strains (66.7% vs.
21.6%; P b 0.001). PCV7 serotypes accounted for 54.5% of all PNSP
isolates. Of note, the most prevalent NVT, 6A and 19A, were mainly
penicillin-susceptible (12/12 and 6/7 respectively). The potential
PCV10 and PCV13 coverage of PNSP isolates was 54.5% and 56.8%,
respectively. Antimicrobial susceptibility is shown in Table 2. No cases
of resistance to levofloxacine were identified. A pattern of multidrug
resistance was observed in 22 isolates (18.9%).

4. Discussion

In this study, a pneumococcal OP carriage rate of 23.5% was found
among healthy children under six years old from our geographical
area. This is somewhat lower than the prevalence reported in three
previously published Spanish carriage studies; pneumococcal carriage
rates of 28% and 36% were found in two studies carried out before the
introduction of PCV7 (García de Lomas et al., 1997; Lopez et al., 1999),
and 31% in a study published after that (Sánchez-Tatay et al., 2008).
Carriage rates observed in children from other industrialised
countries ranged from 15% to nearly 70% [Frazao et al., 2005;
Petrosillo et al., 2002; Roche et al., 2007; Grivea et al., 2008; Varon
et al., 2000). Variations in study population, sampling methods and
culture techniques preclude comparison among different studies. For
instance, several factors might account for the lower prevalence rates
compared with other studies. First, we used OP swabs as a less
invasive method than NP swab; however NP sampling has been
shown to be somewhat superior to OP in detecting S. pneumoniae in
paediatric populations, especially in young children (Greenberg et al.,
2004). Second, we excluded children with respiratory tract infections,
who are more likely to be colonised by S. pneumoniae (Dunais et al.,
2003). A third factor is that carriage is often evaluated in children
attending DCC, which is another reported risk factor for pneumocco-
cal carriage, whereas the present study included children at a hospital
outpatient department.

Among the several risk factors analyzed, there were few
differences between the characteristics of carriers and non-carriers,
with DCC attendance being the greatest risk factor for pneumococcal
carriage detected in our study. This association is well documented;
the presence of a large number of susceptible children, crowding, and
high rates of viral respiratory tract infections are conditions that
favour thedevelopmentand transmissionof pneumococci (Dunais et al.,
2003; Sa-Leao et al., 2008).

The extremely low carriage rate concurrently found in the
patients’ mothers is similar to that described by other authors
(Regev-Yochay et al., 2004). It is known that the rate of S. pneumoniae
carriage is low in adults compared with children; however, because
adults are known to carry S. pneumoniae for shorter time periods
(Melegaro et al., 2004), and because only a single swab specimen was
obtained from each individual, the correlation between carriage rates
in children and their mothers and the concordance of serotypes may
have been partially underestimated.
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Overall, PCV7 serotypes accounted for 31% of isolates. Similar
results were described not only in a Spanish study performed after
PCV7 (Sánchez-Tatay et al., 2008) but also in several studies carried
out in other countries with low PCV7 coverage (Finkelstein et al.,
2003; Grivea et al., 2008) as in our population. In like manner, the
serotype distribution found, with 19F, 6A, 23F and 19A serotypes
being the most prevalent, was very similar to what was described by
these authors.

According to other authors (Shouval et al., 2008), PCV10 extended
the serotype coverage by only 2.6%. This limited benefit is due to the
low presence of the serotypes added among carriage isolates, in
contrast with invasive isolates, with serotypes 1 and 5 being highly
prevalent in our population (Muñoz-Almagro et al., 2008).

We detected no differences between PCV7 vaccinated and
unvaccinated children in the overall pneumoccocal carriage rate. In
contrast, colonization with VT was significantly associated with the
absence of PCV7 immunization. These observations are also in
accordance with published reports (Gonzalez et al., 2006; Grivea et al.,
2008; Sánchez-Tatay et al., 2008).
Table 2
Antimicrobial susceptibility of 116 Streptococcus pneumoniae isolates recovered from
oropharyngeal swabs from asymptomatic children.

Antimicrobial agent and MIC (μg/ml) Nº of strains (%)

Penicillin G
≤0.06 72 (62.1)
≥0.12 44 (37.9)

Cefotaxime
≤0.5 113 (97.4)
1 3 (2.6)
≥2 -

Erythromycin
≤0.25 74 (63.8)
0.5 -
≥1 42 (36.2)

Tetracycline
≤2 72 (62.1)
4 -
≥8 44 (37.9)

Chloramphenicol
≤4 100 (86.2)
≥8 16 (13.8)

MIC: minimum inhibitory concentration.
NOTE: None of the strains were resistant to levofloxacine, defined as an MIC≥4 μg/ mL.
The rate of penicillin resistance and its correlation with VT strains
were similar to what was described in the other Spanish study
performed after the introduction of PCV7 (Sánchez-Tatay et al., 2008),
whereas the two Spanish studies performed in the prevacunal age
showed clearly higher rates of penicillin resistance (64% and 68%,
respectively) (García de Lomas et al., 1997; Lopez et al., 1999). Those
results are in agreement with the significant decrease in penicillin
resistance observed in Spain in the last decade among the paediatric
population (Oteo et al., 2004), with the key factors being the
introduction of PCV7 and the decrease in antibiotic use.

Among NVT, penicillin resistance was associated with less
prevalent serotypes, whereas the most prevalent serotypes (6A and
19A) during the study period showed greater penicillin sensitivity; for
this reason the potential coverage of PNSP isolates by the new
pneumococcal conjugate vaccines was very similar to PCV7. Never-
theless, in recent years some authors have sounded the alarm about
the emergence of IPD caused by resistant NVT, in special serotype 19A
(Muñoz-Almagro et al., 2008; Techasaensiri et al., 2010).

This study has some limitations. First, we included patients
attending the hospital Outpatient Department, so the results obtained
could not be representative of our entire pediatric population. Second,
as previously indicated, not only the choice of the OP for swabbing,
but also the performing of a single swab per patient may have led to
underestimate the pneumococal carriage prevalence. Although if
several samples were simultaneously obtained the detection of
S. pneumoniae could have been somewhat optimized, a single swab
was obtained to diminish the discomfort to participating children,
according to similar studies published. In adition, in the present study
serotypingwas performedwith the Quellung reaction. However, it has
been reported that the most effective technique for detecting
pneumococcal carriers is multiplex- polymerase chain reaction
(PCR) (Ercibengoa et al., 2012). Unfortunely, we did not have this
technique available in the Laboratory Department during the study
period. Third, even though significant differences were detected in the
serotype distribution among carriers according to their PCV7 status,
the low PCV7 coverage was insufficient for analysis of the impact of
this vaccine on serotype distribution and antibiotic susceptibility.

In conclusion, a pneumococcal carriage rate of 23.5% was found
among healthy children in our geographical area. NVT were
predominant whereas antibiotic resistance was significantly associ-
ated with VT. Nevertheless, because of the low PCV7 vaccine coverage
among our population, continuing careful surveillance is essential to
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evaluate the long-term impact of pneumococcal conjugate vaccines
on carriage, serotype distribution and antibiotic susceptibility.

Acknowledgment

We are very appreciative of Dra. Fenoll (National Center of
Microbiology, Majadahonda, Madrid) for serotyping of isolates.

References

Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, et al. Efficacy, safety and
immunogenicity of heptavalent pneumococcal conjugate vaccine in children.
Northern California Kaiser Permanente Vaccine Study Center Group. Pediat Infect
Dis J 2000;19:187–95.

Bogaert D, de Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to
pneumococcal disease. Lancet Infect Dis 2004;4:144–54.

Calbo E, Díaz A, Cañadell E, Fabrega J, Uriz S, Xercavins M, et al. Invasive pneumococcal
disease among children in a health district of Barcelona: early impact of
pneumococal conjugate vaccine. Clin Microbiol Infect 2006;9:867–72.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for
antimicrobial susceptibility testing: 18th informational supplement, CLSI docu-
ment (M100-S18). Wayne, PA: CLSI; 2008.

Dunais B, Pradier C, Carsenti H, Sabah M, Mancini G, Fontas E, et al. Influence of child
care on nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus
influenzae. Pediat Infect Dis J 2003;22:589–92.

Ercibengoa M, Arostegi N, Marimon JM, Alonso M, Perez-Trallero E. Dynamics of
pneumococcal nasopharyngeal carriage in healthy children attending a day care
center in northern Spain. Influence of detection techniques on the results. BMC
Infect Dis 2012;22:69.

Farrell DJ, Klugman KP, Pichichero M. Increased antimicrobial resistance among
nonvaccine serotypes of Streptococcus pneumoniae in the pediatric population after
the introduction of the 7-valent pneumococcal vaccine in the United States. Pediat
Infect Dis J 2007;26:123–8.

Finkelstein JA, Huang SS, Daniel J, Rifas-Shiman SL, Kleinman K, Goldmann D, et al.
Antibiotic-resistant Streptococcus pneumoniae in the heptavalent pneumococcal
conjugate vaccine era: predictors of carriage in a multicommunity sample.
Pediatrics 2003;112:862–9.

Frazao N, Brito-Avo A, Simas C, Saldanha J, Mato R, Nunes S, et al. Effect of the seven-
valent conjugate pneumococcal vaccine on carriage and drug resistance of
Streptococcus pneumoniae in healthy children attending day-care centers in
Lisbon. Pediat Infect Dis J 2005;24:243–52.

García de Lomas J, Gimeno C, Millás E, Bermejo M, Lázaro MA, Navarro D, et al.
Antimocrobial susceptibility of Streptococcus pneumoniae isolated from pediatric
carriers in Spain. Eur J Clin Microbiol Infect Dis 1997;16:11–3.

Gonzalez BE, Hulten KG, Lamberth L, Kaplan SL, Mason EO, the U.S. Pediatric
Multicenter Pneumococal Surveillance Group. Streptococcus pneumoniae ser-
ogroups 15 and 33: an increasing cause of pneumococcal infections in children in
the United States after the introduction of the pneumococcal 7-valent conjugate
vaccine. Pediat Infect Dis J 2006;25:301–6.

Greenberg D, Broides A, Blancovich I, Peled N, Givon-Lavi N, Dagan R. Relative
importance of nasopharyngeal versus oropharyngeal sampling for isolation of
Streptococcus pneumoniae and Haemophilus influenzae from healthy and sick
individuals varies with age. J Clin Microbiol 2004;42:4604–9.

Grivea IN, Panagiotou M, Tsantouli AG, Syrogiannopoulus GA. Impact of heptavalent
pneumococcal conjugate vaccine on nasopharyngeal carriage of penicillin-resistant
Streptococcus pneumoniae among day care center attendees in central Greece.
Pediat Infect Dis J 2008;27:519–25.
Huang SS, Hinrichsen VL, Stevenson AE, Rifas-Shiman SL, Kleinman K, Pelton SI, et al.
Continued impact of pneumococcal conjugate vaccine on carriage in young
children. Pediatrics 2009;124:e1–11.

Lopez B, Cima MD, Vazquez F, Fenoll A, Gutierrez J, Fidalgo C, et al. Epidemiological
study of Streptococcus pneumoniae carriers in healthy primary-school children. Eur
J Clin Microbiol Infect Dis 1999;18:771–6.

Melegaro A, Gay1and NJ, Medley GF. Estimating the transmission parameters of
pneumococcal carriage in households. Epidemiol Infect 2004;132:433–41.

Muñoz-Almagro C, Jordan I, Gene A, Latorre C, García-García JJ, Pallares R. Emergence of
invasive pneumococcal disease caused by nonvaccine serotypes in the era of
7-valent conjugate vaccine. Clin Infect Dis 2008;46:174–82.

Muñoz-Almagro C, Esteva C, de Sevilla MF, Selva L, Gene A, Pallares R. Emergence of
invasive pneumococcal disease caused by multidrug-resistant serotype 19A among
children in Barcelona. J Infect 2009;59:75–82.

O'Brien KL, Nohynek H, World Health Organization Pneumococcal Vaccine Trials
CarriageWorking Group. Report from aWHOWorking Group: standardmethod for
detecting upper respiratory carriage of Streptococcus pneumoniae. Pediatr Infect Dis
J. 2003;22:e1–11.

Oteo J, Lázaro E, Abajo FJ, Baquero F, Campos J, Spanish Members of the European
Antimicrobial Resistance Surveillance System. Trends in antimicrobial resistance in
1968 invasive Streptococcus pneumoniae strains isolated in Spanish hospitals (2001
to 2003): decreasing penicillin resistance in children's isolates. J Clin Microbiol
2004;42:5571–7.

Petrosillo N, Pantosti A, Bordi E, Spano A, Del Grosso M, Tallarida B, et al. Prevalents,
determinants, and molecular epidemiology of Streptococcus pneumoniae isolate
colonizing the nasopharynx of healthy children in Rome. Eur J Clin Microbiol Infect
Dis 2002;21:181–8.

Principi N, Marchisio P, Schito GC, Mannelli S, Mannelli S. Risk factors for carriage of
respiratory pathogens in the nasopharynx of healthy children. Pediat Infect Dis
J 1999;18:517–23.

Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, Pinco E, et al. Nasopharyngeal
carriage of Streptococcus pneumoniae by adults and children in community and
family settings. Clin Infect Dis 2004;38:632–9.

Roche A, Heath PT, Sharland M, Strachan D, Breathnach A, Haigh J, et al. Prevalence of
nasopharyngeal carriage of pneumococcus in preschool children attending day care
in London. Arch Dis Child 2007;92:1073–6.

Sa-Leao R, Nunes S, Brito-Avo A, Alves CR, Carriço JA, Saldanha J, et al. High rates of
transmission of and colonization by Streptococcus pneumoniae and Haemophilus
influenzaewithin a day-care center revealed in a longitudinal study. J Clin Microbiol
2008;46:225–34.

Sa-Leao R, Nunes S, Brito-Avo A, Frazao N, Simoes AS, Crisostomo MI, et al. Changes in
pneumococcal serotypes and antibiotypes carried by vaccinated and unvaccinated
day-care centre attendees in Portugal, a country with widespread use of the seven-
valent pneumococcal conjugate vaccine. Clin Microbiol Infect 2009;15:1002–7.

Sánchez-Tatay D, Arroyo LA, Tarragó D, Lirola MJ, Porras A, Fenoll A, et al. Antibiotic
susceptibility and molecular epidemiology of nasopharyngeal pneumococci from
Spanish children. Clin Microbiol Infect 2008;14:797–801.

Shouval DS, Greenberg D, Givon-Lavi N, Porat N, Dagan R. Serotype coverage of invasive
and mucosal pneumococcal disease in Israeli children younger than 3 years by
various pneumococcal conjugate vaccines. Pediat Infect Dis J 2008;28:277–81.

Techasaensiri C, Messina AF, Katz K, Ahmad N, Huang R,McCracken Jr GH. Epidemiology
and evolution of invasive pneumococcal disease caused by multidrug resistant
serotypes of 19A in the 8 years after implementation of pneumococcal conjugate
vaccine immunization in Dallas, Texas. Pediat Infect Dis J 2010;29:294–300.

Varon E, Levy C, De la Rocque F, Boucherat M, Deforche D, Podglajen I, et al. Impact of
antimicrobial therapy on nasopharyngeal carriage of Streptococcus pneumoniae,
Haemophilus influenzae, and Branhamella catarralis in children with respiratory
tract infections. Clin Infect Dis 2000;31:477–81.

Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, et al. Decline in
invasive pneumococcal disease after the introduction of protein- polysaccharide
conjugates vaccine. N Engl J Med 2003;348:1737–46.



e128  |  www.pidj.com	 The Pediatric Infectious Disease Journal  •  Volume 32, Number 4, April 2013

Original Studies

Background: There is scarce information about changes in serotypes 
and clonal types of Streptococcus pneumoniae causing acute otitis media 
(AOM) in recent years, particularly in European countries.
Methods: Pneumococcal serotypes and clones from S. pneumoniae strains 
isolated from children with AOM who were attended at Hospital Sant Joan 
de Déu, Barcelona (1992 to 2011), were studied. Heptavalent pneumococ-
cal conjugate vaccine (PCV7) was introduced in June 2001. We defined 3 
periods: prevaccine period 1992 to 2001, early vaccine period 2002 to 2006 
and late vaccine period 2007 to 2011.
Results: There were 376 pneumococcal strains causing AOM, and 373 
(99.2%) of them were serotyped. AOM caused by PCV7 serotypes declined 
significantly: 161 of 245 (65.7%) episodes in 1992 to 2001 versus 22 of 
67 (32.8%) in 2002 to 2006 versus 8 of 61 (13.1%) in 2007 to 2011 P < 
0.001. In the last period (2007 to 2011), the potential serotype coverage for 
the PCV10 was 16.4% and for the PCV13 was 68.9% (P < 0.001). Sero-
type 19A increased from 5.7% in 1992 to 2001 to 42.6% in 2007 to 2011  
(P < 0.001). Among strains with penicillin minimal inhibitory concentra-
tion ≥0.12 μg/mL (n = 241), serotype 19A rose from 2.3% in the first period 
to 57.9 % in the last period (P < 0.001). The clonal-type ST320 was initially 
detected in 2005, and in the period 2007 to 2011, the ST320 was found in 
72.7% of nonsusceptible serotype 19A isolates.
Conclusions: Among children with AOM, a rapid expansion of the mul-
tiresistant clone ST320 expressing serotype 19A has been observed in Bar-
celona. The implementation of PCV13, which includes this serotype, may 
decrease the prevalence of AOM and reduce antimicrobial resistance.

Key Words: otitis, Streptococcus pneumoniae, multi locus sequence typing, 
serotypes, children

(Pediatr Infect Dis J 2013;32: e128–e133)

Acute otitis media (AOM) is a common infection in children, and 
Streptococcus pneumoniae remains its main etiologic agent.1 

Even in the current pneumococcal conjugate vaccine (PCV) era, AOM 

remains highly prevalent, accounting for a huge number of episodes 
worldwide. At present, annually >1,500,000 cases of AOM occur in 
the United States at an estimated cost of 440 million US dollars.2

The heptavalent (PCV7) has proven to be safe, immuno-
genic and effective in preventing AOM in children and other pneu-
mococcal infections caused by vaccine serotypes in children and 
adults (reflecting herd protection).3–6 Nonetheless, emergence of 
nonvaccine serotypes7–10 has reduced the potential benefits of PCV7 
routine vaccination. Additional concerns have arisen about the 
increase of antimicrobial resistance in nonvaccine serotypes.11–14 
In this respect, serotype 19A has particularly become one of the 
principal emergent serotypes with diminished susceptibility to anti-
microbial agents.15–20

Even though geographical and temporary differences in the 
main resistant clonal types of S. pneumoniae and their associated 
serotypes have been widely documented, data on this subject pri-
marily refer to invasive pneumococcal disease and nasopharyngeal 
carriers. However, little is known about the clonal composition 
and especially about the evolution of antimicrobial susceptibility 
related to serotypes and clonal types involved in AOM. This scarce 
information, together with the empirical approach adopted to treat 
the disease, make it necessary to know the changes in antibiotic 
resistance and serotypes causing pneumococcal AOM.

Considering the change in the distribution of serotypes in 
invasive pneumococcal disease after implementation of the hep-
tavalent vaccine, presumably this change has taken place also in 
episodes of AOM. For this reason, the main goal of this study was 
to investigate changes in serotype distribution and antimicrobial 
resistance of S. pneumoniae causing AOM in children during a 
20-year period. A secondary goal was to provide baseline infor-
mation about the clonal composition and serotype distribution of 
resistant isolates before the introduction of the new 10-valent and 
13-valent conjugate vaccines.

MATERIALS AND METHODS

Setting and Definitions
We conducted a prospective study including all S. pneumo-

niae strains isolated from children with (AOM) attended at Hos-
pital Sant Joan de Déu, located in the Barcelona area (Catalonia, 
Spain), from 1992 to 2011. Since 1989, all strains of S. pneumo-
niae isolated from clinical samples at the Clinical Microbiology 
Department have been prospectively frozen at –80°C and several 
variables have been routinely recorded, including type of sample, 
age, sex, diagnosis, serotype and antimicrobial susceptibility. All 
data were collected following the guidelines of the hospital’s ethics 
committee.

A case of pneumococcal AOM was diagnosed when the 
patient showed signs/symptoms of the disease together with 
isolation of S. pneumoniae from spontaneous ear secretions or 
samples obtained by tympanocentesis. Only 1 episode per patient 
was considered.
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PCV7 was introduced in Spain in 2001. Two newer 
conjugate vaccines that widen PCV7 serotype spectrum have 
recently been available: a 10-valent conjugate vaccine (PCV10), 
which includes PCV7 serotypes 4, 6B, 9V, 14, 18C, 19F and 23F, 
plus serotypes 1, 5 and 7F, and PCV13 (PCV10 plus additional 
serotypes 3, 6A and 19A). Although utilization of conjugate  
vaccines is recommended by the Spanish Association of Pediat-
rics,21 the regional public health system has not included them in 
routine vaccination programs yet. A moderate PCV7 uptake of 
50% was estimated among the pediatric population of Catalonia 
in 2007.22

Microbiological Identification, Serotyping and 
Antimicrobial Susceptibility

Isolates were identified in our laboratory by standard 
microbiological methods that included Gram strain morphology, 
optochin sensitivity test and bile solubility test, antigenic test and 
biochemical methods. The antimicrobial susceptibility was tested 
by a microdilution method. Isolates were serotyped by a published 
multiplex-polymerase chain reaction assay that allows rapid detec-
tion of 24 serotypes (1, 3, 4, 5, 6A, 6B, 7F ⁄ A, 8, 9V ⁄ A ⁄ N ⁄ L, 14, 
15B ⁄ C, 18C ⁄ B, 19A, 19F ⁄ B ⁄ C, 23A and 23F).23 A specific poly-
merase chain reaction to detect serotype 6C was used to distinguish 
serotype 6A and 6C.24

All strains were also sent to the National Pneumococcus 
Reference Center of Majadahonda (Madrid, Spain), to complete 
serotype study by Quellung reaction and determine the minimal 
inhibitory concentrations (MICs) of penicillin and other antibiotics 
by Agar dilution technique. Antibiotic susceptibilities were defined 
according to the 2008 breakpoints suggested by the Clinical Labo-
ratory Standards Institute.25 Isolates with intermediate or high-level 
resistance were defined as nonsusceptible. We adopted oral penicil-
lin breakpoints (susceptible ≤2 µg/mL, intermediate 4 µg/mL and 
resistant ≥8 µg/mL) for 2 reasons: first, for the purpose of epidemi-
ological surveillance; second, on the basis that treatment of otitis is 
mainly oral. Multidrug resistance was defined as nonsusceptibility 
to 3 or more antimicrobial agents

Clonal Analysis
Nonsusceptible penicillin strains isolated during the last 5 

years of study (when vaccine coverage in our population was esti-
mated to be >50%) were included for clonal analysis by multi locus 
sequence typing. In addition, given that serotype 19A was the main 
emergent serotype detected in this study, all nonsusceptible peni-
cillin serotype 19A strains were studied by multi locus sequence 
typing. The assignment of alleles and sequence types (STs) was 
carried out using the software at the pneumococcal web page www.
mlst.net. Analysis of ST and assignment to clonal complex were 
performed with the eBURST program. STs that shared 6 of 7 allelic 
(single locus [SLV]) variants were considered a clonal complex.

Statistical Analysis
The study was divided into 3 periods: prevaccine period 1992 

to 2001, early vaccine period (2002 to 2006), when vaccine cover-
age in our population was estimated to be <50%,8 and late vaccine 
period (2007 to 2011), with an estimated vaccine coverage >50%.22

We used the χ2 test or Fisher exact test to compare propor-
tions. Nonparametric Kruskal–Wallis test was utilized to compare 
differences in susceptibility of strains to different antimicrobial 
agents for each age group. Statistical analyses were performed 
using Statistical Package for Social Sciences software for Win-
dows, version 18. P values <0.05 were considered to be statistically 
significant.

RESULTS
During the study period, 376 AOM episodes caused by S. 

pneumoniae occurred. There were 220 (58.5%) males and 156 
(41.5%) females, with a median age of 12 months (range: 1 month–
11 years).

Serotype Distribution
Three hundred seventy-three of 376 (99.2%) strains were 

serotyped, and 41 different serotypes were found. AOM caused by 
PCV7 serotypes declined significantly: 161 of 245 (65.7%) epi-
sodes in 1992 to 2001 versus 22 of 67 (32.8%) in 2002 to 2006 
versus 8 of 61 (13.1%) in 2007 to 2011 P < 0.001. In the last period 
(2007 to 2011), the potential serotype coverage for the PCV10 was 
16.4% and for the PCV13 was 68.9% (P < 0.001).

Table 1 shows the most prevalent pneumococcal serotypes 
causing AOM over the study period. During the first period, the 3 
main serotypes detected were serotype 19F (22.4%), serotype 14 
(13.9%) and serotype 6B (13.5%). During the second period, sero-
type 19A was the most frequently found serotype (31.3%), followed 
by serotype 19F (14.9%), 23F (7.5%) and 6A (7.5%). In the last 
period, serotype 19A (42.6% of total isolates) markedly showed to 
be the most predominant, followed by serotype 14 (6.6%) and sero-
types 3, 6A and 6C and 23B each one with a rate of 4.9%. In fact, 
a significant increase of proportion of serotype 19A was detected: 
from 5.7% of total serotypes in the first period up to 42.6% in the 
last period (P < 0.001).

Antimicrobial Susceptibility and Clonal Study
Overall, the percentage of nonsusceptible strains according 

to oral penicillin breakpoints (≥0.12 μg/mL) was higher along the 
study period, 241 of 376 isolates (64.1%). The rate of nonsuscep-
tible isolates varied from 69.9% (172 of 246 strains) in the first 
period to 45.6% (31 of 68 strains) in the second period and 61.3% 
(38 of 62 strains) in the last period (P = 0.001).

One hundred sixty-four of 241 (68.0%) strains with 
MIC ≥0.12 μg/mL were PCV7 serotypes. The proportion of PCV7 
serotypes among strains with MIC ≥0.12 μg/mL decreased from 
82.6% (142 of 172 strains) in the first period to 48.4% (15 of 31 
strains) in the second period and 18.4% (7 of 38 strains) in the last 
period (P < 0.001). The proportion of PCV10 serotypes was exactly 
the same than that described for PCV7 serotypes in the last period 
of study (18.4%) while proportion of PCV13 serotypes was sig-
nificant higher than 78.9%. Of note, serotype 19A rose from 2.3% 
during the first period to 29 % during the second period and 57.9% 
in the last period of study (P < 0.001). Figure 1 shows the serotype 
distribution of isolates with MIC ≥ 0.12 μg/mL to penicillin in the 
3 periods of study.

A MIC ≥ 2 μg/mL was detected in 72 isolates, and 49 (68%) 
were PCV7 serotypes; the rest were 18 isolates serotype 19A, 3 
isolates 6A, 1 isolate 11A and 1 isolate 9N. With regard to serotype 
19A, it increased significantly from 0% (0 of 48 isolates) in the first 
period to 54.5% in the second period (6 of 11 isolates) and to 92.3% 
(12 of 13 isolates) during the last period (P < 0.001). Worrisome, 
among the 8 strains with MIC = 4 μg/mL, 5 of them were serotype 
19A whereas the rest were 3 strains serotype 23F. No strains with 
MIC ≥ 8 were found in this study.

Table 2 shows antimicrobial resistance according to Clinical 
Laboratory Standards Institute breakpoints for penicillin and other 
antimicrobials. Of note, 43 of 62 strains (69.4%) showed multidrug 
resistance in the last period of study. Thirty-four of these 43 strains 
(79.1%) expressed PCV13 serotypes.

All strains (n = 38) with MIC ≥ 0.12 μg/mL to penicillin 
isolated during the last period of the study were included for clonal 
analysis by multi locus sequence typing. A total of 19 different 

http://www.mlst.net
http://www.mlst.net
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STs were detected. By far, the most frequent ST was ST320, found 
in 16 strains (38.1 %) expressing all of them serotype 19A. The 
second most prevalent ST was ST156 detected in 4 strains (9.5%) 
expressing serotype 14. CC230 (which included ST276 and ST230) 
was also detected in 4 strains, 3 expressing serotype 19A and 1 
expressing serotype 24. CC2013 (including ST5195), all express-
ing serotype 19A, and ST2372, all expressing serotype 23B, were 
detected in 3 strains each. CC63, which included ST2100, was 
detected in 1 strain 15A and another 19F. The rest of ST (1 strain 
each) was detected in the following serotypes: ST81 (serotype 
23F), ST62 (serotype 11F), ST113 (serotype 18C), ST344 (non-
typeable), ST432 (serotype 21), ST558 (serotype 35B), ST1545 
(serotype 19F), ST4833 (serotype 12F), ST5740 (serotype 6A) and 
ST6521 (serotype 11A). It is to be highlighted that the 3 last STs 
and ST5195 and ST2372 were observed in our geographical area 
for the first time.

Clonal Study of Serotype 19A Pneumococci 
Nonsusceptible to Penicillin

Due to the predominance of serotype 19A among nonsus-
ceptible penicillin strains (22 of 38 isolates in the last period of 

study), clonal analysis of all nonsusceptible serotype 19A iso-
lates was performed along the study (n = 35). Overall 5 different 
clonal types appeared: ST320 (n = 18), ST276 (n = 9), ST2013  
(n = 4), ST81 (n = 3) and ST5195 (n = 1). eBurst analysis con-
sidered ST2013 and ST5195 as clonal complexes sharing 6 of 7 
alleles. Interestingly, ST320 was detected for the first time in 2005 
and a rapid expansion of this clonal type has been observed after 
its introduction, increasing from 22.2% (2 of 9 strains) during 2002 
to 2006 to 72.7% (16 of 22 strains) during the late vaccine period 
(2007 to 2011) (P < 0.001). Moreover, as shown in Figure 2, a 
clonal replacement was observed in these isolates comparing the 
prevaccine period (with ST81 as the most prevalent ST) with the 
vaccine period (with ST320 as the most prevalent ST).

DISCUSSION
The results obtained in this study support previous research 

that has showed a progressive declined in the number of AOM 
caused by PCV7 serotypes after the introduction of the vaccine 
and an increase of the strains resistant to antibiotics due to the 
emergence of non-PCV7 serotypes, taking into account that in 

TABLE 1.  The Most Prevalent Pneumococcal Serotypes Causing AOM During the 3 Periods of Study

Serotype

1992–2001 2002–2006 2007–2011

No. of Isolates Percentage No. of Isolates Percentage No. of Isolates Percentage

PCV7 161 65.7 22 32.9 8 13.1
19F 55 22.4 10 14.9 2 3.3
14 34 13.9 3 4.5 4 6.6
6B 33 13.5 3 4.5 0 0
23F 26 10.6 5 7.5 1 1.6
9V 8 3.3 0 0 0 0
4 3 1.2 0 0 0 0
18C 2 0.8 1 1.5 1 1.6
Non-PCV7 84 34 45 67.3 53 86.3
5 2 0.8 1 1.5 0 0
1 1 0.4 0 0 1 1.6
7F 0 0 2 3 1 1.6
6A 29 11.8 5 7.5 3 4.9
19A 14 5.7 21 31.3 26 42.6
3 15 6.1 3 4.5 3 4.9
22F 3 1.2 0 0 0 0
9N 3 1.2 0 0 0 0
NT 3 1.2 0 0 1 1.6
20 2 0.8 0 0 0 0
10F 1 0.4 0 0 0 0
12F 1 0.4 0 0 1 1.6
13 1 0.4 0 0 0 0
15F 1 0.4 0 0 0 0
18F 1 0.4 0 0 0 0
21 1 0.4 0 0 1 1.6
23A 1 0.4 0 0 1 1.6
23B 1 0.4 0 0 3 4.9
31 1 0.4 0 0 0 0
9A 1 0.4 0 0 0 0
15A 0 0 4 6 1 1.6
10A 0 0 2 3 1 1.6
24 0 0 2 3 1 1.6
16 0 0 2 3 0 0
10 0 0 1 1.5 0 0
13B 0 0 1 1.5 0 0
17 0 0 0 0 1 1.6
27 0 0 1 1.5 0 0
35B 0 0 0 0 1 1.6
6C 2 0.8 0 0 3 4.9
15B 0 0 0 0 2 3.3
11A 0 0 0 0 1 1.6
11F 0 0 0 0 1 1.6



The Pediatric Infectious Disease Journal  •  Volume 32, Number 4, April 2013	 Pneumococcal Otitis in Children

© 2013 Lippincott Williams & Wilkins� www.pidj.com  |  e131

the prevaccine period non-PCV7 serotypes were more susceptible 
than PCV7 serotypes and a decrease in antibiotic resistance would 
have been expected.14 Specially, a significant increase of strains 
nonsusceptible to Cefotaxime (which translate to Ceftriaxone) 
and multidrug-resistant strains was detected in the last period of 
the study. Such increase was mainly attributable to the emergence 
of serotype 19A as otopathogen in our geographical area as had 
already been described in diverse countries such as Australia, Italy, 

Portugal, United Kingdom and United States.8,26–30 Of note, this 
emergence had also been documented in some countries before the 
introduction of conjugate vaccines that highlights the likelihood of a 
multifactorial cause for serotype 19A emergence.31,32 In this respect, 
a genome-wide dissection of selected globally emergent multidrug-
resistant serotype 19A isolates from Canadian patients has recently 
reported new information. The results of Canadian study suggest 
that PCV7 vaccine selective pressure, antibiotic selection pressure 
and propensity for genetic change of S. pneumoniae could be 
related to the emergence of multidrug-resistant serotype 19A.33

Additionally, in this study, we observed a replacement in the 
clonal composition of multiresistant serotype 19A strains with a sta-
tistically significant increase of ST320 clone. The replacement was 
so extensive that during the last year of the study this clone ST320 
was detected in almost all 19A isolates with diminished suscepti-
bility to penicillin. On the other hand, multiresistant clone ST81, 
which had been highly prevalent in Spain during the prevaccine 
era,8 did not appear during the vaccine period. The main clonal type 
detected in the present study showed diminished susceptibility to 
oral β-lactamic antibiotics and completely resistant to macrolides. 
Therefore, high doses of oral amoxicillin or i.m. ceftriaxone should 
be recommended for treating patients with suspected pneumococ-
cal AOM. Of note, it has been reported that ST320 expressing sero-
type 19A may continue producing symptoms even with a high dose 
of β-lactamic antibiotic34, and moreover, a new clone expressing 
serotype 19A (clonal-type ST2722) has been detected as resistant 
to all FDA-approved antibiotics for the treatment of AOM in chil-
dren, which has important clinical consequences.35 Therefore, pre-
vention of disease caused by 19A serotype is necessary to avoid an 
important health problem. In our country, it is better to use PCV13 
instead of PCV10, due to the lack of 10-valent vaccine against sero-
type 19A.

In conclusion, a serious concern arises about the rapid 
expansion of multiresistant serotype 19A, regardless of the causa-
tive factors of this change. Due to the rapid and global expansion 
of pneumococcal multiresistant clones expressing serotype 19A, 
PCV13 vaccine should promptly be introduced in routine vac-
cination programs. A rapid implementation of the new vaccine 
and appropriate use of antibiotics could contribute to reduce the 
burden of disease and antimicrobial resistance in Spain and other 
countries. However, according to the lessons learned from PCV7 
vaccine spread, the use of PCV13 could be accompanied by an 

FIGURE 1.  Percentage of different serotypes among strains with MIC ≥ 0.12 μg/mL in the 3 periods of study.

TABLE 2.  Antimicrobial Susceptibility of Pneumococcal 
Strains Causing AOM

MIC (mg/L)

1992–2001 2002–2006 2007–2011

P
No. of Strains 

(%) n = 246
No. of Strains 

(%) n = 86
No. of Strains 

(%) n = 44

Penicillin G (meningeal breakpoints) and oral penicillin V breakpoints
≤0.06 74 (30.1) 37 (54.4) 24 (38.7) 0.001
≥0.12 172 (69.9) 31 (45.6) 38 (61.3)
Penicillin G (nonmeningeal breakpoints)
≤2 244 (99.2) 67 (98.5) 57 (91.9) 0.002
4 2 (0.8) 1 (1.5) 5 (8.1)
8 0 (0) 0 (0) 0 (0)
Cefotaxime (meningeal breakpoints)
≤0.5 173 (70.3) 58 (85.3) 37 (59.7) <0.001
1 69 (28) 10 (14.7) 11 (17.7)
≥2 4 (1.6) 0 (0) 14 (22.6)
Cefotaxime (nonmeningeal breakpoints)
≤1 242 (98.4) 68 (100) 48 (77.4) <0.001
2 4 (1.6) 0 (0) 14 (22.6)
≥4 0 (0) 0 (0) 0 (0)
Erythromycin
≤0.25 121 (49.2) 27 (39.7) 29 (46.8) 0.637
0.5 1 (0.4) 0 (0) 0 (0)
≥1 124 (50.4) 41 (60.3) 33 (53.2)
Tetracycline
≤2 82 (33.3) 27 (39.7) 29 (46.8) 0.265
4 4 (1.6) 0 (0) 1 (1.6)
≥8 160 (65) 41 (60.3) 32 (51.6)
Chloramphenicol
≤4 136 (55.3) 60 (88.2) 59 (95.2) <0.001
≥8 110 (44.7) 8 (11.8) 3 (4.8)
Multidrug resistance
0 107 (43.5) 39 (57.4) 19 (30.6) 0.009
1 139 (56.5) 29 (42.6) 43 (69.4)
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unpredictable increases in non-PCV13 serotypes in healthy carriers 
and likely also as cause of disease. Consequently, it is crucial to 
maintain surveillance of pneumococcal serotypes and clones after 
the introduction of 13-valent vaccine in order to adjust prophylaxis 
and treatment strategies with up-to-date knowledge.

ACKNOWLEDGMENTS
We thank Drs. Laura Selva, Alien Bastiani, Mariona F. de 

Sevilla, Susanna Hernandez-Bou, Juan J. Garcia-Garcia and Peter 
Weimberg for their contribution in taking care of patients and Pedro 
Brotons for the support in the statistical analysis. We also thank Dr. 
Fenoll for conventional serotyping. We also thank the availability of 
the public multi locus sequence typing database, which is located 
at Imperial College of London.

REFERENCES
	 1.	R odgers GL, Arguedas A, Cohen R, et al. Global serotype distribution 

among Streptococcus pneumoniae isolates causing otitis media in chil-
dren: potential implications for pneumococcal conjugate vaccines. Vaccine. 
2009;27:3802–3810.

	 2.	 Huang SS, Johnson KM, Ray GT, et al. Healthcare utilization and cost of 
pneumococcal disease in the United States. Vaccine. 2011;29:3398–3412.

	 3.	 Black S, Shinefield H, Fireman B, et al. Efficacy, safety and immunogenic-
ity of heptavalent pneumococcal conjugate vaccine in children. Northern 
California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect 
Dis J. 2000;19:187–195.

	 4.	 Pilishvili T, Lexau C, Farley MM, et al.; Active Bacterial Core Surveil-
lance/Emerging Infections Program Network. Sustained reductions in inva-
sive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 
2010;201:32–41.

	 5.	 Pulido M, Sorvillo F. Declining invasive pneumococcal disease mortality in 
the United States, 1990-2005. Vaccine. 2010;28:889–892.

	 6.	 Casey JR, Pichichero ME. Changes in frequency and pathogens causing 
acute otitis media in 1995-2003. Pediatr Infect Dis J. 2004;23:824–828.

	 7.	 Singleton RJ, Hennessy TW, Bulkow LR, et al. Invasive pneumococcal 
disease caused by nonvaccine serotypes among alaska native children with 
high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 
2007;297:1784–1792.

	 8.	 Muñoz-Almagro C, Jordan I, Gene A, et al. Emergence of invasive pneumo-
coccal disease caused by nonvaccine serotypes in the era of 7-valent conju-
gate vaccine. Clin Infect Dis. 2008;46:174–182.

	 9.	 Hicks LA, Harrison LH, Flannery B, et al. Incidence of pneumococcal dis-
ease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the 
United States during the era of widespread PCV7 vaccination, 1998-2004. J 
Infect Dis. 2007;196:1346–1354.

	10.	 Miller E, Andrews NJ, Waight PA, et al. Herd immunity and serotype 
replacement 4 years after seven-valent pneumococcal conjugate vaccina-
tion in England and Wales: an observational cohort study. Lancet Infect Dis. 
2011;11:760–768.

	11.	R ichter SS, Heilmann KP, Dohrn CL, et al. Changing epidemiology of anti-
microbial-resistant Streptococcus pneumoniae in the United States, 2004-
2005. Clin Infect Dis. 2009;48:e23–e33.

	12.	G ertz RE Jr, Li Z, Pimenta FC, et al.; Active Bacterial Core Surveillance 
Team. Increased penicillin nonsusceptibility of nonvaccine-serotype 
invasive pneumococci other than serotypes 19A and 6A in post-7-valent 
conjugate vaccine era. J Infect Dis. 2010;201:770–775.

	13.	 Porat N, Amit U, Givon-Lavi N, et al. Increasing importance of multidrug-
resistant serotype 6A Streptococcus pneumoniae clones in acute otitis media 
in southern Israel. Pediatr Infect Dis J. 2010;29:126–130.

	14.	 Song JH, Dagan R, Klugman KP, et al. The relationship between pneumo-
coccal serotypes and antibiotic resistance. Vaccine. 2012;30:2728–2737.

	15.	R einert R, Jacobs MR, Kaplan SL. Pneumococcal disease caused by sero-
type 19A: review of the literature and implications for future vaccine devel-
opment. Vaccine. 2010;28:4249–4259.

	16.	 Muñoz-Almagro C, Esteva C, de Sevilla MF, et al. Emergence of invasive 
pneumococcal disease caused by multidrug-resistant serotype 19A among 
children in Barcelona. J Infect. 2009;59:75–82.

	17.	 Pichichero ME, Casey JR. Evolving microbiology and molecular epidemi-
ology of acute otitis media in the pneumococcal conjugate vaccine era. Pedi-
atr Infect Dis J. 2007;26(suppl 10):S12–S16.

	18.	 Pichichero ME, Casey JR. Emergence of a multiresistant serotype 19A 
pneumococcal strain not included in the 7-valent conjugate vaccine as an 
otopathogen in children. JAMA. 2007;298:1772–1778.

	19.	 Casey JR, Adlowitz DG, Pichichero ME. New patterns in the otopathogens 
causing acute otitis media six to eight years after introduction of pneumo-
coccal conjugate vaccine. Pediatr Infect Dis J. 2010;29:304–309.

	20.	T homas JC, Figueira M, Fennie KP, et al. Streptococcus pneumoniae clonal 
complex 199: genetic diversity and tissue-specific virulence. PLoS ONE. 
2011;6:e18649.

	21.	 Marès Bermúdez J, van Esso Arbolave D, Moreno-Pérez D, et al.; Asociación 
Española de Pediatría. Vaccination schedule of the Spanish Association of Pae-
diatrics: recommendations 2011. An Pediatr (Barc). 2011;74:132.e1–132.e19.

	22.	D omínguez A, Ciruela P, García-García JJ, et al. Effectiveness of 7-valent 
pneumococcal conjugate vaccine in the prevention of invasive pneumococ-
cal disease in children aged 7-59 months. A matched case-control study. 
Vaccine. 2011;29:9020–9025.

	23.	T arragó D, Fenoll A, Sánchez-Tatay D, et al. Identification of pneumococcal 
serotypes from culture-negative clinical specimens by novel real-time PCR. 
Clin Microbiol Infect. 2008;14:828–834.

	24.	 Carvalho Mda G, Pimenta FC, Gertz RE Jr, et al.; Active Bacterial Core Sur-
veillance Team. PCR-based quantitation and clonal diversity of the current 
prevalent invasive serogroup 6 pneumococcal serotype, 6C, in the United 
States in 1999 and 2006 to 2007. J Clin Microbiol. 2009;47:554–559.

FIGURE 2.  Pneumococcal AOM in children. Clonal distribution of serotype 19A isolates with MIC > 0.12 μg/mL along the 
study period.



The Pediatric Infectious Disease Journal  •  Volume 32, Number 4, April 2013	 Pneumococcal Otitis in Children

© 2013 Lippincott Williams & Wilkins� www.pidj.com  |  e133

	25.	 National Committee for Clinical Laboratory Standards. Performance Stand-
ards for Antimicrobial Susceptibility Testing (2008): Eighteenth Informa-
tional Supplement. CLSI Document M100-S18 (ISBN 1-5-56238-653-0). 
Wayne, PA: Clinical and Laboratory Standard Institute; 2008.

	26.	 Messina AF, Katz-Gaynor K, Barton T, et al. Impact of the pneumococcal 
conjugate vaccine on serotype distribution and antimicrobial resistance of 
invasive Streptococcus pneumoniae isolates in Dallas, TX, children from 
1999 through 2005. Pediatr Infect Dis J. 2007;26:461–467.

	27.	 Lehmann D, Willis J, Moore HC, et al. The changing epidemiology of inva-
sive pneumococcal disease in aboriginal and non-aboriginal western Aus-
tralians from 1997 through 2007 and emergence of nonvaccine serotypes. 
Clin Infect Dis. 2010;50:1477–1486.

	28.	 Ansaldi F, Canepa P, de Florentiis D, et al. Increasing incidence of Strep-
tococcus pneumoniae serotype 19A and emergence of two vaccine escape 
recombinant ST695 strains in Liguria, Italy, 7 years after implementation of 
the 7-valent conjugated vaccine. Clin Vaccine Immunol. 2011;18:343–345.

	29.	 Simões AS, Pereira L, Nunes S, et al. Clonal evolution leading to mainte-
nance of antibiotic resistance rates among colonizing Pneumococci in the 
PCV7 era in Portugal. J Clin Microbiol. 2011;49:2810–2817.

	30.	 Tocheva AS, Jefferies JM, Rubery H, et al. Declining serotype coverage of 
new pneumococcal conjugate vaccines relating to the carriage of Strepto-
coccus pneumoniae in young children. Vaccine. 2011;29:4400–4404.

	31.	 Dagan R, Givon-Lavi N, Leibovitz E, et al. Introduction and proliferation 
of multidrug-resistant Streptococcus pneumoniae serotype 19A clones 
that cause acute otitis media in an unvaccinated population. J Infect Dis. 
2009;199:776–785.

	32.	 Choi EH, Kim SH, Eun BW, et al. Streptococcus pneumoniae serotype 19A 
in children, South Korea. Emerging Infect Dis. 2008;14:275–281.

	33.	 Pillai DR, Shahinas D, Buzina A, et al. Genome-wide dissection of glob-
ally emergent multi-drug resistant serotype 19A Streptococcus pneumoniae. 
BMC Genomics. 2009;10:642.

	34.	 Pelton SI, Huot H, Finkelstein JA, et al. Emergence of 19A as virulent and 
multidrug resistant Pneumococcus in Massachusetts following universal 
immunization of infants with pneumococcal conjugate vaccine. Pediatr 
Infect Dis J. 2007;26:468–472.

	35.	 Xu Q, Pichichero ME, Casey JR, et al. Novel type of Streptococcus pneu-
moniae causing multidrug-resistant acute otitis media in children. Emerging 
Infect Dis. 2009;15:547–551.

Erratum
Metacarpal osteomyelitis and chronic granulomatous disease: ERRATUM

In the letter appearing on page 196 of volume 32, issue 2, the order of authors was incorrect. The author listing should appear as follows 
Wassim Zribi, MD,* Makram Koubaa, MD,† Zoubeir Ellouze, MD,* Dorra Lahiani, MD,† Mounir Ben Jemâa, MD,† Hassib Keskes, MD*.  
The affiliations are as follows: *Department of Orthopaedic Surgery, Habib Bourguiba University hospital, Sfax, Tunisia; and †Department 
of Infectious Diseases, Hedi Chaker University Hospital, Sfax, Tunisia.

REFERENCE
1. Zribi W, Ellouze Z, Keskes H, et al. Metacarpal osteomyelitis and chronic granulomatous disease. Pediatr Infect Dis J. 2013;32:196.



High prevalence of genetically-determined mannose binding lectin

deficiency in young children with invasive pneumococcal disease

C. Mu~noz-Almagro1, C. Bautista2, M. T. Arias3, R. Boixeda4, E. del Amo1, C. Borr�as2, N. Armiger3,5, L. Garcia6, G. Sauca7,

L. Selva1, M. F. de Sevilla2, P. Ciruela8, J. C. Yebenes6, R. Pallares9 and F. Lozano3,5,10

1) Molecular Microbiology Department, 2) Paediatrics Department, Hospital Universitari Sant Joan de Deu and University of Barcelona, Esplugues,

3) Department of Immunology, Hospital Clinic of Barcelona, 4) Department of Internal Medicine, Hospital de Mataro – Consorci Sanitari del Maresme,

Mataro, 5) Group of Immunoreceptors, Institut d’Investigacions Biom�ediques August Pi i Sunyer, 6) Department of Paediatrics and Intensive Care,

7) Department of Microbiology, Hospital de Mataro – Consorci Sanitari del Maresme, Mataro, 8) Public Health Agency, Government of Catalonia,

9) Infectious Diseases, Idibell, Ciberes, Campus Bellvitge, and 10) Department of Cell Biology, Immunology and Neurosciences, University of Barcelona,

Barcelona, Spain

Abstract

Susceptibility to invasive pneumococcal disease (IPD) correlates with age, younger children being the group with the highest burden of

disease. The relevance of the innate immune response and particularly the role of mannose-binding lectin (MBL) in combating IPD is not well

known. This is a 2-year prospective study (February 2011 to March 2013) including patients with IPD who attended two hospitals from

Catalonia, Spain. Variables including attack rate of pneumococcal serotype (high or low invasive potential serotypes) and genotypes

associated with low serum MBL levels were recorded. One hundred and forty-seven patients were included in the study. One hundred and

two (69.4%) patients were children or adolescents <18 years and 45 (30.6%) were adults. Overall, low-MBL genotypes (O/O; XA/O) were

detected in 23 (15.6%) patients. Children <2 years showed a higher frequency of low-MBL genotypes compared with other patients (31.0%

vs. 11.9%; p = 0.031). Further sub-analysis revealed a higher proportion of low-MBL genotypes in children <2 years with IPD caused by

opportunistic or low-attack-rate serotypes when compared with older patients (46.2% vs. 13.2%; p = 0.02). However, no statistically

significant differences between the two groups were observed when including patients infected with invasive or high-attack-rate serotypes

(18.8% vs. 10.0%; p = 0.59). Our data suggest that young children with a genetically determined low-MBL production are at a higher risk of

developing IPD, particularly that caused by opportunistic or low-attack-rate pneumococcal serotypes.
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Introduction

Invasive pneumococcal disease (IPD) is a serious health

problem in children and adults, and causes almost one million

childhood deaths worldwide every year [1]. Streptococcus

pneumoniae usually colonizes the nasopharynx of healthy

children but is less frequently found as a colonizer in adults. It

is estimated that most children are colonized by pneumococcus
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at least once during the first 2 years of life and nasopharyn-

geal colonization is the first step towards development of

mucosal and invasive diseases [2]. Further spread of pneumo-

coccus to the bloodstream and other normally sterile sites

occurs less often. However, young children, young adults with

immunosuppressive and chronic conditions and older adults

are at higher risk of IPD. The complex interaction between

impaired host factors and the presence of virulence determi-

nants of the pneumococcus may be responsible for developing

IPD [2].

The main virulence factor for pneumococcus is the

polysaccharide capsule, with more than 94 serotypes that

cause varying rates of carriage and IPD. Some of these

serotypes have ‘low attack rate’ and are frequently detected in

carriers. These so-called ‘opportunistic serotypes’ are more

prevalent in children <2 years old, elderly people and patients

with co-morbidities [3]. In contrast, serotypes with a ‘high

attack rate’, also called ‘high-invasive potential serotypes’, are

seldom detected in carriers and often cause IPD, particularly in

older children and adults without co-morbidities [4,5].

Intriguingly, serotypes with a high attack rate, such as

serotypes 1, 5 or 7F, have been associated with a less

complicated course of disease and lower mortality rates than

opportunistic serotypes [6,7],whereas serotypes with a low

attack rate have been related to high mortality and more

serious clinical manifestations, such as meningitis and sepsis

[8].

Mannose-binding lectin (MBL) is a serum protein of the

innate immune system, which recognizes pathogen structures,

mainly of a carbohydrate nature. It can then promote

opsonophagocytosis of a wide range of microorganisms and

subsequent antibody-independent complement activation

[9,10]. It is considered a pre-antibody that has a relevant

defensive role in the first period of life, when an immature

adaptive immune system still exists. The serum levels of MBL

are genetically determined as a consequence of single nucle-

otide polymorphisms (SNPs) embedded into the promoter and

the exon 1 of the human MBL2 gene [11]. Homo- and

heterozygous combinations of those SNPs give rise to different

genotypes responsible for high (A/A, XA/A), intermediate (O/

A, XA/XA) or low (O/O, XA/O) serum MBL levels [12].

Previous reports indicate that genetically-determined MBL

deficiency is relatively frequent in all human populations

analyzed (ranging from <15% in Caucasian populations to 20%

in sub-Saharan African populations) [13,14]. This deficiency has

been linked to increased susceptibility to infectious diseases,

including those caused by pneumococcus [15]. Nonetheless,

this hypothesis remains controversial because some studies

have not observed a significant association of MBL deficiency

with the development of IPD [16].

The aim of this study was to evaluate the prevalence of

genotypes responsible for low serum MBL levels in patients

with IPD according to age group and serotype attack rate

characteristics. This information could be useful for designing

strategies for prevention and personalized treatment of

patients based on previous analysis of host–pathogen interac-

tions.

Patients and Methods

Participant recruitment

This is a prospective study that includes all patients with IPD

who attended two medical centres (Hospital Sant Joan de D�eu

and Hospital de Matar�o) from 1 February 2011 to 1 March

2013. The Hospital Sant Joan de D�eu (HSJD) is a 360-bed

referral paediatric centre located in the metropolitan area of

Barcelona, which annually captures around 17% of all hospi-

talizations (c. 200 000 children) from the population <18 years

in Catalonia (Spain). The Hospital de Matar�o (HM) is a public

general hospital that covers a catchment area of 400 000

inhabitants from the Catalonian area of Maresme.

Only one episode (the first) per patient was included in the

study sample. Patients with functional deficit of classical or

alternative pathways of complement activation were excluded

from the study, as well as patients with immunocompromised

conditions (HIV infection, immunoglobulin deficit), cystic

fibrosis, bronchiectasis or cerebrospinal leak.

Demographic and clinical variables including age, sex,

ethnicity, IPD risk factors, pneumococcal vaccination status,

pneumococcal serotypes and their invasiveness potential, MBL

production levels, clinical diagnosis, course of disease, length of

hospital stay (LOS) and admission to intensive care unit (ICU)

were registered for each episode.

The study was performed following the guidelines of the

Ethics Committees of Hospital Sant Joan de D�eu and Hospital

de Matar�o.

Microbiological and immunological methods

Invasive pneumococcal disease was defined as the presence of

clinical findings of infection (which were used for classification

of disease) together with isolation of Streptococcus pneumoniae

and/or DNA detection of the pneumolysin (ply) gene and an

additional capsular gene of S. pneumoniae by real-time PCR in

plasma, cerebrospinal fluid or any other sterile fluid. All

pneumococcal isolates were identified by standard microbio-

logical methods. DNA detection of the pneumolysin (ply) gene

by real-time PCR in normal sterile fluids was performed

according to a previously reported assay [17]. Serotyping of

strains isolated by culture was carried out by a molecular
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technique based on automated fluorescent fragment analysis,

which allows differentiation of 40 serotypes [18]. Detection of

pneumococcal serotypes in culture-negative clinical samples

was performed by multiplex real-time PCR methodology [19].

Both molecular techniques were performed at the Molecular

Microbiology Department of Hospital Sant Joan de D�eu, which

operates as the regional support laboratory for pneumococcus

surveillance in Catalonia. Quellung reaction performed at the

National Center for Microbiology (Majadahonda, Madrid) was

used to complete serotyping in strains isolated by culture.

Serotypes were classified according to the studies of

Brueggemann [4] and Sleeman [5]: 1, 4, 5, 7F, 9V, 14, 18C

and 19A were considered to have a ‘high attack rate’ whereas

the remainder were considered to be non-invasive or oppor-

tunistic serotypes with a ‘low attack rate’.

MBL2 polymorphism analysis

DNA extraction, amplification and genotyping of MBL2 were

carried out as previously described [20]. Six single nucleotide

polymorphisms (SNPs) in the 50-flanking/promoter region

(�550 G/C �221 C/G, 4 C/T) and exon 1 (codon 52 CGT/

TGT, codon 54 GGC/GAC and codon 57 GGA/GAA) of the

MBL2 gene were analysed using a polymerase chain reaction

(PCR) and sequence-based typing (SBT) technique. The SNPs

at codons 52, 54 and 57 are named D, B and C variants,

respectively, and are major determinants of serum MBL levels

[10,11]. These variants are collectively named O, while A

indicates the wild-type variant. The SNPs at positions �551

(H/L), �221 (X/L) and +4 (P/Q) also influence serum MBL

levels in individuals with the wild-type A variant [16].

However, the functional effects of H/L and P/Q SNPs appear

to be minor compared with L/X, X being the allele associated

with lower MBL expression. Accordingly, haplotype combina-

tions O/O and O/XA were considered as low-MBL producing

genotypes, O/A and XA/XA as intermediate-producing, and A/

A and XA/A as high-producing genotypes.

Statistical analysis

Statistical analyses were performed using Statistical Package

for Social Sciences software (SPSS Statistics for Windows,

version 20.0, IBM Corp., Chicago, IL, USA). Continuous

variables were summarized as means and standard deviations

(SDs) or as medians and interquartile ranges (IQR, 25th to

75th percentile) according to their homogeneity. Categorical

variables were compared with the chi-squared test or the

Fisher’s exact test (two-tailed) when appropriate. Continuous

variables were compared with the Mann–Whitney U-test or

Student t-test according to their homogeneity. Significance

was set at a two-sided p-value of <0.05 for all statistical

analyses. p-values were corrected according to the Holm

method for multiple comparisons. An eligible population of

170 subjects was expected to be collected in the two

hospitals during the study period, according to incidence

rates of previous years. Based on results described in

previous studies, proportions of low vs. medium-high MBL

levels were assumed to be 15% and 85%, respectively, while

proportions of IPD caused by opportunistic serotypes vs.

high-attack serotypes were assumed to be 50% and 50%. The

confidence level was set at 95% (two-tailed), precision of

confidence interval at �3%, and rate of subjects not meeting

inclusion criteria at 10%. It was calculated that the minimum

sample size to be recruited for the study needed to include

164 subjects from the eligible population.

Results

A total of 203 IPD episodes among 200 patients were

recorded in the two institutions. Of these, 36 patients did

not give consent to participate in the study (18%) and 17 did

not meet inclusion criteria (two patients with cerebrospinal

leak, three patients with HIV infection, and 12 patients with

immunosuppression treatment). Thus, the final study sample

comprised 147 patients with IPD.

Eighty-five patients (57.8%) were recruited at Hospital Sant

Joan de D�eu and 62 (42.2%) at Hospital de Matar�o. The

predominant gender was male (85 patients; 57.8%) and the

predominant ethnic group was Caucasian (n = 110; 74.8%).

Children or adolescents <18 years of age were also the

predominant age group (n = 102; 69.4%). The median age of

paediatric patients was 2.9 years (IQR, 1.7–5.3 years) while

the median age of adults was 54.0 years (IQR, 47.1–

77.6 years). Pneumonia was the most frequent clinical diagno-

sis (n = 125; 85.0%); 66 subjects had complicated pneumonia.

This was followed by meningitis (n = 12; 8.2%) and bactera-

emia/sepsis (n = 10; 6.8%). One hundred and thirty-seven

(93.2%) patients required hospitalization, with a median LOS of

9.0 days (IQR, 6.0–14.0), and 25 (17.0%) patients required

admission to the Paediatric Intensive Care Unit (PICU). Only

45 (30.6%) patients had previously been vaccinated; 15 (10.2%)

suffered sequelae and three adults died.

Sixty-five (44.2%) episodes were confirmed only by PCR, 61

(41.5%) by culture and 21 (14.3%) by both PCR and culture.

Overall, the rank order of serotypes was serotype 1 (n = 36;

24.5%), serotype 3 (n = 22; 15.0%), serotype 19A (n = 11;

7.5%) and serotype 7F (n = 10; 6.8%). Serotypes included in

the 13-valent pneumococcal conjugate vaccine were found in

74 (72.5%) of 102 children and adolescents younger than

18 years and in 21 (46.7%) of 45 adults. Serotypes with a high

attack rate were identified in 66 (44.9%) episodes.
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Table 1 shows the MBL2 genotype frequencies found in this

study. A genotype associated with low production of MBL (O/

O; XA/O) was detected in 23 (15.6%) patients, while

genotypes associated with intermediate and high MBL pro-

duction were detected in 45 (30.6%) and 79 (53.7%) patients,

respectively. Table 2 shows demographic, clinical, microbio-

logical and genotypical variables of patients according to age

group.

Low-MBL genotypes were not found to be significantly

associated with the variables of sex, ethnicity, serotype

invasiveness and PICU admission. A higher proportion of

low-MBL genotypes was observed among patients with

meningitis in comparison with other clinical presentations

(33.3% vs. 14.1%) but this tendency did not reach a statistically

significant value (p = 0.191). Children younger than 2 years

showed a significantly higher frequency of low-MBL genotypes

compared with the other patients (31.0% vs. 11.9%;

p = 0.031). Nevertheless, correction for multiple comparisons

did not confirm significance of this association (corrected

p-value = 0.186). Data regarding associations between vari-

ables are presented in Table 3.

A sub-analysis of patients by age group (considering children

<2 years old vs. other patients) revealed considerable pro-

portions of carriers of low-MBL genotypes among children

<2 years old with IPD caused by opportunistic serotypes

(46.2%), diagnosed with meningitis (42.9%), admitted to the

ICU (40%) and of Caucasian ethnicity (36.8%). When com-

paring the frequency of low-MBL genotypes in these younger

children and in other patients, ratios of proportions (R)

between the two age groups were found to be statistically

significant in Caucasian patients (p = 0.013) and in patients

with IPD caused by opportunistic serotypes (p = 0.020). These

results are recorded in Table 4.

Discussion

Susceptibility to IPD has been reported to be clearly related

to age, and younger children are the group with the highest

burden of disease [1,3]. The importance of the innate

immune response in combating infections is well docu-

mented. Contrary to adaptive immunity, which takes days to

generate and expand a specific humoral and/or cellular

response against the pathogen, the innate response acts

immediately (within minutes or hours). This innate immune

system acts as a first-line defensive barrier, which is critical to

contain the passage of nasopharyngeal colonizers to normally

sterile sites until lymphocytes and specific antibodies take

action [21]. It is also well known that the type and magnitude

of the adaptive immune response vary with age, developing

from immaturity at birth to maturity after the first 2 years of

life, although it takes even longer for the adaptive immune

system to fully develop. Therefore, in younger children the

fight against infections mainly relies on the innate immune

system.

An international study has analysed the association between

mortality, clinical manifestations and recovery of invasive

serotypes vs. non-invasive serotypes, and has shown that host

factors are better predictors of associated morbidity and

mortality of IPD than serotype invasiveness [8]. That is,

whether an opportunistic serotype will cause disease and/or

determine a worse evolution is more strongly related to a

deficient host immunological response than to microbiological

factors.

In the present study, we found a significantly high propor-

tion of genotypes associated with low MBL production among

children younger than 2 years with IPD. Moreover, the

frequency of low-MBL genotypes was observed to be

especially high (46.2%) in younger children with IPD caused

by opportunistic serotypes. These data suggest that pneumo-

coccal nasopharyngeal colonizers have more opportunities to

cause invasive disease in young children with a geneti-

cally-determined low MBL production, which is a crucial

factor in the innate immune response. Interestingly, when rates

of low-MBL genotypes among patients with IPD caused by

serotypes with high invasiveness (high-attack-rate serotypes)

were analyzed, we did not find a significantly high proportion

of low-MBL genotypes either in young children aged <2 years

or in other patients. Serotypes with a high attack rate are bad

colonizers, and different studies have shown that they have

important virulence factors associated with the production of

pleuropneumonia or other clinical manifestations of IPD [22].

These data suggest that in the case of high-attack-rate

serotypes, microbiological factors may proportionally have

TABLE 1. MBL2 genotype frequencies in 147 patients with

invasive pneumococcal disease

MBL genotype
group Frequencies %

YA/YA 42 28.6
YA/XA 37 25.2
XA/XA 6 4.1
Overall A/A 85
YA/YB 21 14.3
XA/YB 6 4.1
YA/YC 7 4.8
XA/YC 2 1.4
YA/YD 11 7.5
XA/YD 2 1.4
Overall A/O 49
YB/YB 4 2.6
YB/YC 3 2.0
YB/YD 4 2.6
YC/YC 1 0.7
YC/YD 0 0
YD/YD 1 0.7
Overall O/O 13
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more weight in causing disease, regardless of the quality of the

immune response.

Our data about the implication of MBL in the development of

IPD in young children are novel but in agreement with studies

performed in mice about the role of MBL in susceptibility to

pneumococcal infection [23]. In addition, data also exist

documenting the implication of MBL deficiency in other

paediatric infectious diseases. A recent systematic review has

TABLE 2. Demographic, clinical, microbiological and genotypical characteristics of patients according to age group

Characteristics <2 years ≥2 and <5 years ≥5 and <65 years ≥65 years Total

Subjects 29 (19.7) 45 (30.6) 56 (38.1) 17 (11.6) 147
Sex
Male 14 (48.3) 24 (53.3) 38 (67.9) 9 (52.9) 85 (57.8)
Female 15 (51.7) 21 (46.7) 18 (32.1) 8 (47.1) 62 (42.2)

Ethnicity
Caucasian 19 (65.5) 31 (68.9) 45 (80.4) 15 (88.2) 110 (74.8)
Non-Caucasian 10 (34.5) 14 (31.1) 11 (19.6) 2 (11.8) 37 (15.2)

Clinical manifestation
Pneumonia 18 (62.0) 39 (86.7) 53 (94.6) 15 (88.2) 125 (85.0)
Meningitis 7 (24.1) 2 (4.4) 1 (1.8) 2 (11.8) 12 (8.2)
Bacteraemia/sepsis 4 (13.8) 4 (8.9) 2 (3.6) 0 10 (6.8)

ICU admission (n = 137)a

No 18 (64.3) 34 (79.1) 45 (90.0) 15 (93.8) 112 (83.0)
Yes 10 (35.7) 9 (20.9) 5 (10.0) 1 (6.3) 25 (17.0)

Clinical course (n = 129)a

No sequelae 15 (62.5) 33 (86.8) 48 (96.0) 15 (88.2) 111
Sequelae 9 (37.5) 5 (13.2) 1 (2.0) 0 15
Exitus 0 0 1 (2.0) 2 (11.8) 3

IPD risk factor (n = 127)a

No 23 (95.8) 38 (100.0) 39 (81.3) 5 (29.4) 105
Yes 1 (4.2) 0 9 (18.8) 12 (70.6) 22

Vaccine receipt
No 21 (72.4) 26 (57.8) 50 (89.3) 17 (100) 114
PCV7 0 16 (35.6) 6 (10.7) 0 22
PCV10 1 (3.4) 1 (2.2) 0 0 2
PCV13 7 (24.1) 1 (2.2) 0 0 8
PCV7 & PCV13 0 1 (2.2) 0 0 1

Serotype invasiveness
High 16 (55.2) 17 (37.8) 31 (55.4) 2 (11.8) 66 (44.9)
Non-high 13 (44.8) 28 (62.2) 25 (44.6) 15 (88.2) 81 (55.1)

PCV13 serotype
No 7 (24.1) 13 (28.9) 19 (33.9) 13 (76.5) 52
Yes 22 (75.9) 32 (71.1) 37 (66.1) 4 (23.5) 95

MBL levels
High (A/A) 10 (34.5) 22 (48.9) 36 (64.3) 11 (64.7) 79 (53.7)
Medium (XA/XA or A/O) 10 (34.5) 19 (42.2) 12 (21.4) 4 (23.5) 45 (30.7)
Low (X/A or O/O) 9 (31.0) 4 (8.9) 8 (14.3) 2 (11.8) 23 (15.6)

LOS (days) 14 (9.3–17.8) 9 (7.0–11.0) 8.5 (5.0–12.3) 7 (5.0–9.0) 9 (6.0–14.0)
ICU LOS days 2.5 (1.0–18.0) 1.0 (1.0–2.5) 1.0 (1.0–8.0) 0 1.0 (1.0–6.5)

Data are presented as n (%) or median (IQR).
aMissing values.
IPD, invasive pneumococcal disease; LOS, length of stay; ICU, intensive care unit; MBL, mannose-binding lectin; PCV7/PCV10/PCV13, 7-valent/10-valent/13-valent pneumococcal
vaccine.

TABLE 3. Variable frequencies according to MBL level

Variables
Patients with low
MBL level

Patients with medium/
high MBL level p-Value

Corrected
p-value

Age
<2 years old 9 (31.0) 20 (69.0) 0.031 0.186
≥2 years old 14 (11.9) 104 (88.1)

Sex
Male 14 (16.5) 71 (83.5) 0.747 1.000
Female 9 (14.5) 53 (85.5)

Ethnicity
Caucasian 16 (14.5) 94 (85.5) 0.526 1.000
Non-Caucasian 7 (18.9) 30 (81.1)

Clinical manifestation
Meningitis 4 (33.4) 8 (66.7) 0.191 0.955
Pneumonia/bacteraemia/sepsis 19 (14.1) 116 (85.9)

ICU admission (n = 137)a

No 18 (16.1) 94 (83.9) 0.826 1.000
Yes 5 (20.0) 20 (80.0)

Serotype invasiveness
High 8 (12.1) 58 (87.9) 0.290 1.000
Non-high 15 (18.5) 6 (81.5)

Data are presented as n (%).
Significant values in bold numbers.
aMissing values.
ICU, intensive care unit; PCV13, 13-valent pneumococcal vaccine.
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reported a probable association between HIV disease progres-

sion and MBL deficiency, and this association was especially high

in children <2 years of age [24]. Dommett et al. [25] have

reported the influence of MBL in the frequency and duration of

infectious complications in children with malignancy. Finally,

Koch et al. [26] report a statistical association of MBL insuffi-

ciency with the increase of risk of acute respiratory infection in

children between 6 and 17 months. These results contrast with

those documented in other populations without infectious

diseases. A study performed in a cohort of newborns in the

Netherlands showed that a low-MBL genotype was only

observed in eight of 56 (14.2%) premature newborns and in

two of 11 (18.1%) preterm neonates [27]. Another study

performed in our geographical area reported a similar percent-

age of 15.3% among adults [13].

It was also of interest to find out that younger patients with

pneumococcal meningitis showed a high proportion of

low-MBL genotypes (42.9%), even though this proportion did

not reach statistical significance when compared with the

proportion of low-MBL genotypes in older patients. These data

are in agreement with a recent study that reports an

association between defective MBL genotypes and an increased

risk of pneumococcal meningitis [28]. The hypothesis that MBL

deficiency could be related to a worse clinical evolution should

not be ruled out and deserves further analysis.

The significance of MBL binding S. pneumoniae is contro-

versial because studies show low MBL binding to S. pneumo-

niae as well as to other encapsulated bacteria [29]. Therefore,

other mechanisms distinct from complement-mediated opso-

nophagocytosis and bacterial killing of S. pneumoniae by MBL

could be the basis of the clinical association reported here. In

this regard, there is also evidence of direct interaction of MBL

with phagocytic cells to promote phagocytosis and modify

cellular activation [30], as well as increasing evidence in

support of an immunomodulatory effect of MBL [31].

Our study should be interpreted in light of several

limitations. First, although the study sample allowed us to

obtain statistically significant results, analysis of more extensive

populations should be undertaken to confirm our results,

particularly in relation to the association between a geneti-

cally-determined MBL deficiency and the onset of pneumo-

coccal meningitis. Second, our study does not exclude the

putative contribution of other soluble pattern recognition

innate immune proteins also potentially involved in the defence

of the lungs against S. pneumoniae or other bacteria, such as

surfactant proteins (SP-A and SP-D) [32], ficolins [33],

pentraxins [34] or agglutinin gp-340/DMBT1 [35]. Third, we

did not analyse other factors that may be involved in the step

from colonization to disease and, in particular, the role of

co-infection with respiratory viruses. Viral infection is very

common in young children and it has been suggested that the

acquisition of a virus damages the epithelial mucosa and

promotes the expression of virulence determinants in the

pathogen, which are related to adhesiveness to the mucosa

and bacterial replication [36]. Moreover, the role of MBL in

direct viral neutralization and inhibition of viral spread is well

known [37]. Additional analysis is needed to determine

whether deficiencies in innate immunity and co-infection with

respiratory viruses together create the perfect situation for

development of IPD in children.

In conclusion, our findings suggest an association of

genetically determined low MBL production and IPD in

younger children. Further confirmation of this novel associa-

tion may open a pathway to the practice of personalized

medicine in which paediatricians would not only evaluate the

risk of IPD according to clinical, epidemiological and micro-

biological characteristics of the episode, but also according to

predictive factors derived from the immune characteristics of

the host. Our results also support the need to adopt a more

integrated approach to the diagnosis and treatment of IPD in

TABLE 4. Variable frequencies according to age group and MBL level

Variables

Age group <2 years (n = 29) Age group ≥2 years (n = 118) Patients with low MBL level

Total number
of patients

Patients with
low MBL level

Total number
of patients

Patients with
low MBL level p-Value R (95% CI)

Ethnicity
Caucasian 19 7 (36.8) 91 9 (9.9) 0.013 3.73 (1.58–8.76)

Non-Caucasian 10 2 (20.0) 27 5 (18.5) 1.000 1.08 (0.25–4.70)
Clinical manifestation
Meningitis 7 3 (42.9) 5 1 (20.0) 0.849 2.14 (0.30–15.07)
Others 22 6 (27.3) 113 13 (11.5) 0.121 2.37 (1.01–5.56)

ICU admissiona

No 18 5 (27.8) 94 13 (13.8) 0.263 2.01 (0.82–4.94)
Yes 10 4 (40.0) 15 1 (6.7) 0.128 6.00 (0.78–46.14)

Serotype invasiveness
High 16 3 (18.8) 50 5 (10.0) 0.593 1.88 (0.50–6.99)
Non-high 13 6 (46.2) 68 9 (13.2) 0.020 3.49 (1.50–8.12)

Significant values in bold numbers.
aMissing values.
R, ratio of proportions; CI, confidence interval; ICU, intensive care unit; PCV13, 13-valent pneumococcal vaccine.
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young children in order to achieve better clinical outcomes for

this particular group of patients. The challenge of finding a

vaccine based on preserved pneumococcal proteins protecting

against all serotypes could be the next response in the

prevention of pneumococcal disease.
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