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Abstract

Background: The secondary metabolites of the Artemisia genus are well known for their important therapeutic
properties. This genus is one of the valuable sources of flavonoids and other polyphenols, but due to the low contents
of these important metabolites, there is a need to either enhance their concentration in the original plant or seek
alternative sources for them. The aim of the current study was to detect and enhance the yield of antioxidant
compounds of Artemisia carvifolia Buch. HPLC analysis was performed to detect the antioxidants. With the aim of
increasing flavonoid content, Rol gene transgenics of A. carvifolia were established. Two genes of the flavonoid
biosynthetic pathway, phenylalanine ammonia-lyase and chalcone synthase, were studied by real time gPCR.
Antioxidant potential was determined by performing different antioxidant assays.

Results: HPLC analysis of wild-type A. carvifolia revealed the presence of flavonoids such as caffeic acid (30 pg/g DW),
quercetin (10 ug/g DW), isoquercetin (400 pg/g DW) and rutin (300 ug/g DW). Compared to the untransformed plants,
flavonoid levels increased 1.9-6-fold and 1.6-4-fold in rol B and rol C transgenics, respectively. RT gPCR analysis showed
a variable expression of the flavonoid biosynthetic genes, including those encoding phenylalanine ammonia-lyase and
chalcone synthase, which were found to be relatively more expressed in transformed than wild-type plants, thus
correlating with the metabolite concentration. Methanolic extracts of transgenics showed higher antioxidant capacity,

reducing power, and protection against free radical-induced DNA damage. Among the transgenic plants, those
harboring rol B were slightly more active than the rol C-transformants.

Conclusion: As well as demonstrating the effectiveness of rol genes in inducing plant secondary metabolism, this
study provides insight into the molecular dynamics of the flavonoid accumulation pattern, which correlated with the

expression of biosynthetic genes.
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Background

Artemisia is a diverse and economically important genus
belonging to the family Asteraceae, with over 300 species
[1]. This genus is a source of valuable secondary metabo-
lites and essential oils used in the treatment of various dis-
eases [2]. Phenols in general and flavonoids in particular
are one of the most important groups of phytochemicals
in plants, affecting oxidative stability, appearance, taste
and odor. The biological properties shown by these
compounds include antioxidant, anti-cancer and anti-
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aging effects, as well as protection against different
heart and immune diseases and brain dysfunction
caused by Parkinson’s, Alzheimer’s and Huntington’s
diseases [3, 4].

Flavonoid biosynthesis starts with the amino acid L-
phenylalanine [5] and leads to the formation of 4-
coumaroyl CoA by the phenylproponoid pathway [6].
The key enzyme of this pathway is phenylalanine
ammonia-lyase (PAL) [7], others being cinnamate 4-
hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL)
[6]. Chalcone synthase (CHS), which catalyzes the first
committed step of the flavonoid pathway, is involved in
the production of naringenin chalcone by combining
one coumaroyl CoA molecule with three malonyl CoA
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molecules. Chalcone isomerase (CHI) further isomerizes
the chalcone to flavanone and from this step onward the
pathway diverges to form diverse classes of flavonoids
(Fig. 1).

The Artemisia genus is a particularly rich source of
flavonoids [8]. While A. annua is the most extensively
studied species, resulting in the isolation of around 50
flavonoids, these antioxidants have also been detected in
other species, including A. absinthium L [9], A. asiatica
[10], A. Herba-Alb [11]. However, the flavonoid concen-
tration is usually very low and highly variable, not only
among different chemotypes but also in the same plant
at different growth stages [12].

Among different strategies used to improve plant second-
ary metabolite production, recombinant DNA technology
has allowed the expression of biosynthetic genes to be
altered, and the manipulation of metabolic traits [13]. Sev-
eral studies show that ro/ genes are powerful activators of
secondary metabolism in various plants [14]. Protein of the
rol A gene binds to DNA and stimulates growth, whereas
the rol B gene is involved in the regulation of the auxin sig-
nal transduction pathway [15] and is a potent inducer of
plant secondary metabolism, increasing the resveratrol pro-
duction in Vitis amurensis [16] and anthraquinones in
Rubia cardifolia [17]. The rol C gene encodes cytokinin
glucosidase and stimulates the production of many second-
ary compounds in various plants [18-22].

In previous work, we obtained rol B and rol C trans-
formants of A. carvivolia Buch with a high yield of
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antimalarial compounds as well as higher transcript
levels of biosynthetic genes than the wild-type plant
[21]. The objective of the current study was to enhance
the content of flavonoids in Artemisia carvifolia Buch
transgenics after their detection in the wild-type plant.
We carried out real time qPCR analysis of flavonoid bio-
synthetic genes to find a relationship between their ex-
pression levels and metabolite concentration. In this
regard, two genes of the phenylpropanoid pathway of
flavonoid biosynthesis were studied: those encoding PAL
and CHS. The flavonoids were quantified by HPLC, and
antioxidant activity was measured by performing differ-
ent antioxidant assays.

Results and discussion
HPLC-DAD-based quantification of flavonoids
Qualitative and quantitative analysis of flavonoids in
shoots of wild-type and transformed A. carvifolia plants
(4-month-old) was carried out using an HPLC-DAD sys-
tem. Eight flavonoid markers (caffeic acid, quercetin, iso-
quercetin, rutin, catechin, apigenin, gallic acid and
kaempferol) were studied, out of which four (caffeic acid,
quercetin, isoquercetin and rutin) were detected in the
wild-type plant and with an enhanced concentration in
the rol gene transformants. Catechin and apigenin were
detected in the transformed but not the wild-type plants
(Fig. 2).

While the concentration of caffeic acid was 30 pg/g
DW in the wild-type plant, in the rol B transformants it
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reached 70 pg/g DW, showing a 2.4-fold increase, and in
rol C transformants 60 pg/g DW, showing a 2-fold in-
crease. These concentrations, and those of the following
flavonoids, are the average values. The concentration of
quercetin was 10 pg/g DW in the wild-type plant, in-
creasing up to 6-fold to 59 pg/g DW in the rol B trans-
genics and 4-fold to 40 pg/g DW in rol C transgenics.
The wild-type concentration of isoquercetin was 400 pg/
g DW, increasing 1.9-fold to 770 pg/g DW in rol B
transformants and 1.6-fold to 660 pg/g DW in rol C
gene transformants. The concentration of rutin in the
wild-type plant was 300 pg/g DW, increasing up to 2.4-
fold to 720 pg/g DW in rol B transformants and 1.6-fold
to 570 pg/g DW in rol C transformants.

Catechin and apigenin were detected in the trans-
formed but not in the wild-type plants. In rol B and rol
C transformants the concentration of catechin was
75 pg/g DW and 60 pg/g DW, respectively, and that of
apigenin 42 pg/g DW and 30 pg/g DW, respectively.
Thus, the production levels of the studied compounds in
wild-type A. carvifolia showed a highly significant statis-
tical difference (P =0.000) in comparison with the rol B
and rol C transgenics (Table 1).

Polyphenols or flavonoids have been previously de-
tected in different Artemisia species, as mentioned in
the introduction, but in far less quantity. Rol ABC genes
are known to be reliable enhancers of secondary metab-
olite production [23-25]. The effects of individual rol
genes from the TL-DNA of A. rhizogenes, A4 strain, on

ginsenoside production in P. ginseng cell cultures has
been reported, with rol C cultures accumulating 1.8—3-
fold more ginsenoside than the control plant, while rol B
lines were not more productive [26]. However, another
study found that anthraquinone production increased in
Rubia cardifolia when transformed with the rol B gene.
Several reports describe the mechanism of action of the
rol B gene [17, 27, 28]. Kiani et al. (2015) observed in-
creased flavonoid and phenolic content in A. dubia after
transformation with a ro/ ABC gene construct [29].

Expression of flavonoid biosynthetic pathway genes
through real time gPCR
Significant changes in the expression of flavonoid bio-
synthetic pathway genes (PAL, CHS) were observed in
rol gene transgenics compared to untransformed plants
(Fig. 3). The qPCR analysis clearly showed that both
target genes were significantly more highly expressed
(P <0.0001) in the transformed plants, particularly PAL.
Increased gene expression in rol B transformants was
8-21-fold for PAL versus 3—6-fold for CHS. Among all
the rol B transgenic lines, TB4 with two integrated
copies of the rol B gene showed the highest expression
of both PAL and CHS. Similarly, in rol C transformants
expression was 10—19-fold higher for PAL and 3-5.8-
fold higher for CHS, reaching a maximum in line TCI1,
harboring two copies of the rol C gene.

It has previously been described that the PAL enzyme
catalyzes the flux of primary metabolites into the
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Table 1 Analysis of variance for factors effecting the production of flavonoids in transgenics of rol B and rol C genes

Source of variation Degree of freedom Sum of squares Mean square F-Value Prob.
Transgenic lines (A) 7 0.763 0.109 6.6646 0.0000
Flavonoids (B) 5 9.591 1.918 117.2688 0.0000
Transgenic lines X Flavonoids (AXB) 35 2.051 0.059 3.5824 0.0000
Error 96 1.570 0016

Total 143 13.976

Coefficient of variation: 29.63 %

biosynthetic pathway of flavonoids through the phenyl-
propanoid pathway and hence performs a key role in fla-
vonoid biosynthesis [6, 30]. CHS, the first enzyme of the
flavonoid pathway, is an acyltransferase catalyzing the
condensation of 4-coumaroyl CoA to the first flavonoid,
naringenin chalcone, which is reported to be a rate-
limiting step in flavonoid biosynthesis in different plants
[6, 31, 32]. In walnut, CHS is expressed more in leaves
and buds than in liber and bark and is absent from wood
and medulla [33]. Various reports describe that expres-
sion of PAL and CHS is directly related to the accumula-
tion of flavonoids in the plant tissue [34, 35]. In the
current study, a positive correlation was found in the
studied flavonoid accumulation and expression of the
PAL and CHS genes, in agreement with previous reports
[35, 36]. Other studies have also demonstrated that the
overexpression of structural flavonoid biosynthetic path-
way genes, including PAL and CHS, is related to an in-
creased flavonoid accumulation pattern [36, 37].

Evaluation of the antioxidant potential of wild-type A.
carvifolia and rol gene transgenics

To assess the antioxidant potential of the transformed
and untransformed A. carvifolia plants, different antioxi-
dant assays were performed. Total antioxidant capacity,
measured as the equivalent of ascorbic acid (mg/g of the
DW), was 0.53 % (Fig. 4a) in the wild-type plant, com-
pared to 0.76 % in rol B and 0.7 % in rol C gene transfor-
mants. Total reducing power was also enhanced in the

transgenics, being up to 3.4 % for rol B and 3 % for rol C,
compared with 2 % in the wild-type plant (Fig. 4a). Like-
wise, transformed plants showed lower IC50 values for
anti-lipid peroxidation (Fig. 4b) and DPPH free radical
scavenging activity (Fig. 4c); they were also more active in
protecting the DNA against free hydroxyl radical-induced
damage (Fig. 5). Rol genes showed highly significant ef-
fect i.e. p=0.0000 on the antioxidant potential of the
plant under study (Tables 2 and 3). All these findings
suggest that the integration of the ro/ B and rol C genes
enhanced the antioxidant potential of the respective
transgenic lines.

Oxidative stress is considered the root cause of the
pathogenesis of many diseases, and antioxidants can be
an effective treatment [38, 39]. The study of antioxidant-
containing plant extracts provides insight into the mech-
anisms of action responsible for plant defense against
oxidative damage, as well as identifying the specific anti-
oxidant constituents [40]. The current study demon-
strates that methanolic extracts of A. carvifolia have
significant antioxidant properties.

Polyphenols are major plant antioxidants due to their
redox capacity [41]. They play an important role in neu-
tralizing or quenching free radicals and decomposing
peroxides [42]. DPPH is an organic radical widely used
in analyzing the antioxidant potential of pure com-
pounds and plant extracts [43]. The reaction between
the antioxidant and DPPH mainly depends on the
hydrogen-donating ability, and therefore the structural
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confirmation, of the former [44]. The reducing power of
any compound or plant extract is in fact its potential to
transfer electrons, which indicates its antioxidant cap-
acity [45]. The ferric reducing power assay is used to
evaluate the antioxidant potential of dietary polyphenols
[46]. The reducing capacity shown by plant extracts indi-
cates their antioxidant activity [47].

The antioxidant properties of methanolic extracts of
Artemisia species have been correlated with their phen-
olic and flavonoid content [48]. Experiments have been
performed to understand the relationship between
secondary metabolism activation and reactive oxygen
species production (ROS) in R. cardifolia transformed
with the rol B [49] and rol C genes [14, 50]. A significant
reduction in intracellular ROS level was observed in the
transformed cells of R cardifolia, thus indicating that
the rol B and rol C genes are potential suppressors of
ROS. This decrease in ROS was also accompanied by
the enhanced expression of genes encoding ROS detoxi-
fying enzymes [49, 50].

Conclusion
It can be concluded from the results that ro/ genes are
effective in increasing flavonoid levels of A. carvifolia

Buch, as confirmed by the HPLC-DAD analysis and en-
hanced antioxidant potential of rol gene transformants.
The transgenic plants also had higher transcript levels of
genes involved in flavonoid biosynthesis than the wild-
type plants, which was in accordance with their higher
flavonoid content. The rol B gene was more effective
than the rol C gene in promoting secondary metabolism
in A. carvifolia Buch.

Methods

Seeds of Artemisia carvifolia were collected from Astore,
in the Northern regions of Pakistan (35.3667° N,
74.8500° E; 8500 ft elevation) and grown on half strength
MS medium. Identification of Artemisia carvifolia Buch
was done at the Herbarium of Quaid-i-Azam University,
Islamabad, Pakistan, where the specimen voucher num-
ber was submitted. After that, identification was con-
firmed through DNA barcoding [21]. Wild-type plants
of A. carvifolia, as well as four rol B transgenic lines and
three rol C transgenic lines produced previously [21],
were analyzed for flavonoid content variation and also
by real time qPCR to determine the expression of fla-
vonoid biosynthetic genes. Additionally, the antioxidant
potential of all the plants under study was determined.
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Analysis of flavonoids through an HPLC-DAD system
Extraction of flavonoids from shoots of wild-type plants
and rol gene transgenics (4-months old) was carried out
according to the reported procedure [51]. Qualitative
and quantitative analysis of flavonoids was carried out
using a Waters Acuity "™ HPLC-DAD system (Waters,
Spain) attached to a symmetry C-18 analytical column
with dimensions of 5 um, 3.9 x 150 mm (Waters, Spain).
The wavelength was adjusted to 235-450 nm, and pres-
sure applied was 200 psi. Separation was achieved using
a mobile phase of acetonitrile with 0.5 % formic acid (A)
and water with 0.5 % formic acid (B) running at a flow
rate of 1 ml/min, with the following gradient (t (min),
%B): (0, 95) (15, 65) (18, 10) (22, 95). The injection vol-
ume was 10 pl and retention time was 27 min. Peaks in
extracts were identified by comparison with retention
indices of reference standards. The analytes were de-
tected at wavelengths specific for each metabolite with a
particular retention time (Table 4).

Table 2 ANOVA for antilipid peroxidation assay

Real time qPCR of flavonoid biosynthetic pathway genes
Expression of flavonoid biosynthetic pathway genes was
studied by real time qPCR according to a previously re-
ported method [21]. The amplification reaction was per-
formed by gene-specific primers, i.e. PAL forward: 5'-
ACACTCGGTTAGCTATTGCTGCAA -3’ and reverse:
5'- CCATGGCGATTTCTGCACCT -3’, CHS forward:
5'-AGGCTAACAGAGGAGGGTA-3" and reverse: 5'-
CCAATTTACCGGCTTTCT -3, actin forward 5'-
ATCAGCAATACCAGGGAACATAGT-3" and reverse
5'-AGGTGCCCTGAGGTCTTGTTCC-3".

Measurement of antioxidant potential

The antioxidant potential of all the plants under study
was determined by performing in vitro antioxidant as-
says. Thus, a methanolic extract of 1 g air-dried shoots
was prepared after fine-grinding. Briefly, 1 g dried pow-
dered plant material was extracted with 3 ml of metha-
nol and subjected to sonication for half an hour. The

Source of variation Degree of Sum of squares Mean square F-Value Prob.
freedom

Concentrations (A) 2 14254.201 7127.100 85454007 0.0000

Genotype (B) 7 211.206 30.172 36.1766 0.0000

Concentration X 14 246.106 17.579 21,0772 0.0000

Genotype (AXB)

Error 48 40.033 0.834

Total 71 14751.546

Coefficient of variation: 1.91 %
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Table 3 ANOVA for DPPH free radical scavenging assay

Source of variation Degree of Sum of squares Mean square F-Value Prob.
freedom

Concentrations (A) 2 15107.802 7553.90 101470.30 0.0000

Genotype (B) 7 1849.574 264.22 3549.28 0.0000

Concentration X 14 2339.980 167.14 224518 0.0000

Genotype (AXB)

Error 48 3573 0.074

Total 71 19300.930

Coefficient of variation: 2.15 %

extract was then centrifuged at 4000 g for 10 min, the
supernatant was dried, and the residue was dissolved in
DMSO to reach a final concentration of 100 mg/ml.

Measurement of total antioxidant capacity

Total antioxidant capacity was determined according to
the reported methodology [52] using a 96-well plate. Ini-
tially, 4 pl of the plant extract (100 mg/ml) was added to
the wells and then 196 ul of the total antioxidant cap-
acity reagent was added. After incubating the mixture
for 90 min at 90 °C in a water bath, its color changed to
dark blue. The mixture was then cooled and sample ab-
sorbance was taken at 630 nm on a microplate reader
(Biotek, Elx 800). Ascorbic acid was used as a positive
control and DMSO was used as a negative control. The
total antioxidant capacity of the sample was calculated
using the following formula:

Ascorbic Acid Equivalence
= 100/2.651 x Absorbance of sample pg/ml

Measurement of total reducing power

The total reducing power of A. carvifolia transformed
and untransformed plant extracts was determined [53]
using a 96-well plate. Twenty microlitres of plant extract
(100 mg/ml) was added to the Eppendorf tubes together
with 490 pl of 0.2 M phosphate buffer and 490 pL of
1 % potassium ferricyanide, which was incubated at 50 °
C for 20 min. Five-hundred microlitres of trichloroacetic

Table 4 Retention time of studied flavonoids with wavelength

S. No Standard Wavelength (nm) Retention
time (min)

1 Apigenin 325 20.2

2 Caffeic acid 325 87

3 Catechin 279 10.7

4 Isoquercetin 355 1.1

5 Quercetin 370 15.1

6 Rutin 355 108

acid was added to the Eppendorf tubes and the mixture
was centrifuged at 3000 rpm for 10 min. Five-hundred
microlitres of the supernatant was isolated in a new
Eppendorf tube and 100 pl of ferric chloride was added.
The color of the ferric chloride changed to blue on re-
duction. Two-hundred microlitres of this sample was
poured into the wells. Absorbance of the samples was
taken at 630 nm on a microplate reader. Ascorbic acid
and DMSO were used as positive and negative controls,
respectively. The reducing power of the sample was cal-
culated using the following formula:

Ascorbic Acid Equivalence
= 100/2.7025 x Absorbance of sample pg/ml

Anti-lipid peroxidation assay

The method for the anti-lipid peroxidation assay was
adapted from Kanagalakshmi et al. [54]. Vitamin E and
plain DMSO were used as positive and negative controls,
respectively. Plant extracts were tested at the concentra-
tion of 1000, 100 and 10 ppm. Twenty microlitres of
plant extract at each concentration was added to the
liposomes in which lipid peroxidation had been induced.
Incubation was carried out at 37 °C for 1 h. One milli-
liter of stopping solution was added to stop the reaction,
which was boiled for 15 min and then cooled. Two-
Hundred microlitres of the resulting solution was placed
in the wells of a 96-well plate. Absorbance was measured
at 532 nm. The % inhibition and ICs, value was calcu-
lated with TableCurve software.

DPPH free radical scavenging assay

Free radical scavenging activity of all the plant extracts
was measured according to the reported method [55]
with minor modification as given below. The assay was
run on four different concentrations of plant extract
(1000, 500, 250 and 125 ppm) in a 96-well microplate.
Briefly, 20 pl of each plant extract, or DMSO in the
negative control and ascorbic acid in the positive con-
trol, was mixed with 180 pl of 0.1 mM freshly prepared
DPPH solution. All the extracts at each concentration
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were run in triplicate. Incubation at 37 °C for half an
hour was carried out for all the reaction mixtures. After
that, absorbance was taken at 517 nm.

Oxidative DNA damage analysis

A previously reported method [56] was adopted to find
the antioxidant and prooxidant activity of the extracts of
the plants under study. Fifty millimetre phosphate buffer
was used to dissolve the pBR322 plasmid DNA to reach
a concentration of 0.5 pg/3 pl. Plant extracts were ana-
lyzed at three different concentrations, ie. 1000, 100,
and 10 ppm. Plasmid pBR322 with the damaging agent,
i.e. FeSO4 and H,O,, served as a positive control for
DNA damage, whereas pBR322 DNA alone in phosphate
buffer was used as the negative control. Incubation was
done at 37 °C for 60 min. After that, samples were run
on 1 % agarose gel and photographed under UV.

Statistical analysis

All the experiments, including flavonoid extraction,
HPLC analysis, real time qPCR and antioxidant assays,
were performed in triplicate with the S.E. calculated.
The data obtained by HPLC analysis was analyzed statis-
tically by applying ANOVA and Duncan’s multiple range
tests. Antioxidant assays were also analyzed statistically
by ANOVA. The statistical significance of the results of
the gene expression analysis and total antioxidant
capacity and reducing power was determined by a ¢-test
(p<0.01=** p<0.05="%).

Abbreviations

CHS: chalcone synthase; DMSO: dimethy! sulfoxide; DPPH: 2,2-diphenyl-1-
picrylhydrazyl; DW: dry weight; MS: murashige and skoog; PAL: phenylalanine
ammonia-lyase; ROS: reactive oxygen species; TBE: tris buffer EDTA.
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