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Abstract

The paper addresses the unit root testing when the range of the time series is limited

and considering the presence of multiple structural breaks. The structural breaks can

a¤ect the level and/or the boundaries of the time series. The paper proposes �ve unit

root test statistics, whose limiting distribution is shown to depend on the number and
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1 Introduction

The application of standard unit root and stationarity tests assumes that time series are not

limited or bounded �i.e., its range of variation is not constrained. However, there are some

situations where time series are bounded below, above, or both, so their range of variation is

restricted, and de�nes limited stochastic processes. Composition variables such as percentage

of expenditure on di¤erent concepts, unemployment rates, participation in labor market ratios,

income inequality measures, capacity utilization ratios and number of hours worked are some

examples of time series that are limited either by construction or by de�nition. There are also

variables, such as nominal interest rates, that cannot take negative values, so they are bounded

below. Finally, variables such as the exchange rates of the currencies within the European

Monetary System (EMS) have been controlled and move inside bands of �uctuation.

Cavaliere (2005) and Cavaliere and Xu (2014) show that the limit distributions of the

Dickey-Fuller (DF) and the modi�ed unit root tests in Ng and Perron (2001) �henceforth, M

tests �shift to the left when a bounded time series takes values close to the boundaries, which

causes severe overrejection distortions of the null hypothesis of unit root for the standard unit

root tests. Intuitively, bounded I(1) processes �hereafter, BI(1) �might be characterized as

stationary I(0) processes because of the bounds, since the bounds prevent the processes from

drifting away from the expected value. Consequently, standard unit root and stationarity

tests might lead to conclude that a given process is mean-reverting, although mean reversion

is due to the bounds, not to the I(0)-ness of the process.

The availability of long time series is a desirable feature in order to ensure the application

of unit root tests with good properties. However, the longer the time period, the higher

the probability of having structural breaks a¤ecting the behavior of the time series. Perron

(1989, 1990) drew attention to the bias shown by the DF statistic towards the non-rejection

of the null hypothesis of unit root when structural breaks are present but not accounted for.

Practitioners working with limited time series might be facing two misspeci�cation errors that

bias the unit root test statistics in opposite directions.

The aim of this paper is to propose unit root tests for limited time series that take into
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account the presence of multiple structural breaks. We show that the limiting distribution

of the test statistics is a¤ected by the number and position of the structural breaks. There

are two di¤erent parts of the model where the structural breaks can play a role. First, and

following Perron (1989, 1990), the structural breaks can a¤ect the deterministic component of

the model. Second, they can also change the boundaries that restrict the variation of the time

series. These two sources of parameter instability can be combined, giving rise to di¤erent

situations that are important from an empirical point of view. This paper covers all these

cases and shows that the limiting distribution of the unit root tests depends not only on the

number and position of the structural breaks, but also on whether the structural breaks a¤ect

the deterministic component and/or the boundaries of the time series.

The paper is structured as follows. Section 2 introduces the model. Section 3 presents the

unit root tests statistics for broken bounded time series and derives their limiting distribution.

Section 4 deals with the unknown breaks case. The �nite sample performance of the unit root

statistics is investigated in Section 5. Section 6 illustrates the application of the proposal.

Finally, Section 7 concludes. All the proofs are contained in the appendix.

2 The model

Let us de�ne the following data generating process (DGP):

xt = dt + yt (1)

dt = �+

mX
i=1

�iDUi;t (2)

yt = �yt�1 + ut; (3)

t = 1; : : : ; T , where xt 2
�
bt; bt

�
almost surely for all t, DUi;t = 1 for t > T 0i and 0 otherwise,

for i = 1; : : : ;m structural breaks �the superscript 0 in T 0i is used to denote the true break

date � and initialized at y0 = Op (1). Further, de�ne �0i = T 0i =T as the break fraction

parameters, i = 1; : : : ;m, which are collected in the vector �0 =
�
�01; : : : ; �

0
m

�0
. The presence

of bounds requires that �xt lies within the interval
�
bt � xt�1; bt � xt�1

�
, where

�
bt; bt

�
denote
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the boundaries that a¤ect the time series. These boundaries are assumed to be de�ned

by deterministic terms. Cavaliere (2005) focuses on the analysis of non-trending variables

de�ning
�
bt; bt

�
=
�
b; b
�
8t. In this paper, we restrict the analysis to non-trending variables

and the changing boundaries can be speci�ed as bt = b +
Pm
i=1 
i 1

�
T 0i�1 < t � T 0i

�
and

bt = b +
Pm
i=1 
i 1

�
T 0i�1 < t � T 0i

�
, where 1 (�) is the indicator function. The disturbance

term ut is:

ut = "t + �t � �t; (4)

where "t is a weakly dependent zero-mean process with in�nite support and �t and �t are

non-negative processes (regulators) such that �t > 0 if and only if yt�1 + "t < bt � dt and

�t > 0 if and only if yt�1 + "t > bt � dt. The stochastic processes involved in (4) satisfy:

Assumption 1: "t = C (L) �t, where C (L) =
P1
i=0CiL

i with
P1
i=0 i

s jCij < 1 for

some s � 1, and �t is a martingale di¤erence sequence adapted to the �ltration Ft =

� � field f�t�i; i � 0g. The long-run variance (LRV) of "t is given by (a) �2 = limT!1

E[T�1(
PT
t=1 "t)

2] = �2�C (1)
2, (b) �2� = limT!1 T�1

PT
t=1E

�
�2t
�
<1 8t, and (c) E jvrt j <1

for some r > 4.

Assumption 2 : f�tgTt=1and
�
�t
	T
t=1

satisfy restrictions to ensure that maxt=1;:::;T j�tj =

op
�
T 1=2

�
and maxt=1;:::;T j�tj = op

�
T 1=2

�
.

Assumption 3 :
�
bt � dt

�
= ci�T

1=2 and
�
bt � dt

�
= ci�T

1=2 for T 0i�1 < t � T 0i , i =

1; 2; : : : ;m+ 1, with T 00 = 0, T
0
m+1 = T , and ci � 0 � ci, ci 6= ci.

Following Cavaliere (2005), we de�ne general time-dependent lower and upper bounds as:

"�
bt � dt

�
�T 1=2

;

�
bt � dt

�
�T 1=2

#
=
�
ci; ci

�
+ o (1) for T 0i�1 < t � T 0i ;

i = 1; 2; : : : ;m + 1, with T 00 = 0 and T 0m+1 = T . Note that the time dependence of the

bounds
��
ci; ci

��
is introduced through either the boundaries

��
bt; bt

��
and/or the deterministic

component (dt) of the time series. As a matter of interpretation, it is necessary to stress the

di¤erent role that plays the boundaries (b�s) and the bounds (c�s) in this setup. First, in

most of cases the boundaries are known by the researcher because they are either implicit
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by the own de�nition of the variable �for instance, the unemployment rate is between 0 and

100 per cent �or set by some institutional agreement � for instance, the �uctuation bands

of the EMS exchange rates. Second, the de�nition of the bounds does not only involve the

boundaries but also include the deterministic component and the LRV, which are relevant

elements to compute unit root tests and perform the statistical inference. Therefore, it would

be the case that the bounds change not because of a change in the boundaries, but because

of the deterministic component. This setup de�nes di¤erent situations depending on the way

that the structural breaks a¤ect the parameters of the model:

� Case A: the boundaries are constant
�
bt; bt

�
=
�
b; b
�
8t and the magnitude of the struc-

tural breaks (�i) is �xed for all i, i = 1; 2; : : : ;m, giving [��1T�1=2 (b� dt) ; ��1T�1=2
�
b� dt

�
]

= [c; c] + o (1) 8t, so that, the presence of structural breaks does not a¤ect the bounds

of the limited time series, i.e.,
�
ci; ci

�
= [c; c] 8i, i = 1; 2; : : : ;m+ 1.

� Case B: the boundaries change but the magnitude of the structural breaks (�i) is �xed

for all i, i = 1; 2; : : : ;m. So, the bounds are de�ned by:

"�
bt � dt

�
�T 1=2

;

�
bt � dt

�
�T 1=2

#
=
�
ci; ci

�
+ o (1) for T 0i�1 < t � T 0i ; (5)

i = 1; 2; : : : ;m+1. In this case, the change of ci between two consecutive regimes is given

by ci�ci�1 = ��1T�1=2
�

i � 
i�1

�
= �i. Similarly, ci�ci�1 = ��1T�1=2

�

i � 
i�1

�
=

�i.

� Case C: the boundaries do not change, but the magnitude of the structural breaks is

non-negligible, which can be modeled as a function of T , i.e., in our case:

�i = �iT
1=2; (6)

i = 1; 2; : : : ;m. The speci�cation of the break magnitude given in (6) has also been

suggested in Leybourne and Newbold (2000), Kim et al. (2000) and Harvey et al. (2001)

as a way to capture structural breaks where the magnitude of the shifts is large. In this
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case, the bounds are de�ned as in (5) and the change of ci between two consecutive

regimes is given by ci � ci�1 = ���1T�1=2�i = ���1�i. Note that the same applies for

the lower bound, i.e., ci � ci�1 = ���1�i.

� Case D: the boundaries change and the magnitude of the structural breaks is non-

negligible, �i = �iT
1=2, i = 1; 2; : : : ;m. In this case the bounds are de�ned as in

(5) and the change of ci between two consecutive regimes is given by ci � ci�1 =

��1T�1=2
�

i � 
i�1

�
� ��1T�1=2�i = �i � ��1�i whereas, for the lower bound, we

have ci � ci�1 = �i � ��1�i.

Some remarks are in order. First, in Case A the limits that a¤ect the time series do not

change because �i is �xed 8i, so that the change in the bounds is ci � ci�1 = ci � ci�1 =

o (1). This does not happen for the other cases. Second, we have shown di¤erent ways in

which the bounds that a¤ect the time series can change �i.e., Cases B to D �although these

speci�cations lead to the same result as for the unit root testing procedure. However, there

is a qualitative di¤erence between the changes driven by the boundaries and those caused

by the structural breaks with non-negligible e¤ects. On the one hand, the boundaries are

usually known a priori so we do not need to estimate them. Furthermore, in most cases, the

boundaries remain constant by the de�nition of the time series that is analyzed �for instance,

the boundaries for the unemployment rate are [0, 100]. On the other hand, the presence of

structural breaks with non-negligible e¤ects can relax the assumption of known break points

since, in this case, it is possible to get a consistent estimate of the break fractions �further

details are given below. When the e¤ect of the structural breaks is negligible, we need to

return to the known break points assumption, given that it is not possible to get a consistent

estimation of the break fractions. Finally, it is worth noticing that hybrid speci�cations can

be de�ned where, in some of the regimes, the change in the limits is driven by changes in the

boundaries whereas, in other regimes, the change in the limits is caused by the presence of

structural breaks with non-negligible e¤ects.
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3 Unit root test statistics for broken bounded processes

In this section we present �ve unit root test statistics that can be applied to test for the

presence of a unit root when working with bounded integrated processes with multiple struc-

tural breaks. First, we have the three M-type test statistics in Ng and Perron (2001), i.e., the

modi�ed Sargan-BhargavaMSB
�
�0
�
=
�
T�2�̂�2

PT
t=1 x̂

2
t�1

�1=2
,MZ�

�
�0
�
=
�
T�1x̂2T � �̂2

��
2T�2

PT
t=1 x̂

2
t�1

��1
and MZt

�
�0
�
=MZ�

�
�0
�
�MSB

�
�0
�
, where x̂t denotes the OLS de-

trended variable and �̂2 is a consistent estimate of the LRV. The estimation of the LRV �2

can be obtained using either a non-parametric estimator
�
s2NP

�
, as in Phillips and Perron

(1988), or a parametric estimator
�
s2AR

�
, as in Ng and Perron (2001). The non-parametric

estimator is given by s2NP = T�1
PT
t=2 ê

2
t + 2T

�1PT�1
j=1 k (j;MT )

PT
t=j+1 êtêt�j , where êt is

obtained from the OLS estimation of �x̂t =
Pm
i=1 �iD

�
T 0i
�
t
+�0x̂t�1+et, where D

�
T 0i
�
t
= 1

for t = T 0i + 1 and 0 otherwise, and k (j;MT ) is some kernel that weights the sample autoco-

variances and MT is a bandwidth that acts as a truncation lag parameter when k (j;MT ) = 0

for jjj > MT . The parametric estimator is based on the augmented Dickey-Fuller (ADF)

regression equation:

�x̂t =

mX
i=1

kX
j=0

�i;jD
�
T 0i
�
t�j + �0x̂t�1 +

kX
j=1

�j�x̂t�j + etk; (7)

so that s2AR = �̂2k=(1 � �̂ (1))2, where �̂ (1) =
Pk
j=1 �̂j and �̂2k = (T � k)�1

PT
t=k+1 ê

2
tk

are obtained from the OLS estimation of (7) with the lag length selected as suggested in

Perron and Qu (2007).1 The fourth unit root test that can be computed is the pseudo

t-ratio ADF statistic
�
ADF

�
�0
��
to test the null hypothesis that �0 = 0 in (7). Fi-

nally, we also consider the Variance Ratio (V R
�
�0
�
) statistic in Breitung (2002) V R

�
�0
�
=

T�2
PT
t=1

�Pt
j=1 x̂j

�2
=
PT
t=1 x̂

2
t . The limit distribution of the unit root test statistics is given

in the following Theorem.

1We are using the OLS detrended version of the M tests proposed by Ng and Perron (2001), since the non-
centrality parameter required in the quasi-GLS detrending depends on the bounds � see Carrion-i-Silvestre
and Gadea (2013) for the non breaks case. It would be possible to design an iterative estimation procedure to
compute the non-centrality parameter, although the goal of this paper is to propose test statistics that allow
the presence of structural breaks when testing the unit root hypothesis in limited time series.
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Theorem 1 Let fxtgTt=1 be a stochastic process with its DGP given by (1)-(3). Further, let

T 0i !1 and T !1 in such a way that T 0i =T ! �0i , 0 < �0i < 1, where �
0
i denotes the break

fraction parameter, i = 1; 2; : : : ;m. Following Chang and Park (2002), let k in (7) be chosen

in a way that 1=k + k2=T ! 0 as T ! 1. Under the null hypothesis that � = 1 in (3), the

MSB
�
�0
�
, MZ�

�
�0
�
, MZt

�
�0
�
, ADF

�
�0
�
and V R

�
�0
�
statistics converge, for Cases B,

C and D, to

MSB
�
�0
�
)

 
m+1X
i=1

�
�0i � �0i�1

�2 Z 1

0
V cici (si)

2 dsi

!1=2

MZ�
�
�0
�
)

��
1� �0m

�
V
cm+1
cm+1 (1)

�2
� 1

2
Pm+1
i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi

V R
�
�0
�
)

R 1
0

hPi�1
j=1

�
�0j � �0j�1

� R 1
0 V

cj
cj (sj) dsj +

�
�0i � �0i�1

� R r
�0i�1

V cici (si) dsi

i2
drPm+1

i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi
;

where V cici (si) = Bcici (si) � si
R 1
0 B

ci
ci (ki) dki, i = 1; 2; : : : ;m + 1, are independent demeaned

regulated Brownian motions and ) denotes weak convergence of the associated measure of

probability, with the convention that �00 = 0 and �0m+1 = 1. The limiting distribution for

the MZt
�
�0
�
test can be obtained from the fact that MZt

�
�0
�
= MZ�

�
�0
�
�MSB

�
�0
�
, a

limiting distribution that is equivalent to that of the ADF
�
�0
�
test statistic.

The proof is given in the appendix. The critical values have been obtained through Monte

Carlo simulations for the pair of values
�
ci; ci

�
given by �ci = ci = f0:3; 0:5; 0:7; 0:9; 1:1; 1:5g

with all possible combinations of break fraction parameters � = f0:1; 0:2; : : : ; 0:9g taken in

groups of up to m = 4 elements �i.e., we allow for up to m = 4 structural breaks. We have

used 300 steps to approximate the Brownian motion functionals and 10,000 replications.2 ;3 It

is worth mentioning that the e¤ect of
�
ci; ci

�
on the asymptotic critical values depends on how

narrow the limits are set. As expected, the asymptotic critical values do not change signi�-
2 In order to summarize the information, we have estimated response surfaces for the one and two structural

breaks cases. Further, it should be stressed that, although we have computed critical values for the symmetric
bounds case, our results are valid for general cases where �ci 6= ci. A Matlab routine is available from the
authors to compute critical values for whatever combination of parameters is needed.

3A small set of simulations was carried out increasing the number of steps to 1,000, although the estimated
critical values did not change signi�catively.
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cantly when the range of variation is wide, although this is not the case for narrower ranges.

It would be also possible to compute (case speci�c) critical values using bootstrap methods

as in Cavaliere and Xu (2014), which is expected to improve �nite sample performance of the

statistics.

Some remarks are in order. First, the limit distribution of the statistics depends both on

the number (m) and position
�
�0
�
of the structural breaks, although this dependence is not

only due to the e¤ect that the level shifts has on the deterministic component of the time

series �i.e., the speci�cation given by Case C �but also on the bounds that limit the Brownian

motion �i.e., the speci�cation given by Case B. Second, these limiting distributions admit,

as a particular case, the situation where the time series is unbounded �i.e., �ci = ci =1 8i,

i = 1; 2; : : : ;m+1 �so the regulated Brownian motion becomes a standard Brownian motion.

Third, note that the limiting distribution of the MSB
�
�0
�
statistic has been expressed as a

weighted sum of independent functionals of demeaned regulated Brownian motions. Fourth,

although we have considered that the bounds are symmetric, it would be possible that the

time series is only limited below or above. In this case, the results that have been obtained

are still valid, if the unconstrained limit is replaced by either ci = �1 (bounded above)

or ci = 1 (bounded below), depending on the case. Finally, the limit distribution of the

test statistics when the structural breaks do not change the limits (Case A) is given in the

following Corollary.

Corollary 1 Let fxtgTt=1 be a stochastic process with its DGP given by (1)-(3). Further, let

T 0i !1 and T !1 in a such way that T 0i =T ! �0i , 0 < �0i < 1, where �
0
i denotes the break

fraction parameter, i = 1; 2; : : : ;m. Following Chang and Park (2002), let k in (7) be chosen

in a such way that 1=k + k2=T ! 0 as T !1. Under the null hypothesis that � = 1 in (3),

the MSB
�
�0
�
, MZ�

�
�0
�
, MZt

�
�0
�
, ADF

�
�0
�
and V R

�
�0
�
statistics converge for Case A

to the limiting distributions in Theorem 1 but imposing
�
ci; ci

�
= [c; c] 8i, i = 1; 2; : : : ;m+ 1.

The proof follows from the one for Theorem 1 specifying
�
ci; ci

�
= [c; c] 8i, i = 1; 2; : : : ;m+

1. Note that, although the presence of structural breaks does not a¤ect the limits of the

process, they a¤ect the limiting distribution of the unit root tests, so test statistics for bounded
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time series without structural breaks cannot be used in this case. Finally, the limiting dis-

tribution of the MZ�
�
�0
�
, MZt

�
�0
�
and ADF

�
�0
�
test statistics with �ci = ci = 1 8i,

coincides with the ones obtained in Perron (1990), for the one break case, and, implicitly, in

Clemente, Montañés and Reyes (1998), for the two breaks case.

4 Unknown breaks case

So far, we have assumed that both the number and the position of the structural breaks are

known. However, it is important to design a procedure to estimate the break points when

they are unknown. As mentioned above, consistent estimation of the break fractions is only

possible when the structural breaks have non-negligible e¤ects on the time series, structural

breaks that are modeled as in (6). The approach that we propose in this paper is based on the

minimization of the sum of squared residuals under the null hypothesis of unit root (S(1; �)),

which implies the OLS estimation of the model:

�xt =

mX
i=1

�iD (Ti)t + et; (8)

t = 2; : : : ; T , over all possible combinations of break points for a given number of structural

breaks m. The estimated break dates (T̂1; : : : ; T̂m)0 are obtained as �̂ = argmin�2�(�) S(1; �),

where the in�mum is taken over all possible break fractions de�ned on the set � (�) =�
(�1; �2; : : : ; �m)

0 ; j�i � �i�1j � � (i = 1; 2; : : : ;m� 1) , �1 � �; �m � 1� �
	
, with � being a

trimming parameter that dictates the minimal length of a segment �a common value in the

related literature is � = 0:15. The following proposition establishes the consistency and the

rate of convergence of the estimated break fractions.

Theorem 2 Let fxtgTt=1 be a stochastic process with its DGP given by (1)-(3), with � = 1,

m > 0 and �i = �iT
1=2 6= 0, i = 1; 2; : : : ;m. Let �̂ = argmin�2�(�) S(1; �), with S(1; �) being

the sum of squared residuals of (8). Then, as T !1,



�̂� �0


 = Op

�
T�1

�
and theMSB(�̂),

MZ�(�̂), MZt(�̂), ADF (�̂) and V R(�̂) statistics converge to the limiting distributions in

Theorem 1.
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The proof is given in the appendix. In order to estimate m, we could think of de�ning

a maximum number of structural breaks (mmax) and select m by minimizing the Bayesian

information criterion (BIC) as proposed in Yao (1988) or the modi�ed BIC information cri-

terion in Liu, Wu and Zidek (1997) �henceforth, LWZ information criterion.4 The following

theorem establishes the properties of using these information criteria to estimate m.

Theorem 3 Let fxtgTt=1 be a stochastic process with its DGP given by (1)-(3), with � = 1,

m > 0 and �i = �iT
1=2 6= 0, i = 1; 2; : : : ;m, being mmax the maximum number of structural

breaks that are allowed. Let us denote by m̂BIC and m̂LWZ the estimated number of structural

breaks obtained by minimizing the BIC and LWZ information criteria, respectively. Thus, as

T ! 1, m̂BIC
p! mBIC and m̂LWZ

p! mLWZ , m � fmBIC ;mLWZg � mmax, where
p!

denotes convergence in probability. Further, under the assumption that et � iid N (0; 1) in

(8), m̂LWZ
p! m as T !1.

The proof is given in the appendix5. Theorem 3 states that the use of the BIC and LWZ

information criteria might lead, in general, to an over-estimation of m. However, there might

be situations in which the LWZ information criteria leads to a consistent estimation of m,

which will depend on the extreme value behavior of et in (8). Thus, under the restrictive

assumption that et � iid N (0; 1) in (8), it can be shown that the LWZ information criterion

provides a consistent estimation of m, but that the BIC information criterion does not �see

the appendix for further details. With this potential risk, it should be borne in mind that

an over-estimation of m might imply a power loss of the unit root test statistics. In order

to overcome this drawback, we also explore the use of the approach in Burridge and Taylor

(2006) �hereafter, BT �who design a procedure for additive outlier detection using extreme

value theory. Burridge and Taylor (2006) show that their procedure works reasonably well

for di¤erent probability distributions of the disturbance term, preventing us from making
4 In principle, it would be possible to design a testing procedure to estimate the number of structural breaks

following the approach in Harvey, Leybourne and Taylor (2010). However, this testing procedure will depend on
the true number of structural breaks and the values of the bounds, which makes the approach very cumbersome
from an implementation point of view. The use of information criteria avoids these complications and, as will
be shown by the simulation experiments below, produce satisfactory results in terms of empirical size and
power of the unit root test statistics.

5We are indebted to an anonymous reviewer for providing insightful help in the proof of this theorem.
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assumptions on the probability distribution of et in (8).6 The performance of the informa-

tion criteria and the algorithm proposed in Burridge and Taylor (2006) in �nite samples are

investigated in the Monte Carlo section below.

Once consistent estimates of the break fractions are obtained, the bounds can be computed

as in Cavaliere and Xu (2014) from ĉi = (bt � d̂t)=(�̂T
1=2) and ĉi = (bt � d̂t)=(�̂T

1=2) for

T 0i�1 < t � T 0i , where it is assumed that the boundaries
�
bt; bt

�
are known. In order to

compute these bounds, we propose using the deterministic component estimated under the

null hypothesis that � = 1, which de�nes d̂t = x0 +
Pm
i=1 �̂iDUi;t, where x0 is the initial

condition, �̂i denotes the OLS parameter estimates of (8) and �̂ indicates a consistent estimate

of the LRV �either s2NP or s
2
AR.

7

5 Finite sample performance

In this section we investigate the performance of the statistics that have been proposed in the

paper. The DGP is given by (1) to (3) and (4), where xt 2
�
b; b
�
and "t � iid N (0; 1). The

bounds are set as [T�1=2 (b� dt) ; T�1=2
�
b� dt

�
] =

�
ci; ci

�
+ o (1) for T 0i�1 < t � T 0i ; i = 1; 2,

with T 00 = 0, T 01 = �01T and T 02 = T . Note that this setup corresponds to Case C above.

The Monte Carlo experiment considers the presence of one unknown structural break where

the true break point is located at �01 = 0:5.8 The bounds for the �rst regime are
�
c1; c1

�
=

[�0:3; 0:3] whereas, for the second regime, they are de�ned as
�
c2; c2

�
=
�
c1 � �; c1 + �

�
with

� = f0:2; 0:4; 0:6; 0:8g. The empirical size is investigated by setting � = 1 in (3), whereas

for the empirical power we specify � = 0:8 in (3). The selection of the order of the model

used in the estimation of the parametric LRV is based on the modi�ed Akaike information

6We have computed the weights that are used in the BT approach taking into account the presence of
bounds, although the di¤erences are negligible. Therefore and provided that no gains are obtained from the
use of bound-speci�c weights, we suggest using the weights in Burridge and Taylor (2006).

7Note that in practice, we can compute either a parametric or a non-parametric estimation of the bounds,
depending on whether we use a parametric or a non-parametric estimation of the LRV. In what follows, we will
make abuse of language and talk about the parametric and non-parametric versions of the ADF and VR unit
root test statistics, where this distinction will come from the di¤erent estimates that can be used to estimate
the LRV, which de�nes the estimate of the bounds.

8Simulations are also conducted for other values of �0, for the one break case, and have also considered the
presence of two structural breaks. Due to space constraints, we only report some of the simulations that have
been carried out. The rest are available in the companion appendix.
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criterion (AIC) proposed in Ng and Perron (2001) with a maximum of
h
4 (T=100)1=4

i
lags.

The non-parametric LRV is estimated with the Newey and West (1994) automatic procedure

using the quadratic spectral window. The sample sizes are T = f100; 200; 300g and 1,000

replications are used. In all cases, the 5% level of signi�cance asymptotic critical values are

used.

5.1 Estimation of the number of structural breaks

Table 1 presents the performance of the BIC, LWZ and BT statistics when used to estimate

m following the procedure described in Section 4. The true number of structural breaks is

either m = 0 or m = 1, with the maximum number of m set at mmax = 2. As can be seen,

the BIC over-estimates m in all cases, tending to select mmax. The use of the LWZ statistic

shows better performance. When m = 0, the selection of the true m improves as T gets larger,

reaching values around 0.85 for T = 300, regardless of the order of integration of the process.

When m = 1, the LWZ tends to under-estimate m for � = 0:2, but renders good results for

the other values of �. These results con�rm the theoretical analysis above. The BT statistic

outperforms the BIC and LWZ when m = 0, where the probability of selecting the true m is

close to one in all cases. In general, the superiority of BT over the BIC and LWZ statistics is

also evident when m = 1 and � > 0:4, although the LWZ statistic outperforms the BT when

� � 0:4 �in these cases, the BT statistic under-estimates m.

In summary, the BIC is liberal in the selection of m, whereas the BT statistic outperforms

the other statistics when m = 0, but under-estimates m when � is small. The behavior of

the LWZ statistic lies between these extremes. Thus, LWZ presents mild over-estimation

problems of m when m = 0, but its performance is similar to that of BT when m = 1 with

large T and �. Moreover, LWZ outperforms the BT statistic when m = 1 with small �.

5.2 Empirical size and power of the unit root tests

We investigate the performance of the MSB(�̂) and ADF (�̂) statistics when the BIC, LWZ

and BT statistics are used to estimate m, with mmax = 2 �note that we are focusing on
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the case where both the number and position of the structural breaks are unknown. The

results for the other unit root test statistics, which are available in the companion appendix,

are similar. Let us �rst focus on the empirical size. Table 2 shows that, in general, the

MSB(�̂) statistic presents under-rejection problems, which are more noticeable when m is

estimated using the BT approach. Under-rejection is less pronounced when the BIC is used

and when the LRV is non-parametrically estimated. The ADF (�̂) statistic also shows mild

size distortions (under-rejection) although, in most cases, the empirical size is close to the

nominal one. Note that the performance of the ADF (�̂) statistic does not depend on the

estimator that is used to estimate the LRV.

The estimation of m reduces the empirical power of the unit root test statistics when

compared to the (unreported) results for known m. As expected, the empirical power of the

statistics increases with T and �, so that, for large values of T and �, the empirical power is the

same as ifm is known. If we compare the results based on the BIC, LWZ and BT statistics, we

can conclude that, for small values of �, the BIC-based unit root test statistics are the most

powerful. This is a direct consequence of the over-estimation of m that is observed for the

BIC �it has been shown that the LWZ and BT statistics tend to under-estimate m when � is

small. As � increases, the LWZ-based unit root test statistics tend to improve their empirical

power, outperforming the BIC-based ones �see, for instance, the results for � = 0:4. Finally,

when � is large, the empirical power of both the LWZ and BT-based unit root test statistics

is similar.

The method that is used in the estimation of the LRV a¤ects the empirical power of the

test statistics. Thus, for a given method of estimating m, we observe that the empirical power

of theMSB(�̂) statistic is higher when using the non-parametric LRV. This is to be expected,

given the size distortion (under-rejection) observed for this statistic when the parametric LRV

is used. For the ADF (�̂) statistic, the use of the parametric LRV gives higher empirical power.

The simulations that have been conducted in this section reveal that the over-estimation

of m leads to unit root tests statistics with both an empirical size that is controlled � in

some cases, under-rejection problems are observed �and decent empirical power �gures. The
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under-estimation of m can result in important reductions of the empirical power of the unit

root test statistics, a situation that can appear for small values of �. Therefore, in such cases,

it is preferable to over-estimate m.

6 Empirical illustration

There are several studies in the economic literature that assess the properties of the unem-

ployment rate as a way to test whether it behaves in accordance with the (perfect) hysteresis

hypothesis or in accordance with the natural unemployment rate theory. In this section, we

use the monthly U.S. unemployment rate from January 1948 through November 2014 tak-

ing into account the existence of bounds and structural breaks when testing the unit root

hypothesis �see Figure 1.9

Table 3 reports the M-type, VR and ADF test statistics.10 When bounds are ignored, the

null hypothesis of unit root is rejected by the M-type and ADF test statistics at di¤erent levels

of signi�cance, regardless of the LRV estimate that is used. However, if we consider the limited

nature of the variable, the evidence against the unit root hypothesis is weaker. In order to

assess whether this conclusion is robust to the introduction of structural breaks, our analysis

has speci�ed up to two structural breaks, with the LWZ selecting one structural break and the

BIC and BT statistics selecting two. The fact that the BT statistic detects more structural

breaks than the LWZ, together with its tendency to either under (narrow bands) or correctly

(wide bands) estimate m, would suggest specifying m = 2 � as shown below, wide bands

are estimated. However and in order to check the robustness of the conclusions, we proceed

considering both m = 1 and m = 2. The �rst structural break is placed in December 1974,

which re�ects the increase of unemployment as a result of the seventies oil crises �Perron

(1990) �xed the exogenous break in the fourth quarter of 1973. The second structural break is

detected in March 1958, capturing the decrease of unemployment from the expansion during

the Kennedy-Johnson administrations until the macroeconomic turmoil of the seventies �see

9We have used the information provided by the U.S. Bureau of Labor Statistics (BLS): Current Population
Survey (CPS), for the seasonally adjusted total unemployment rate.
10The parametric long-run variance has been estimated using up to the integer value of

h
12 (T=100)1=4

i
lags.
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McNown and Seip (2011).

Let us �rst focus on analysis for m = 1. When the parametric LRV estimate is used, the

M-test statistics leads to the rejection of the null hypothesis of BI(1) at the 1% level of sig-

ni�cance, whereas the VR and ADF tests reject it at the 10% and 5%, respectively. Evidence

against the null hypothesis is reduced for the M-test statistics when the non-parametric LRV

estimate is used, although the null hypothesis is still rejected at the 10% level of signi�cance.

The converse situation is found for the VR and ADF tests, where evidence against the null

hypothesis increases. In general, the picture is not modi�ed when we specify m = 2. Thus,

the same conclusion is reached for the M-type tests. The ADF statistic still rejects the null

hypothesis at the 5% level of signi�cance, regardless of the LRV estimate that is used. The

exception is the VR statistic, where the null hypothesis is not rejected. Finally, Table 3

also presents the estimated bounds for each speci�cation, which de�ne wide bands. For the

parametric LRV-based results, the interval ranks are between 6.4 and 9.5, depending on the

model, whereas for the non-parametric LRV-based results, they are between 9.6 and 10. This

feature reinforces the speci�cation of m = 2, as argued above.

To sum up, evidence against the unit root hypothesis in the postwar U.S. unemployment

rate is found when structural breaks are considered, a conclusion that is in accordance with

earlier results such as those in Perron (1990). Furthermore, contrary to previous analyses,

our results are robust to the presence of theoretical bounds and structural breaks.

7 Conclusions

The paper extends the concept of bounded integrated processes to cover situations where

the time series is a¤ected by the presence of multiple structural breaks. Structural breaks

enter into the model in two di¤erent ways, either a¤ecting the deterministic component or the

boundaries component. It has been shown that the limiting distribution of the proposed unit

root tests depends not only on the number and position of the structural breaks, but also on

the way that the structural breaks a¤ect the (deterministic and boundaries) components of the

model. The paper has also shown that consistent estimates of the break fractions are possible
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if the magnitude of the level shifts is non-negligible. This allows us to relax the assumption

of known breaks in some situations. The Monte Carlo simulations that have been carried out

allow us to compare the di¤erent unit root tests that have been designed. Simulation results

evidence that the M-type tests show a better overall performance. In some cases they are

conservative, but they show good empirical power.

The proposal is illustrated analyzing the U.S. unemployment rate. Taking into account

both the presence of multiple structural breaks and the limited nature of this time series

lead to robust conclusions of the statistical properties of the unemployment rate, which is

characterized as a broken bounded I(0) process.

Our approach has assumed that the boundaries are known, something that is not a lim-

itation if we are dealing with variables that are bounded by de�nition or by construction.

However, it would be of interest to consider our framework in cases where it is suspected that

the variable is regulated but the boundaries are not known. In this case, Cavaliere and Xu

(2014) suggest that a reasonable range of bounds can be inferred from historical observations

or from the economic theory. Although the unknown bounds case is outside the scope of this

paper, we think that this topic is very interesting from an empirical point of view, so we plan

to address it in future research.

A Appendix

Lemma 1 Let fytgTt=1 be a stochastic process generated according to (3) and (4) with � = 1,

and satisfying Assumptions 1 to 3. As T ! 1, ��1T�1=2yt ) Bcc (r), where B
c
c (r) denotes

a standard regulated Brownian motion, with c � 0 � c, c 6= c.

See Theorem 1 in Cavaliere (2005) for the proof.

A.1 Proof of Theorem 1

Note that the deterministic component given in (2) can be written orthogonally as xt = �i+yt

for T 0i�1 < t � T 0i , i = 1; 2; : : : ;m+1, with the convention that T
0
0 = 0 and T

0
m+1 = T , where
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the parameter of the deterministic regressor in (2) is a function of the ones in (2). The OLS de-

trended variable can be obtained as x̂t = yt � zt
�
�0
� �
z0
�
�0
�
z
�
�0
���1

z0
�
�0
�
y = [M�0x]t =

[M�0y]t, where M�0 = I � P�0 = I � z
�
�0
� �
z0
�
�0
�
z
�
�0
���1

z0
�
�0
�
with z

�
�0
�
being a

(T � (m+ 1)) matrix with typical rows given by zt
�
�0
�
= [1

�
T 00 < t � T 01

�
1
�
T 01 < t � T 02

�
: : : 1

�
T 0m < t � T 0m+1

�
], where 1 (�) denotes the indicator function. The rescaled detrended

variable is T�1=2x̂t = T�1=2yt � T�1=2zt
�
�0
�
D
�
Dz0

�
�0
�
z
�
�0
�
D
��1

Dz0
�
�0
�
y, where D =

diag(T�1=2; : : : ; T�1=2). Then, T�1=2x̂t = T�1=2yt�
r��0i�1
�0i��0i�1

T�3=2
PTi
t=Ti�1+1

yt for T 0i�1 < t �

T 0i , that in the limit converges to T
�1=2x̂t ) �[Bcici (r)�

r��0i�1
�0i��0i�1

R �i
�i�1

Bcici (s) ds] for T
0
i�1 < t �

T 0i . The computation of the MSB statistic can be expressed asMSB
�
�0
�
= (T�2�̂�2(

PT 01
t=1 x̂

2
t

+
PT 02
t=T 01+1

x̂2t+� � �+
PT�1
t=T 0m+1

x̂2t ))
1=2 ) (

Pm+1
i=1

R �0i
�0i�1

(Bcici (r)�
r��0i�1
�0i��0i�1

R �i
�i�1

Bcici (s) ds)
2dr)1=2,

provided that �̂2
p! �2 �see below. Note that we can de�ne si =

�
r � �0i�1

�
=
�
�0i � �0i�1

�
, si 2

[0; 1], and
R �0i
�0i�1

(Bcici (r)�
r��0i�1
�0i��0i�1

R �i
�i�1

Bcici (s) ds)
2dr =

�
�0i � �0i�1

�2 R 1
0 (B

ci
ci (si)�bi

R 1
0 B

ci
ci (ki)

dki)
2dsi so that the limit distribution of the MSB

�
�0
�
test can be expressed as a weighted

sum of independent functionals of demeaned regulated Brownian motions, i.e., MSB
�
�0
�

)
�Pm+1

i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi

�1=2
, where V cici (si) = Bcici (si) � si

R 1
0 B

ci
ci (ki) dki de-

notes a demeaned regulated Brownian motion, and ki =
�
s� �0i�1

�
=
�
�0i � �0i�1

�
, ki 2 [0; 1].

Let us now focus on the MZ�
�
�0
�
test MZ�

�
�0
�
=
�
T�1x̂2T � �̂2

� �
2T�2

PT
t=1 x̂

2
t�1

��1
)

((
�
1� �0m

�
V
cm+1
cm+1 (1))

2�1)(2
Pm+1
i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi)
�1. The limit distribution of

the MZt
�
�0
�
=MZ�

�
�0
�
�MSB

�
�0
�
statistic follows from the derivations above. For the

ADF
�
�0
�
statistic, note that the ADF regression equation in (7) can be expressed as:

�x̂t = �0x̂t�1 + �̂
0
t'+ etk; (9)

with �̂t = (D
�
T 01
�
t
; D
�
T 01
�
t�1 ; : : : ; D

�
T 01
�
t�k ; : : : ; D

�
T 0m
�
t
; D
�
T 0m
�
t�1 ; : : : ; D

�
T 0m
�
t�k ;�x̂t�1;

: : : ;�x̂t�k)
0, ' = (�1; : : : ; �m; �1; : : : ; �k)

0, �i = (�i;0; �i;1; : : : ; �i;k)
0, i = 1; : : : ;m, and � (1) =Pk

j=1 �j . Following Chang and Park (2002), we can de�neAT (�) =
PT
t=1 x̂t�1etk�

�PT
t=1 x̂t�1�̂

0
t

�
�PT

t=1 �̂t�̂
0
t

��1 �PT
t=1 �̂tetk

�
, BT (�) =

PT
t=1 x̂

2
t�1�

�PT
t=1 x̂t�1�̂

0
t

��PT
t=1 �̂t�̂

0
t

��1 �PT
t=1 �̂tx̂t�1

�
and CT (�) =

PT
t=1 e

2
tk �

�PT
t=1 etk�̂

0
t

��PT
t=1 �̂t�̂

0
t

��1 �PT
t=1 �̂tetk

�
, so that �̂0 = B�1T (�)

AT (�), with the variance of the error term given by �̂2k = T�1(CT (�)�A2T (�)B
�1
T (�)) and the
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variance of the estimated �0 parameter given by s
2
T

�
�̂0

�
= �̂2kB

�1
T (�). Using these elements

and following Chang and Park (2002), it is straightforward to see that as T !1, T�1AT (�)

) 1
2�

2

���
1� �0m

�
V
cm+1
cm+1 (1)

�2
� 1
�
, T�2BT (�)) �2

Pm+1
i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi and

T�1CT (�)
p! �2k. Note that, as shown in Chang and Park (2002) and Cavaliere and Xu (2014),

�̂ (1)
p! � (1) and C (1) = 1=(1 � � (1)) so that �̂2 = �̂2k=(1 � �̂ (1))2

p! �2, where �̂2 is de-

�ned here using the parametric version of the LRV estimator
�
s2AR

�
�the same result can

be established using the non-parametric version of the LRV estimator. Then, the ADF
�
�0
�

statistic is computed as ADF
�
�0
�
= �̂�1B

�1=2
T (�)AT (�), which in the limit converges to

ADF
�
�0
�
)

��
1� �0m

�
V
cm+1
cm+1 (1)

�2
� 1

2
�Pm+1

i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi

�1=2 ; (10)

which coincides with the limiting distribution of the MZt
�
�0
�
derived above.

Finally, the numerator of the V R
�
�0
�
statistic for a generic Ti�1 < t � Ti involves

the square term of T�3=2
Pt
j=1 x̂j )

Pi�1
j=1 �

R �0j
�0j�1

�
B
cj
cj (s) ds�

s��0j�1
�0j��0j�1

R �0j
�0j�1

B
cj
cj (b) db

�
ds

+ �
R r
�0i�1

�
Bcici (s) ds�

s��0i�1
�0i��0i�1

R �0i
�0i�1

Bcici (b) db
�
ds, or, equivalently, T�3=2

Pt
j=1 x̂j ) �[

Pi�1
j=1�

�0j � �0j�1
� R 1

0 V
cj
cj (sj) dsj+

�
�0i � �0i�1

� R r
�0i�1

V cici (si) dsi], so that the limit distribution of the

V R
�
�0
�
statistic can be expressed as

V R
�
�0
�
)

R 1
0

hPi�1
j=1

�
�0j � �0j�1

� R 1
0 V

cj
cj (sj) dsj +

�
�0i � �0i�1

� R r
�0i�1

V cici (si) dsi

i2
drPm+1

i=1

�
�0i � �0i�1

�2 R 1
0 V

ci
ci (si)

2 dsi
:

A.2 Proof of Theorem 2

Let �0 to denote the true break fraction and � a generic one. Note that the sum of squared

residuals of the model in �rst di¤erences, S (1; �), can be computed as S (1; �) = Q1 (�)

� 2G1 (�) + u10M1
�u

1, where d1 (�) = z1 (�) � z1
�
�0
�
, M1

� = I � P 1� , and P 1� = z1 (�)�
z10 (�) z1 (�)

��1
z10 (�), while the superscript 1 denotes the �rst di¤erence of the correspond-

ing element. When the break fraction is correctly speci�ed, �0 = �, and S
�
1; �0

�
= u10M1

�0
u1.

The di¤erence between these two sums of squared residuals is given by S (1; �) � S
�
1; �0

�
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= Q1 (�) � 2G1 (�) + u10M1
�u

1 � u10M1
�0
u1. Consider �rst Q1 (�) =  0d10 (�) d1 (�) �

 0d10 (�)P 1�d
1 (�) . For the sake of simplicity, assume that there is only one structural

break, although the derivations are valid for the multiple structural break. Then, the �rst

element of Q1 (�) is  0d10 (�) d1 (�) = 2�2, while the second element is  0d10 (�)P 1�d
1 (�) 

=  0d10 (�) z1 (�)
�
z10 (�) z1 (�)

��1
z10 (�) d1 (�) = �2, so that Q1 (�) = 2�2 � �2 = �2T ~I,

with ~I = 1
���T1 � T 01 �� 6= 0�. Further, note that T�1Q1 (�) > 0. Consider now G1 (�) =

u10d1 (�) � u10z1 (�) z10 (�) d1 (�) = �u1
T 01+1

� ~I, so that T�1G1 (�) = op (1). Finally, we

have u10M1
�u

1 � u10M1
�0
u1 = �u10P 1�u1 + u10P 1

�0
u1 = �

�
u1T1+1

�2
+ (u1

T 01+1
)2 � Op (1) ~I. Col-

lecting terms, T�1
�
S (1; �)� S

�
1; �0

��
= T�1Q1 (�) + op (1) = �2 ~I + op (1). Furthermore,

note that for a given break fraction, �, it is always satis�ed that T�1S(1; �) � T�1S
�
1; �0

�
.

Let us now suppose that �
p9 �0. According to this inequality, we will need that, for large

T , T�1Q1(�) � 0, but we have shown that Q1 (�) > 0 when � 6= �0. Then, a contradiction

appears, and the only way that the inequality is satis�ed is when �
p! �0. The, minimization

of the S (1; �) over all possible values of the break date results in consistent estimate of the

break date. As mentioned above, although derivations have considered only one structural

break, they are also valid for the multiple break case.

To establish the convergence rate of the break fraction parameter, we �rst de�ne the sets

V� =
�
Tk :

��Tk � T 01 �� < �T
	
for � 2 (0; 1) and V� (C) = fTk :

��Tk � T 01 �� < �T;
��Tk � T 01 �� >

Cg for C > 0; so V� (C) � V�. Note that S(1; �) � S
�
1; �0

�
with probability 1 and

Pr(T1 2 V�) ! 1, as T ! 1. Given previous results, there is a constant C > 0 such that

Pr(min�T2V�(C)
S(1;�)�S(1;�0)

j���0jT � 0) < � for some small � > 0 because, when C is properly cho-

sen, Pr(min�T2V�(C)
S(1;�)�S(1;�0)

j���0jT � 0) = Pr(min�T2V�(C)
Q1(�)�2G1(�)+u10M1

�u
1�u10M1

�0
u1

j���0jT � 0)

< �, because
Q1(�)�2G1(�)+u10M1

�u
1�u10M1

�0
u1

j���0jT = O(1)�2Op(T�1=2)+ Op(1) ~I
C , with the O(1) and

Op(1) terms positive. Hence,
S(1;�)�S(1;�0)

j���0jT > 0 on V� (C) with large probability. This implies

that the minimum cannot be achieved on V� (C) and, thus, Pr
�
T j�̂� �0j � C

�
� �, so that�

�̂� �0
�
= Op

�
T�1

�
.

In order to show that the limiting distribution of the unit root test statistics using �̂

are the same as the ones using �0 we can write the OLS estimated parameters as �̂ = z(�̂)
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�
z0(�̂)z(�̂)

��1
z0(�̂)x = z(�̂)

�
z0(�̂)z(�̂)

��1
z0(�̂)z(�0)�+z(�̂)

�
z0(�̂)z(�̂)

��1
z0(�̂)y = �+z(�̂)�

z0(�̂)z(�̂)
��1

z0(�̂)y + z(�̂)
�
z0(�̂)z(�̂)

��1
z0(�̂)

h
z(�0)� z(�̂)

i
�. Using these elements, we

can compute the detrended variable that is used in the computation of all statistics as

x̂ = x� z(�̂)�̂ = z(�0) (�� �̂) + y +
h
z(�0)� z(�̂)

i
�̂

= y � z(�0)
�
z0(�̂)z(�̂)

��1
z0(�̂)y

�z(�0)
�
z0(�̂)z(�̂)

��1
z0(�̂)

h
z(�0)� z(�̂)

i
�+

h
z(�0)� z(�̂)

i
�̂:

Note that the two �rst terms are





y � z(�0)�z0(�̂)z(�̂)��1 z0(�̂)y



 = Op (T ). The third term,



z(�0)�z0(�̂)z(�̂)��1 z0(�̂) hz(�0)� z(�̂)i�



 = �0
h
z(�0)� z(�̂)

i0
z(�̂)

�
z0(�̂)z(�̂)

��1
z0(�0)z(�0)�

z0(�̂)z(�̂)
��1

z0(�̂)
h
z(�0)� z(�̂)

i
�)1=2 = Op

�
T 1=2

�
and the fourth term,




hz(�0)� z(�̂)i �̂


 =
(�̂0
h
z(�0)� z(�̂)

i0 h
z(�0)� z(�̂)

i
�̂)1=2 =

�����̂� �0���Op �T 2��1=2 = Op
�
T 1=2

�
. Therefore, we

can see that the last two terms are asymptotically negligible compared to the �rst two so

that, in the limit, the test statistics using the estimated break dates converge to the limiting

distribution of the test statistics where the break dates are known.

A.3 Proof of Theorem 3

The S(1; �) of the OLS estimated model de�ned in (8) can be written as S(1; �) = �x2t �Pm
i=1�x

2
Ti+1

= �x2t �
Pm
i=1 �

2
i +Op (1). The BIC and LWZ information criteria that we pro-

pose to use in the paper are given by BIC = log (S(1; �)= (T � 1�m))+m log (T � 1�m) =

(T � 1�m) and LWZ = log (S(1; �)= (T � 1�m))+0:299m log (T � 1�m)2:1 = (T � 1�m).

Let us focus on the BIC. As can be seen, the �rst element of the right hand side is log( 1
T�1�m(�x

2
t

�
Pm
i=1 �

2
i +Op (1))) = log(

1
T�1�m(�x

2
t �

Pm
i=1 �

2
iT +Op (1))) provided that the magnitude

of the structural breaks is non-negligible, i.e., �i = �iT
1=2. As T !1, this element converges

to log(�2�x �
Pm
i=1 �

2
i ), where �

2
�x denotes the variance of �xt, whereas the second element

of the right hand side converges to zero for �xed m. Therefore, accounting for the presence

of structural breaks reduces the sum of the squared residuals in the limit, leading to the de-

tection of the structural breaks when using the BIC information criterion �the same applies
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to the LWZ information criterion.

However, this does not necessarily imply a consistent estimation of the number of struc-

tural breaks, i.e., it might be the case that the use of information criteria leads to over-

detection of the number of structural breaks. In order to investigate this issue, let us

consider the case where there is one structural break, m = 1, and we compute the BIC

information criterion for the models that consider one (BIC1) and two structural breaks

(BIC2). Let us denote by S(1; �1) and S(1; �2) the sum of squared residuals of the model

(8) for the one and two breaks cases, respectively. It can be seen that BIC2 � BIC1

� ln
�
T�1S(1; �2)

�
+ 2T�1 ln (T ) � ln

�
T�1S(1; �1)

�
� T�1 ln (T ) = ln

�
1 + S(1;�2)�S(1;�1)

S(1;�1)

�
+ T�1 ln (T ), where S(1; �2) � S(1; �1) = ��x2T2+1, with T2 denoting the second break

date. We need BIC2 � BIC1 > 0 if the correct number of structural breaks is going

to be selected. The order of S(1; �2) � S(1; �1) is determined by the extreme value of

et in (8), which depends on the underlying assumptions that we make about its distribu-

tion. In the simplest case where et � iidN (0; 1) in (8), maxt jetj = Op(
p
ln (T )) so that

BIC2 �BIC1 � �Op(T�1 ln (T )) + T�1 ln (T ), which is not guaranteed to be positive in the

limit. Therefore and even in this simple case, the BIC information criterion might lead to an

over-speci�cation of the number of structural breaks, i.e., m̂BIC � m. This situation is not

found when using the LWZ information criterion, since LWZ2�LWZ1 � �Op(T�1 ln (T ))+

0:299T�1 ln (T )2:1, which is positive in the limit, although this result relies on the assumption

that is made about the extreme behavior of et in (8).

Finally, it is worth noticing that we have based the proof of this theorem on the assumption

that the structural breaks have non-negligible e¤ects. If the magnitude of the structural breaks

is �xed �i.e., asymptotically negligible �these information criteria do not necessarily lead to

a consistent estimate of the number of structural breaks.
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Table 2: Empirical size and power for the unit root test statistics with one unknown structural
break and �0 = 0:5. m is selected using the BIC, LWZ and BT statistics

Empirical size Empirical power
Parametric Non-parametric Parametric Non-parametric

� 100 200 300 100 200 300 100 200 300 100 200 300

BIC MSB(�̂) 0.2 0.036 0.027 0.026 0.045 0.041 0.036 0.078 0.340 0.799 0.105 0.471 0.881
0.4 0.024 0.031 0.039 0.027 0.044 0.053 0.036 0.504 0.929 0.060 0.651 0.978
0.6 0.026 0.037 0.033 0.031 0.047 0.049 0.052 0.559 0.943 0.079 0.691 0.980
0.8 0.020 0.025 0.021 0.019 0.037 0.032 0.068 0.594 0.940 0.099 0.748 0.988

ADF (�̂) 0.2 0.069 0.051 0.048 0.064 0.047 0.043 0.156 0.449 0.763 0.147 0.423 0.731
0.4 0.066 0.050 0.064 0.064 0.042 0.058 0.212 0.649 0.915 0.208 0.614 0.881
0.6 0.057 0.054 0.054 0.051 0.049 0.052 0.240 0.689 0.932 0.230 0.654 0.902
0.8 0.045 0.034 0.038 0.044 0.031 0.038 0.244 0.702 0.925 0.235 0.689 0.918

LWZ MSB(�̂) 0.2 0.024 0.017 0.021 0.030 0.026 0.027 0.026 0.216 0.472 0.037 0.311 0.542
0.4 0.016 0.015 0.024 0.018 0.030 0.039 0.035 0.677 0.981 0.060 0.826 0.998
0.6 0.017 0.012 0.017 0.019 0.025 0.034 0.071 0.746 0.990 0.105 0.879 0.996
0.8 0.009 0.009 0.020 0.011 0.020 0.028 0.100 0.797 0.988 0.150 0.912 0.997

ADF (�̂) 0.2 0.051 0.036 0.036 0.052 0.032 0.033 0.110 0.316 0.566 0.095 0.250 0.459
0.4 0.063 0.037 0.052 0.056 0.036 0.049 0.211 0.690 0.963 0.200 0.657 0.935
0.6 0.050 0.039 0.036 0.046 0.036 0.038 0.266 0.760 0.982 0.251 0.710 0.952
0.8 0.050 0.029 0.033 0.048 0.028 0.033 0.300 0.780 0.985 0.283 0.753 0.970

BT MSB(�̂) 0.2 0.006 0.013 0.017 0.011 0.025 0.029 0.003 0.023 0.068 0.012 0.089 0.212
0.4 0.008 0.015 0.021 0.015 0.028 0.035 0.007 0.314 0.835 0.012 0.371 0.849
0.6 0.005 0.011 0.015 0.011 0.023 0.025 0.047 0.778 0.992 0.076 0.893 1.000
0.8 0.004 0.009 0.011 0.008 0.017 0.019 0.106 0.856 0.991 0.163 0.960 1.000

ADF (�̂) 0.2 0.033 0.032 0.034 0.026 0.027 0.030 0.074 0.156 0.281 0.039 0.065 0.111
0.4 0.040 0.041 0.045 0.034 0.037 0.042 0.037 0.304 0.821 0.031 0.289 0.796
0.6 0.039 0.040 0.040 0.037 0.037 0.039 0.173 0.745 0.980 0.165 0.707 0.954
0.8 0.037 0.033 0.034 0.035 0.032 0.034 0.315 0.805 0.984 0.300 0.770 0.969

Table 3: Unit root tests for the U.S. unemployment rate

LRV H0 m MSB MZ� MZt V R ADF T̂
�
c1; c1

� �
c2; c2

� �
c3; c3

�
P I(1) 0 0:16a �20:28b �3:18b 0:018 �3:85a

BI(1) 0 0:16c �20:28c �3:18c 0:018 �3:85b [�0:3; 9:2]
BI(1) 1 0:10a �55:26a �5:25a 0:004b �4:52b 74=12 [�0:2; 6:5] [�0:3; 6:4]
BI(1) 2 0:09a �61:24a �5:53a 0:004 �4:29b (58=3; 74=12) [�0:2; 6:2] [�0:3; 6:2] [�0:3; 6:1]

NP I(1) 0 0:16b �19:62b �3:13b 0:018 �3:85a
BI(1) 0 0:16c �19:62c �3:13c 0:018 �3:85b [�0:3; 9:3]
BI(1) 1 0:14c �25:28c �3:55c 0:004b �4:52a 74=12 [�0:3; 9:5] [�0:4; 9:4]
BI(1) 2 0:14c �25:43c �3:56c 0:004 �4:29b (58=3; 74=12) [�0:3; 9:7] [�0:4; 9:6] [�0:5; 9:5]

Note: P denotes parametric and NP non-parametric. a, b and c indicate rejection of the null hypothesis at
1, 5 and 10%, respectively

26



Ja
n­

48
Ap

r­5
6

Au
g­

64
De

c­
72

Ap
r­8

1
Au

g­
89

De
c­

97
Ap

r­0
6

No
v­

14

345678910

U.
S.

Un
em

pl
oy

m
en

t r
at

e

F
ig
ur
e
1:
U
.S
.
un
em
pl
oy
m
en
t
ra
te

27


