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3He impurity excitation spectrum in liquid “He
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We microscopically evaluate the excitation spectrum of’tte impurity in liquid“He atT=0 and compare
it with the experimental curve at equilibrium density. The adopted correlated basis perturbative scheme in-
cludes up to two independent phonons, intermediate correlated states, and the correlation operator is built up
with two- and three-body correlation functions. The experimental spectrum is well described by the theory
along all the available momentum range. A marked deviation from the simple Landau-Pomeranchuck quadratic
behavior is found and the momentum-dependent effective mass of the impurity increasesOby atq
~1.7 A~ with respect to itgj=0 value. No signature of rotonlike structures is found.
[S0163-182698)05233-3

Both experimentalists and theoreticians have devoted purity. The basis states were then properly normalizigl.
great deal of effort to measure and explain the characteristics ¥,(3,N,) is the ground state wave function df, “He
of one ®He impurity in atomic liquid*He. From the experi- atoms plus onéHe impurity of volume(), taken in theN,,
mental point of view it is well known how the impurity Q—oo limit, at constant*He densityp,=N,/Q.
chemical potential u; behaves with temperature and A realistic choice for¥y(3,N,) is made by applying an
pressuré, its effective massn% and quasiparticle excitation extended Jastrow-Feenberg correlation opefatorthe non-
spectrume(q).23 In Ref. 3 the authors found a sizable de- interacting g.s. wave function
viation from the quadratic Landau-PomeranchukP)
gpe(itrum“, . ep(q)=A2g%2m3, in Jlow  concentration Wo(3Ng)=Fo(3N4)F3(3N4) D o(3Ny). 3)

He-"He mixtures.e(q) was parametrized in a modified LP

(MLP) form as F, s areN-body correlation operators including explicit two-

A2? 1 and three-body dynamical correlatiorfs, is written as a
(1)  product of two-body JastrowHe-*He and*He-*He correla-
tion functions

emp(q) = 2mt 11997
The estimated values of the MLP parameters? at1.6 bar

and x3~0.05 (x3=2He concentrationare mj ~2.3m; and

y~0.13 A?. Fa(BNy= 1] 1@%rs) TI 149, @
Microscopic calculations, done in the framework of the 1=1Na m=1=1Na

correlated basis functiofCBF) perturbation theory, have o .

been able to give good estimates of and m} at theT ~ @ndFs is given by the correspondent product of triplet cor-

=0 “He equilibrium densityp,=0.02185 A™3. Recently, relaﬂonsf(“ﬁ'”(ra,rﬁ,ry). o _

a diffusion Monte Carlo approach has provided similar _The correlation functions are variationally obtained by

results? There are also theoretical indications of a deviationMinimizing the g.s. energy of the syste#g. The procedure

of the spectrum from the LP for® The presence of a pos- IS outlined in |, where a parametrized form for the triplet

sible rotonlike structure ire(q) near the crossing with the correlations was used and the Jastrow factors were obtained

“He phonon-roton spectrum was supposed in Ref. 9 but ndly the Euler equationsE,/5f(“#)=0. The equations were

confirmed in Refs. 7, 8. However, in Ref. 8 an excitationS0lved within the hypernetted chaihiNC) framework and

spectrum quite higher than the experimental one was foundl® scaling approximation for the elementary dlag_rai‘ﬁ&
Here we will employ the CBF machinery of Ref.(Bere- The Aziz interatomic potenti#l was used in the minimiza-

after denoted as) Ito compute, in a microscopic way, the tion process. _ _ _

whole impurity spectrum. The CBF basis used in | consisted 1he perturbative calculation of I included one indepen-

in correlatedn-phonon states dent phonor(OIP) and two independent phoneilP) states
and all the diagrams corresponding to successive rescatter-
W qay--q,=P3(A— 01— — ) pa(d1)" **pa(dn) Yo, ings of the one phono(ROP states. This contribution was

) obtained by solving a Dysonlike equation in the correlated

, basis. While the correlation factors are intended to care for
wherep,(k)=3;_1,e' " is the“*He density fluctuation op-  the short-range modifications of the ground state wave func-
erator andp3(k) =€e'k""s describes the excitation of the im- tion due to the strongly repulsive interatomic potential, the
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basic physical effect induced by the perturbative corrections 4 - ' - '
may be traced back to the backflow around both the impurity
and the*He atoms. The CBF analysis provided;(CBF) /
=—2.62 K[vs u3(expt)=—2.79 K] and m% (CBF)=2.2m; .l
at equilibrium density. The chemical potential was obtained
with the Lennard-Jones potential and some improvement
may be expected by the Aziz interaction.

In order to construct the CBF perturbative series, we write g 2o
e(q) =ey(q) +Ae(q), with eg(q) =%9%/2m; and

Ae(q)~Aegp(q)+Aenp(q) +Aerodq). )

The different terms in Eq(5) represent contributions from
the corresponding intermediate states. Thphonon states
have been Schmidt-orthogonalized to states with a lower
number of phonons. For instance, the actual OIP state read 0%

10 +
CBF/SA

0.5 1.0 1.5 2.0 25

q
|\I’q:q1>_ |q'q><‘I’q|\I’q:ql>
|q§Q1> = (W, |q, _ >1/2 . (6) FIG. 1. *He excitation spectrum at equilibrium density. Stars are
aa’ = 40 the experimental data. Energies in K and momenta irt.A

The two-phonon stat#,, , has been orthogonalized in a ) ) o
e The OIP and TIP perturbative diagrams contributing to

§|m!lar yvay oWy, ‘Pq;ql”‘%' andqf‘i;ql,f The orthogonal- Ae(q) are shown in Fig. 5 of I, where only they=0 de-
ization is a necessary step in fgstenlng the convergence of thg ative was computed, since the paper was concerned with
series as the nonorthogonalized states have large mutul@lst the calculation of the effective massct0. Here we
overlaps. extend the formalism to finitg. We use Brillouin-Wigner

The nondiagonal matrix elementME’s) of the Hamil- o hation theory, so the correction itself depende(ar)
tonianH (we remind the reader that we use the Aziz poten-,

) ' and the series must be summed self-consistently. For in-
tial) are evaluated by assuming that the two- and three-body;once the OIP contribution is given by

correlations are solutions of the corresponding Euler equa-
tions. This is not strictly true for the triplet correlations but [(q|H—Eq—e(q)|q;a1)|?
& e(d)—eo(|g—ai]) —we(ay)

the corrections are expected to be small. With this assump- Aeo,p(q)=2
tion, it is easily verified that

(o) ﬁZ 2
ﬁz :_(_) d3
<Q|H|Q§Q1>:_[N4S(Q1)]71/22_ITI3Q'Q153(Q1), (7) (2m)3 2m; f i N4S(d,)

2
where S(q;) and S;(qg;) are the*He and impurity static [Ss(a1)a-9u]
structure functions. e(q)—eo(|a—as) —We(qy)

In general, ME’s involvingn—1 phonon states, are ex-
pressed in terms of the-body structure functions

(12)

The expressions of the other diagrams are quite lengthy
and will not be reported here. However, some comments are
a0 ol in order. They involve the two- and three-body structure
Sy, ... Q0= i (Wolpa(ay) p4(qn,1)p4(qn)|\lfo)’ functions, i.e., the Fourier transforms of the two- and three-
Na (Wol¥o) ® body distribution functiong®)(r ;,) andg®(r;,r,,r3). g
is a direct output of the HNC/Euler theory and, in pdkee,
and ends up very close to its experimental measurement. To
v,| foo g v evaluateg® is more involved and usually one has to resort
s (q L ):< 0lP4(d1)***pa(Gn-1)p3(dn)|Po) to some approximations. The mostly common used are the
b mn (Wo|Wo) ’ convolution approximatioiCA) and the Kirkwood superpo-
(9  sition approximatiofKSA).1° The CA correctly accounts for
With g,=Qy++ -+ 1. the sequential relation betweg® andg® and factorizes

The diagonal ME’s have a particularly simple form: in momentum  spaceSEX(dy,dz,ds) = S(d1) S(02) S(ds);
the SA factorizes in r space, gih(ry,ra,ra)=
(9:91°+Gnla; a1 A =N3S(A1) ' S(dn), (10 g (r,)g@(r199@(r,9, and adequately describes the
short-range region. The momentum space factorization prop-
erty makes the use of the CA particularly suitable for our
perturbative study.
(001 -Gl HI ;01 Q) = E§+eg(@) + 2, Wi(a) The sensitivity of the calculation to the approximation for
1=1n g® clearly shows up in the CBF-TIP evaluation of tftée
(11 excitation s i
pectrunw(q). Figure 1 compares the Feynman
where ES=(Wo|H| W) (¥o|¥o) and wg(q)=%%g%  spectrum and those obtained within the CA and KSA with
2m,;S,(q;) is the FeynmarfHe excitation spectrurt? the experimental data. The phonon linear dispersion aglow

and
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FIG. 2. 3He single particle energies in CA, KSA, and CA1 with-

. 3 . .
out phonon rescattering. Stars are the experimental data. Units as in FIC_B. 3. CBF/_CAl(trlangIeé, LP, and MLP"He smglt_a particle
Fig. 1. energies. Full circles are the VMC data. Stars and circles are the

impurity and “He experimental data, respectively. Black triangles
. are extrapolated CBF/CA1 valuésee text Black diamonds give
is well reproduced by bothwe(q) and wca(q), whereas the impurity imaginary optical potentigin K). Units as in Fig. 1.
wksa(q) fails to give the correct behavior. As it is well
known, the remaining part of the spectrum is severely overy,nction51617 We find m% (OIP)=1.8m5,

estimated bywg(q); both CA and KSA give a reasonable ot \yith the VMC outcome. An analogous CBF treatment

description of the maxon region but KSA is closer to theb S e *
. S ) aarel® gave similar resultsro ~1.9m;) and a spec-
experiments at the roton minimum, because of its better d oy 9 s 3) b

scription of the short-range regime. An overall good a ree(=Trurn close to the LP form. More complicated momentum
m r?twith the experim n% | grv w btain g i R gf 14dependent correlations are generated by TIP and ROP dia-
€ € experimental curve was obtaine el. grams, playing a relevant role in the CBF approach and giv-
where backflow correlations were added to the CBF states: * =~
. . ; ing m3 (CBF)=2.1m;.
Figure 2 show®(q) in CA and KSA, along with the data The total CBF i it " . lose d
from Ref. 3. The curves do not include the ROP contribution. € lota impurity spectrum is very close @g(q)

At this level, the effective masses ar (CA) = 1.6m, and up to its merging into théHe dispersion relation. For the
m*(KSA)—é 1m, and again, KSA is closer to .thesexperi- parameter in the MLP parametrization, the theory gives
3 =< '

| | Th labeled CA1 i (CBF)~0.19 A2, If the spectrum is parametrized in terms
mbetnf[a Zpechmbatt arge ntwr(])menta.. e({*l;lrve a etze -AL15f a momentum-dependent effective maséq) =#2q%/
obtained In LA, but using the experimentale Spectrum In— 5% () then we findm? (q=1.7 A~1)=3.2ms, with an in-
the energy denominators. Diagraime of I, that gives the N

. . .. crease of~50% respect to thg=0 value.
two-phonon correction te(q), has not been included as its d AL th d . ish f
effect is mostly taken into account by the use wf,,(q) Beyondg~1.9 , the energy denominators vanish for
- x4 some momentum values and the series cannot be summed

KSA and CA1 are close at larggvalues, pointing to a good

- : . anymore. This is due to the fact that the impurity quasipar-
gescglsélﬁ nt:ftthheé‘ﬁe roton ;Za 5336/ Inglrleg)lﬁgt fc;;]a (é);\rlect ticle is no longer an excitation with a well defined energy,
ppr rgq sector. Wi w the since it can decay intdHe excitations and acquire a finite

method for the remainder of the work.

: . . . . lifetime 7. A finite 7 value reflects a nonzero imaginary part
Figure 3 gives the CAL impurity spectrum and the EXPET ¢ the 3He complex optical potentialor the on-shell self-

3 4 .

e e S e e S energy Wia) - m3{ala)] Figue 3 showsi(a) a3
. expid wn. since the branc computed with only OIP intermediate states,

of the dynamical response due to the excitations of the low

concentratior™e component in the Helium mixtures over-

laps the collectivé'He excitation ag>1.7 A~1,3° e, (q)

in good agree-

is not known in that region. A rotonlike behavior was sup- WO|P(q)—7Tqu [(alH—Eo—e(a)]a:qy)l
posed in Ref. 9. This structure was not confirmed by the
variational Monte CarldVMC) calculation of Ref. 8, which x dle(q)—eo(lg—a:))—w(q)], (13

employed shadow wave functions in conjunction with a Ja-

strow correlation factor of the McMillan type. The VMC where the MLP impurity spectrum and the experimefitée

data at equilibrium density are given in the figure: they over-dispersion have been uspubtice thatw(q) is amplified by

estimate the experiment and have an effective mass af factor 4 in the figurk The OIP optical potential is close to

m3 (VMC) ~1.7mj3. the one found in Ref. 18. A numerical extrapolation of the
The shadow wave function of Ref. 8 takes into accountcomputedecge(q) into the roton region does not show any

backflow effects. Actually, in several papers it was pointedevidence of @He rotonlike structure.

out that second order perturbative expansion with OIP states In conclusion, we find that CBF perturbative theory is

introduces  backflow correlations into the wave able to give a quantitative description of tRele impurity
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excitation spectrum in liquidHe at equilibrium density. The rithm for the computation of nondiagonal matrix elements
intermediate correlated states must consider at least two inwould probably be the correct answer.

dependent phonon states and one phonon state rescattering is .
found to play a nonmarginal role at large momenta. It is A.F. wants to thank the Institute for Nuclear Theory at the

plausible that in a richer basis, including, for instance, ex-University of Washington for its hospitality and the Depart-
plicit backflow correlations, a lower order expansion mightment of Energy for its partial support during the completion
be sufficient. However, the more complicated structure of théf this work. This research was also partially supported by
matrix elements could cause additional uncertainties in theiPGICYT (Spain Grant No. PB95-1249, the agreement
evaluation, at least in the framework of the cluster expansio€ICYT (Spain—INFN (Italy) and the Accia Integrada pro-
approach. The development of a Monte Carlo based algagram (Spain-Italy.
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