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Continuum double-exchange model
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We present a continuum model for doped manganites which consist of two species of quantuén spin-
fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be consid-
erably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting,
canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being
stable against phase separation. There are also regions in the phase diagram where phase separation occurs.
[S0163-18209)07317-9

[. INTRODUCTION wavelength behavior a continuum field-theory description is
appropriated. The field-theoretical continuum model must
Doped manganites La,A,MnO; (A divaleny* are re- contain the relevant degrees of freedom at long wavelengths,
ceiving quite a lot of both theoretidaP and experiment&  which depend on the particular systems and phenomena that
attention lately. These materials show an interesting interare to be studied. In our case, these are doped manganites
play between magnetism and conductivity with intrincateand their phase diagram at zero temperature. These systems
phase diagrams which are still controversial. are known to undergo a number of phase transitions when
In a cubic lattice the 8 orbitals of Mn split into at,3  the doping is increased. They are insulating antiferromagnets
triplet and an uppeey doublet. Due to the electronic repul- (AFI) at zero doping and become conducting ferromagnets
sion and the Fermi statisti¢glund’s rule the threet,4 levels  (FC) at large enough doping. What happens between these
are always single occupied forming a c&e 3 spin. Thegy two regimes is still controversial, though most authors agree
orbitals may be further split by a static Jahn-Teller distortionthat the phase diagram is very rich and nontrivial. Early
at small doping? works on the subject suggested that an interesting intermedi-
The above features are encoded in the so-called doublte conducting canted phase exists,but recent
exchange models of different degrees of complexity. Theexperimentdf and theoretical* results indicate that the
simpler ones assume a strong Jahn-Teller distortion so thatnted phase appears to be unstable against phase separation.
only the lowere, level is considered. Hence there is a single  Theoretical work on the subject is based on variations of
fermion field in each site, with a spin independent hoppingthe double exchange models. The phase structure of the sys-
term and a local interaction with the core sfihCore spins  tem is obtained from these models using certain simplifying
also interact among themselves with the usual Heisenbergssumptiongslave boson formalisr{rial wave functiong,
term. Under certain assumptidfshe interaction with the etc) or extensive numerical simulatiofshe scope of which
core spin can be traded for an angle dependent hoppinig difficult to evaluate. We present below a continuum field-
term23 The next level of complexity consists of taking into theoretical model which, as we shall argue, contains the rel-
account the twe, levels®’ and only very recently, the Jahn- evant long-wavelength degrees of freedom of the system.
Teller distortion has been incorporated dynamically by soméhen our main assumption is going to be that the rich phase
authors’ diagram of manganites can be understood from long-
It is the aim of this work to present a simple continuumwavelength physics only. As the model is exactly solvable,
model for doped manganites which also encodes the bastbere are no further uncertainties due to uncontrolled ap-
features above and, moreover, is exactly solvable for classproximations.
cal core spins. It produces a rich phase diagram which is in Since we wish our model to include the well established
gualitative agreement with recent results and it shows, ifAFI and FC phases, we need at least an AF order-parameter
addition, that stable canted phases exist. The main advantagield, a F order parameter field, and a I-C order parameter
with respect to previous approaches is that all the parametefield. For the AF and F order parameter fields we shall use
of the material(lattice spacing, band curvature, Hund cou-M,(x) andM,(x) the local magnetizations in the even and
pling, Heisenberg coupling, and dopjngombine into only  odd sublattices, respectively. Both in the AF and F phases
two constants. This allows us to present a two-dimensionahese local magnetizations are smoothly varying fields. In the
phase diagram which holds for a large amount of materialsAF phase M;(X)M,(x)~—1 whereas in the F phase
M1(X)M,(x)~1. For the I-C order parameter one could
Il. THE MODEL think of introducing a single slowly varying spihfermion
' field together with a chemical potential which regulates the
Cooperative phenomena are amenable of a fielddoping. When the chemical potential is below the energy gap
theoretical description. When the phenomena do not deperaf the lowest spin state we have an | phase, when it overtakes
on the details of the microscopic system but only on its longthis energy gap we have a one band C phase, and when it
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overtakes the energy gap of the highest spin state we have(&) primitive translations:
two band C phase. However, a sgifield naturally couples

to the local magnetization, which changes abruptly from the Y1(X)—= (X)), Pa(X)— ¢h1(X),
even to the odd sublattice in the AF phase. Hence in this
phase a single spiffield cannot be slowly varying over the M1(X)—=My(X), My(x)—M(X), 2.3

system. We need at least two slowly varying spifermi-
onic fields,(x) which couples to the magnetization in the
even sublatticé ;(x) and ¢,(x) which couples to the mag-
netization in the odd sublattidd ,(x). Since the conductiv-
ity is due to fermions moving from one sublattice to the other 1
one a(spin independeithopping term is introduced. The alﬂi(x)ﬂgglﬂi(fb >E)1
allowed values of the chemical potential will be limited by MF(x) = R5(E)M7 (& 7x)
the physical condition that no conduction must exist when . . . .
the hopping parameter vanishes. when the po_lnt group transformatichmaps points in the
The model must b&U(2) spin invariant since the mag- same sublattice, and
netic interactions emerge from the usual superexchange _ 1
mechanism together with the Hund’s rule. The space-time ¥1(X)—9:¥2(£X), ho(X)—=Qeihr(€77°X),
symmetries of the underlying crystal must also be imple-
mented and will be the only remains of the microscopic lat- M23(x)—RA(&MBE(£71x), M3(x)—R2(&)MP (£~ 1x),
tice structure. For simplicity we shall take a cubic lattice and (2.5

comment later on the slight modifications that occur for other ) ) )
crystals. when the transformatiog maps points of different sublat-

The Lagrangian of the model reads tices. Anyway, the rotationg, and Rj(£) can be absorbed
by a SU(2) transformation and the change of sublattice in

_(iii) point group transformations, given by the group
m3m:

(i=1,2, (2.9

7 o Eg. (2.5 by a primitive translation. Hence, in practice, we
E(x)=¢{(x) (1+ie)idg+ %+M+JH?M1(X)) P1(X) only have to care about the transformation of the coordi-
nates.
2 (iv) Time reversal,
+ L i o
+P300| (1+i€)ido+ 5+t Iy Ma(X) [ h2(%) ) G (T
i i

—imaldl2_ .
t t Mi()——Mi(Tx)  ©7® P=iof (=12,
FLf2(X) 2(X) + ¢h2(X) P2 (X) ] = IAeM 1(X)M 5(X). (2.6

(2.)  whereTx=(—t,x).

The size of the parameters in the model is estimated by
comparing them with the naive continuum limit of lattice
double exchange models. For a cubic lattice we hase 2  In order to find out how the ground state of the system
~1/a%', t~zt, Jy~J},, andJa~2zJ,/a%>0, whereais  changes as a function of the chemical potential, we shall
the lattice spacingz==6 is the coordination number, and the calculate the effective potential and minimize it with respect
superscript means the analogous lattice quantity. The fieldsto the order parameteitd,; andM,. We shall assume that
#i(X) may describe either electrons or holes. Since the conthe ground-state configuration corresponds to constant mag-
duction in actual doped manganites is due to holes, oneetizations both in the odd and even sublattices. Hence the
should better figure oug;(x) as hole annihilating fields. Re- effective potential is to be minimized with respect to the
call that for holes] is negative whereas it is positive for angle 8 betweenM; and M, only. We usey=cos(/2).
electrons. This sign however is going to be irrelevant as fatWheny=0, 0<y<1, andy=1 we have an antiferromag-

Ill. EFFECTIVE POTENTIAL

as the phase diagram is concerned. netic, canted, and ferromagnetic phase, respectively.
The Lagrangian above is invariant under the following The effective potential is obtained by integrating out the
transformations: fermion fields in the path integral, and it is formally given by
(i) global SU(2) spin transformations:
Vei=JaeM M, +itr logO/VT, 3.1
HOO—gU00 oa o= JarM M2 Hitr log (31
M (x)—REMP(x) o ' where
|
. . 2 ‘]H
O= ] , (3.2
t (1+i€)ido+ d22m+ u+ = oM,

2
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and the trace is both on spin indices and space-time coordi- IV. PHASE STRUCTURE

nates. VT is the volume of the space time. The possible phases of the model are obtained by mini-

If O has eigenvalues,, mizing Eq.(3.8) with respect toy for the different values of
. the parameterA andy,. The number of conducting bands is
trlog®d=2> log\,. (3.3 given by the number o functions in Eq.(3.8) which con-
" R tribute to the effective potential at the minimum.
We have then to diagonalize the operafar Since it con- In order to gain some qualitative understanding and to

tains only constant fields the diagonalization with respect tanake the minimization procedure systematic we shall first
the space time is trivially attained by plane waves. The diseparate the casgg<<0 andy,>0. For each case we shall
agonalization with respect to the spin indices is a simplavork out the stability conditions for AFy(=0), canted (0

linear algebra problem. We obtain <y<1), and F ¢=1) phases. After that we shall compare
K2 the energy of the stable phases and obtain the curves which
M=0i(g)=(1+ie)w— 5=, (3.4  separate them.
2m The stability conditions are given for the different phases
134IM 0 2t by
Q== > 1+72i2yCOS§—M, Y=T30M
|3l a5 AF: Vi(0)>0 or Vi(0)=0 V'(0)>0,
q=(w,k) and M=|M4|=|M,|=%. The restriction for the C: Viy)=0 V'd(y.)>0,

values of the chemical potential in the model implies that at
most the two lower eigenvalues in E®.5 may contribute.
This motivates the following reparametrization of the chemi-

cal potential: Let us then consider first the casg<<0. Clearly fory,
|Jn|M 5 max < —1 the unique existing phase is the AFI phase. In the case
p=—"5 NI+ =2yyo (—1<Yo<yo —7/2), —1<y,<0 only the lowest of the four spin eigenvalues may
(3.6) contribute to the effective potential. The stability conditions
yield the following stable phases:

F: V.(1)<O. 4.1

which eases comparison with the energy levels in B)
[y=cos@?2)]. In order to simplify the analysis we assume

small and keep only linear terms inin the relevant eigen- AFl:y=0,
values above. Namely,
"ML FC: y=1, A(l+yg¥>E. (4.2
Qi==——7(Yo*y). (3.7)

The canted phase is not stable as it can be seen from the
This is justified fort<Jy, as it turns out to be the case for conditionV/¢(y,)=0,
the actual materiaf¥' Anyway, this simplification can be
lifted with the only drawback that the few analytic expres- Ve=2 A(yo+yo) ¥ 4.3
sions below must also be substituted by numerical analysis.
In order to calculate the sunf3.3) we have used which has at most one solution e[ —yo,1]. SinceV is
¢-function techniqued? which are explained in the appendix. continuous, and increasing @t=0 this solution must be a

We obtain the effective potenti@dor 1 <0) maximum when it exists.
The curve V 4(0)=V.(1) in the plain ,A), which
Verr=Vo{(2y*—1) = Al (Yo+Y)*0(yo+Y) separates the Afflg( a)nd Eﬁ|(or3ases, rea%s Vo)
+(Yo—Y)*%0(yo= Y1}, (3.9 N
A(l+yy)%?=2, (—1<yy<0). (4.9

where we have defined

(2m) 2572 302 t Abovg this curve the F phase is favored against the AF phase

Vo=Jp\eM2, A= _ _ and vice versa.

' 1572J,eM? 1572 (Jpra®M?) Consider next the case<Oy,<1. The stability conditions
(3.9 are given by

AFC2: y=0, Ayy’<3,

CC2: BA(y:+3y5)/4= (Yot yo) ¥+ (Yo—yo)®%  8115<Ayy*<2v25,
CCl: y.=5A(yo+Yc)¥48, Ayy?>2v2/5,

FC1l: y=1, A(l+yy)%¥=>¢, (4.5
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where AFC2, CC2, CC1, and FC1 stand for antiferromagnetic two band conducting, canted two band conducting, canted one
band conducting, and ferromagnetic one band conducting, respectively. Notice that AF and canted phases do not compete
among them, but only with the F phase. The curves providing the boundary between the different phases are given by

AFC2—FC1: A[(1+yg)®?—2y3?=2, 0<y,<0.127195,

AFC2-CC2: Ays?=£, 0.127195y,<1,
CC2-FC1: BA(Y2+3y2)/4=(yo+Y,) ¥+ (yo—Yo)¥2 0.127 195y,<0.168 457,
CC2-CC1: Ayi?=2v2/5, 0.16845%yy<1,

CC1-FC1: B5A(Yo+y1)¥¥8=y,, 0.16845%y,<0.5,

CC1-FC1: BA(1+yy)%%8=1, 0.5<y,<1, (4.6)
|
wherey, andy, are given implicitly by the equations These expressions for the doping permit us to establish
5o 52 5 2 that all our phases are thermodynamically stable, unlike the
[(1+Y0)**=(Yo+Y2)**= (Vo= ¥2) [ (Yot Y2) ones observed in Refs. 3 and 4. This is easily proven from
5 the stability conditiondu/dx>0. For the F and AF phases
+(Yo—VY2) ¥ = E(l_yg)(ngr 3yg) this is trivially obtained, whereas canted phases are stable if

they are below the curves:
(Y1+Y0)*?+2(1+Yo) YAy +Y0)? CC2: BAY/3=(yo+y)Y?
+3(1-Yo) (Y1 +Y0)¥*+4(1-2y0) (1+Yo) *(y1+Yo)

—8Yo(1+Yo)(Y1+Yo) 2= 4yg(1+y)*¥?=0. (4.7)

The outcome is plotted in Fig. 1.
Recall that Fig. 1 actually does not plot a phase diagranThis is always the case as it is shown in Fig. 1 where we

against doping but againgt which is related to the chemi- have plotted the two curves.

cal potential rather than to the number of conducting fermi- Once we have the expressio9) for the doping it is

ons or doping. Recall also thaf.; is to be regarded as a straightforward to translate Fig. 1 to a more conventional

(zero temperatujegrand canonical potential rather than as a

free energy. The doping is introduced via :

—(Yo—Y) VA2 —5y3+4ys(ya—y?)H?=0, (y<y,)

CCl: Ayi?=1&v3. (4.10

s WVeit a® Ver @9 /

I t dyo ' 2.5} /
provided that one molecule exists per unit cell with a lattice
parameter. Taking into account Eq.3.9) the doping corre- ' /
sponding to the different phases reads

AFl:  x=0,

3/2 AFI

AFC2: x= Wzyg@,

Z3/2
CC2: x= = [(Yot+yo)**+ (Yo—¥o) ¥,

. . - . . ' Yo
-0.2 0.2 0.4 0.6 0.8 1
312

CCl: x=—>(yo+ yo) 2, FIG. 1. Phase diagram in thgq,A) plane. The thick solid line

6w corresponds to first-order transitions whereas the remaining solid
lines to second-order ones. The dotted and dashed-dotted lines are
the upper stability boundaries for the CC1 and CC2 phases, respec-
tively. The two dashed lines are the boundaries for the reliability of
our model forz|Jy|M/2(Jxra®M?)~50 andz|Jy|M/2(JaraM?)
where they, for the CC2 and CC1 phases are given in Eq.~ 200, respectively. Only the part of the phase diagram to the left of
(4.5). the corresponding dashed line is trustworthy in each case.

3/2
FCL: x= £ (1+yo)™? (4.9
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A V. CONCLUSIONS

We have presented a simple model in the continuum
which is able to describe the rich phase structure of doped
manganites for a wide range of these materials. We have
assumed an underlying cubic crystal for simplicity. Never-
theless, the orthorhombic distortion can be easily accommo-
dated by the following simple changes in the physical param-
eters:m*—mmym,, a’—abc, Ja—J+J,+J,, andt
—t,+t,+t,. In practice this does not modify our results
since it would only lead to a differem, which is anyway a
free parameter in our phase diagrams. This fact also suggests
that the structural transitions that these materials undergo
when increasing the dopifiyare not essential in order to
understand the F-AF and I-C transitions.

An important feature of our results is that the two canted

. . . , . phases that we observe are stable against phase separation,
0.2 0.4 0.6 0.8 1 unlike in some previous works! We also observe regions in

FIG. 2. Phase diagram in tf&,A) plane. P$ (i=1,2,3,4) indi- the phase diagram where phgse separations of sev_eral kinds
cates the new regions where the phases at their boundary may c81&y occur. If we plug realistic values for the physical pa-
exist. Thex=0 axis corresponds to the AFI phase. The two dashed@meters we findA~1-2. Within this range the following
lines are the boundaries for the reliability of our model for Sequences of phases are possible upon increasimgAFI-
7]34IM/2(3pra®M?) ~50 and z|Jy|M/2(Iara®M?)~200, respec- PSI-FC1, (ii) AFI-AFC2-PS2-FCL1, (i) AFI-AFC2-CC2-
tively. Only the part of the phase diagram to the left of the corre-PS3-FC1,(iv) AFI-AFC2-CC2-CC1-PS4-FC1. Recall also
sponding dashed line is trustworthy in each case. that in PS3 and PS4 ferromagnetic and canted phases coex-
ist. This may explain some controversial results obtained by
different authors.

h di here the dopi i f th . . L
'F;h?ssfs éi/gerr?r::]Vl\éigrz(reialfffgfpears N one ofihe axes Let us also mention that the two fermion fielgs(x) and

It is interesting to notice that in Fig. 2 new regions arise,wZ(X) accommodate they doublet in our model. Indeed in
which we have denoted P$i=1,2,3.4), between the FC1 the AF phase the two lower and two higher eigenvali3e$ _
and the AF, AFC2, CC2, and CC1 phases, respectively.are degenerated. In the F and C phases the degeneracy is

This is due to the fact that the thick solid line separating Fcifted. This implies t_hat _the splitting betwee_n the twplev-
and AR, AFC2, CC2, and CC1 in Fig. 1 corresponds to aels receives a contribution from the dynamics of the conduct-

first-order phase transition. Along this line two stable in-Ng fermions in addition to that from the static Jahn-Teller
equivalent minima have the same energy and the chemicgl's_tl_ohrt'on' del b d'in the future to study the t
potential cannot be traded by the doping. These regions are de mo ; can ftﬁse r']n ed_u ure 1o Iilu ty t'e emdperat-
likely to consist of coexisting domains where the two phase ure depencdence of the phase diagram. Fluctuations due fo
at the boundary are realizeghase separati()ﬁ AFl and  SPin waves in all the phasémcluding the canted ongsan

FC1 would coexist in PS1, as it has been observed in recerﬁﬁ

so be incorporatetf. It would also be interesting to see if
works3* EC1 and AEC2, CC2, and CC1 would coexist in e model can be generalized to accommodate the Jahn-

PS1, PS2, and PS3, respectively. Teller distortion dynamically.
As mentioned in Sec. I, the fact that fo==0 we do not
permit conductivity restricts the values that the chemical po- ACKNOWLEDGMENTS
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which gives the boundary of validity for our results. It turns
out to be a straight line in Fig. 1 provided th3t- and Jy
remains constant ag)'™ moves, which can be straightfor- ~ The {-function techniques provide a very efficient way to
wardly translated to Fig. 2. Only the phase diagram to thesalculate the trace of the logarithm of operatbrsThe ¢
left of this curve is trustworthy. function associated to an operafris defined as

We take for the coupling constant$/(JaraM?)
~10-20 andz|Jy|M/2(Jara*M?2) ~ 50— 200, which is com- ) s s
patible with the values given in the literature. For these val- {o(s):=trO :; A (A1)
uesA~1-2, and the two extreme validity curves are dis-
played as dashed lines in Figs. 1 and 2. Then

APPENDIX: ¢-FUNCTION TECHNIQUES
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d We need the derivative of the above with respecs @t s
> logh,=— gsbod . (A2)  =0. The presence of II{s)~s makes the evaluation very
s=0 easy, giving rise to

Consider the operatdd in Eq. (3.2). Once the spin di-

agonalization is performed we only have to consider the VT(2m)372
space-time trace over a generic spin eigenvalue denoted by - d—Sgé(s) W[|5’2(—iﬂi)5’2
Oi . Since the real part of the operateﬁéi is positive for s=0
positive energies and negative for negative ones, due to the —(=)%4iQ,)%?. (A5)
termiew in Eq. (3.4), it is convenient to consider the integral
form of {5(s) over positive and negative energies of sepa-
rately: The expression between square brackets vanishes when
s 3 Q;>0, i.e., when the chemical potential is bellow the energy
tr[(@-a(—w))’s]z (- J'deTsflfo ﬂ d°k of the ith state, and is nonzero whéh, <0, i.e., when the
! I'(s) 27 (2m)°® chemical potential is above the energy of flte state. This
. leads to the effective potentiffor u<<0, y,<yp <
Xeiloi(q)T\/T, (A3a) p ﬁb M Yo yO )
(0 e fd Sflf do d3k A
O 1= 55y |, 97 | 27 (2m)° Veﬁ=Vo((2y2—1)— pr
X @O @7yT, (A3b) 27y 270 | 2
. . . X 1+1 7 1_1 7| 6(Yoty)
After the energy and momentum integration we obtain the +y +y
expressions \/1_ ZLy_ \/1_ 2o 5/20( )
VT [2m)| 32 112 142 Yo Y]
[ (01 0(— ) 1=
167 (AB)
F(S_ 5/2) (_ i )7375/2( _ iQ_)S+5/2
I'(s) ! ’ where y=cos(@/2), whereasy, y,, andV, are defined in
(Ada) Egs.(3.9), (3.6), and(3.9), respectively.
. VT [2m)3%? 32
tr[(Oiﬁ(w))‘S]———( ) (2m)
16m tyV1+y?)52, A7
=152 I Mz( %) (A7)
T'(s=5/2) . ismicy \—sisi
X T(s) (—1) (i€);) .

Equation(3.7) follows from the above by keeping only terms
(Adb)  linear invy.
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