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Continuum double-exchange model
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~Received 30 October 1998!

We present a continuum model for doped manganites which consist of two species of quantum spin-1
2

fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be consid-
erably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting,
canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being
stable against phase separation. There are also regions in the phase diagram where phase separation occurs.
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I. INTRODUCTION

Doped manganites La12xAxMnO3 ~A divalent!1 are re-
ceiving quite a lot of both theoretical2–9 and experimental10

attention lately. These materials show an interesting in
play between magnetism and conductivity with intrinca
phase diagrams which are still controversial.

In a cubic lattice the 3d orbitals of Mn split into at2g
triplet and an uppereg doublet. Due to the electronic repu
sion and the Fermi statistics~Hund’s rule! the threet2g levels
are always single occupied forming a coreS5 3

2 spin. Theeg
orbitals may be further split by a static Jahn-Teller distort
at small doping.11

The above features are encoded in the so-called do
exchange models of different degrees of complexity. T
simpler ones assume a strong Jahn-Teller distortion so
only the lowereg level is considered. Hence there is a sing
fermion field in each site, with a spin independent hopp
term and a local interaction with the core spin.4,5 Core spins
also interact among themselves with the usual Heisenb
term. Under certain assumptions12 the interaction with the
core spin can be traded for an angle dependent hop
term.2,13 The next level of complexity consists of taking in
account the twoeg levels,6,7 and only very recently, the Jahn
Teller distortion has been incorporated dynamically by so
authors.9

It is the aim of this work to present a simple continuu
model for doped manganites which also encodes the b
features above and, moreover, is exactly solvable for cla
cal core spins. It produces a rich phase diagram which i
qualitative agreement with recent results and it shows
addition, that stable canted phases exist. The main advan
with respect to previous approaches is that all the parame
of the material~lattice spacing, band curvature, Hund co
pling, Heisenberg coupling, and doping! combine into only
two constants. This allows us to present a two-dimensio
phase diagram which holds for a large amount of materi

II. THE MODEL

Cooperative phenomena are amenable of a fie
theoretical description. When the phenomena do not dep
on the details of the microscopic system but only on its lo
PRB 590163-1829/99/59~17!/11418~6!/$15.00
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wavelength behavior a continuum field-theory description
appropriated. The field-theoretical continuum model m
contain the relevant degrees of freedom at long waveleng
which depend on the particular systems and phenomena
are to be studied. In our case, these are doped manga
and their phase diagram at zero temperature. These sys
are known to undergo a number of phase transitions w
the doping is increased. They are insulating antiferromagn
~AFI! at zero doping and become conducting ferromagn
~FC! at large enough doping. What happens between th
two regimes is still controversial, though most authors ag
that the phase diagram is very rich and nontrivial. Ea
works on the subject suggested that an interesting interm
ate conducting canted phase exists,13 but recent
experimental10 and theoretical2,4 results indicate that the
canted phase appears to be unstable against phase sepa

Theoretical work on the subject is based on variations
the double exchange models. The phase structure of the
tem is obtained from these models using certain simplify
assumptions~slave boson formalism,2 trial wave functions,4

etc.! or extensive numerical simulations,9 the scope of which
is difficult to evaluate. We present below a continuum fie
theoretical model which, as we shall argue, contains the
evant long-wavelength degrees of freedom of the syst
Then our main assumption is going to be that the rich ph
diagram of manganites can be understood from lo
wavelength physics only. As the model is exactly solvab
there are no further uncertainties due to uncontrolled
proximations.

Since we wish our model to include the well establish
AFI and FC phases, we need at least an AF order-param
field, a F order parameter field, and a I-C order parame
field. For the AF and F order parameter fields we shall u
M1(x) andM2(x) the local magnetizations in the even an
odd sublattices, respectively. Both in the AF and F pha
these local magnetizations are smoothly varying fields. In
AF phase M1(x)M2(x);21 whereas in the F phas
M1(x)M2(x);1. For the I-C order parameter one cou
think of introducing a single slowly varying spin-1

2 fermion
field together with a chemical potential which regulates
doping. When the chemical potential is below the energy g
of the lowest spin state we have an I phase, when it overta
this energy gap we have a one band C phase, and wh
11 418 ©1999 The American Physical Society
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PRB 59 11 419CONTINUUM DOUBLE-EXCHANGE MODEL
overtakes the energy gap of the highest spin state we ha
two band C phase. However, a spin-1

2 field naturally couples
to the local magnetization, which changes abruptly from
even to the odd sublattice in the AF phase. Hence in
phase a single spin-1

2 field cannot be slowly varying over th
system. We need at least two slowly varying spin-1

2 fermi-
onic fields,c1(x) which couples to the magnetization in th
even sublatticeM1(x) andc2(x) which couples to the mag
netization in the odd sublatticeM2(x). Since the conductiv-
ity is due to fermions moving from one sublattice to the oth
one a ~spin independent! hopping term is introduced. Th
allowed values of the chemical potential will be limited b
the physical condition that no conduction must exist wh
the hopping parameter vanishes.

The model must beSU(2) spin invariant since the mag
netic interactions emerge from the usual superexcha
mechanism together with the Hund’s rule. The space-t
symmetries of the underlying crystal must also be imp
mented and will be the only remains of the microscopic l
tice structure. For simplicity we shall take a cubic lattice a
comment later on the slight modifications that occur for ot
crystals.

The Lagrangian of the model reads

L~x!5c1
†~x!S ~11 i e!i ]01

] i
2

2m
1m1JH

s

2
M1~x! Dc1~x!

1c2
†~x!S ~11 i e!i ]01

] i
2

2m
1m1JH

s

2
M2~x! Dc2~x!

1t@c1
†~x!c2~x!1c2

†~x!c2~x!#2JAFM1~x!M2~x!.

~2.1!

The size of the parameters in the model is estimated
comparing them with the naive continuum limit of lattic
double exchange models. For a cubic lattice we havem
;1/a2t l , t;ztl , JH;JH

l , andJAF;zJAF
l /a3.0, wherea is

the lattice spacing,z56 is the coordination number, and th
superscriptl means the analogous lattice quantity. The fie
c i(x) may describe either electrons or holes. Since the c
duction in actual doped manganites is due to holes,
should better figure outc i(x) as hole annihilating fields. Re
call that for holesJH is negative whereas it is positive fo
electrons. This sign however is going to be irrelevant as
as the phase diagram is concerned.

The Lagrangian above is invariant under the followi
transformations:

~i! global SU(2) spin transformations:

c i~x!→gc i~x!

Mi
a~x!→Rb

aMi
b~x!

~ i 51,2!, ~2.2!
e a
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~ii ! primitive translations:

c1~x!→c2~x!, c2~x!→c1~x!,

M1~x!→M2~x!, M2~x!→M1~x!, ~2.3!

~iii ! point group transformations, given by the grou
m3̄m:

c i~x!→gjc i~j21x!

Mi
a~x!→Rb

a~j!Mi
b~j21x!

~ i 51,2!, ~2.4!

when the point group transformationj maps points in the
same sublattice, and

c1~x!→gjc2~j2x!, c2~x!→gjc1~j21x!,

M1
a~x!→Rb

a~j!M2
b~j21x!, M2

a~x!→Rb
a~j!M1

b~j21x!,
~2.5!

when the transformationj maps points of different sublat
tices. Anyway, the rotationsgj and Rb

a(j) can be absorbed
by a SU(2) transformation and the change of sublattice
Eq. ~2.5! by a primitive translation. Hence, in practice, w
only have to care about the transformation of the coor
nates.

~iv! Time reversal,

c i~x!→Cc i* ~Tx!

M i~x!→2M i~Tx!
C5e2 ips2/252 is2, ~ i 51,2!,

~2.6!

whereTx5(2t,x).

III. EFFECTIVE POTENTIAL

In order to find out how the ground state of the syste
changes as a function of the chemical potential, we s
calculate the effective potential and minimize it with respe
to the order parametersM1 and M2 . We shall assume tha
the ground-state configuration corresponds to constant m
netizations both in the odd and even sublattices. Hence
effective potential is to be minimized with respect to t
angle u betweenM1 and M2 only. We usey5cos(u/2).
When y50, 0,y,1, andy51 we have an antiferromag
netic, canted, and ferromagnetic phase, respectively.

The effective potential is obtained by integrating out t
fermion fields in the path integral, and it is formally given b

Veff5JAFM1M21 i tr log Ô/VT, ~3.1!

where
Ô5S ~11 i e!i ]01] i
2/2m1m1

JH

2
sM1 t

t ~11 i e!i ]01] i
2/2m1m1

JH

2
sM2

D , ~3.2!
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11 420 PRB 59JOSÉMARÍA ROMÁN AND JOAN SOTO
and the trace is both on spin indices and space-time coo
nates. VT is the volume of the space time.

If Ô has eigenvaluesln ,

tr log Ô5(
n

logln . ~3.3!

We have then to diagonalize the operatorÔ. Since it con-
tains only constant fields the diagonalization with respec
the space time is trivially attained by plane waves. The
agonalization with respect to the spin indices is a sim
linear algebra problem. We obtain

ln5Oi~q!5~11 i e!v2
k2

2m
2V i , ~3.4!

V i56
uJHuM

2
A11g262g cos

u

2
2m, g[

2t

uJHuM
.

~3.5!

q5(v,k) and M5uM1u5uM2u5 3
2 . The restriction for the

values of the chemical potential in the model implies tha
most the two lower eigenvalues in Eq.~3.5! may contribute.
This motivates the following reparametrization of the chem
cal potential:

m52
uJHuM

2
A11g222gy0 ~21,y0,y0

max5g/2!,

~3.6!
which eases comparison with the energy levels in Eq.~3.5!
@y5cos(u/2)#. In order to simplify the analysis we assumeg
small and keep only linear terms ing in the relevant eigen-
values above. Namely,

V i52
uJHuM

2
g~y06y!. ~3.7!

This is justified fort!JH , as it turns out to be the case fo
the actual materials.14 Anyway, this simplification can be
lifted with the only drawback that the few analytic expre
sions below must also be substituted by numerical analy

In order to calculate the sum~3.3! we have used
z-function techniques,15 which are explained in the appendi
We obtain the effective potential~for m,0)

Veff5V0$~2y221!2A@~y01y!5/2u~y01y!

1~y02y!5/2u~y02y!#%, ~3.8!

where we have defined

V05JAFM2, A5
~2m!3/2t5/2

15p2JAFM2 5
z3/2

15p2

t

~JAFa3M2!
.

~3.9!
i-

o
i-
e

t

-

s.

IV. PHASE STRUCTURE

The possible phases of the model are obtained by m
mizing Eq.~3.8! with respect toy for the different values of
the parametersA andy0 . The number of conducting bands
given by the number ofu functions in Eq.~3.8! which con-
tribute to the effective potential at the minimum.

In order to gain some qualitative understanding and
make the minimization procedure systematic we shall fi
separate the casesy0,0 andy0.0. For each case we sha
work out the stability conditions for AF (y50), canted (0
,y,1), and F (x51) phases. After that we shall compa
the energy of the stable phases and obtain the curves w
separate them.

The stability conditions are given for the different phas
by

AF: Veff8 ~0!.0 or Veff8 ~0!50 Veff9 ~0!.0,

C: Veff8 ~yc!50 Veff9 ~yc!.0,

F: Veff8 ~1!,0. ~4.1!

Let us then consider first the casey0,0. Clearly for y0
,21 the unique existing phase is the AFI phase. In the c
21,y0,0 only the lowest of the four spin eigenvalues m
contribute to the effective potential. The stability conditio
yield the following stable phases:

AFI: y50,

FC: y51, A~11y0!3/2. 8
5 . ~4.2!

The canted phase is not stable as it can be seen from
conditionVeff8 (yc)50,

yc5 5
8 A~y01yc!

3/2, ~4.3!

which has at most one solutionycP@2y0,1#. SinceVeff is
continuous, and increasing aty50 this solution must be a
maximum when it exists.

The curve Veff(0)5Veff(1) in the plain (y0 ,A), which
separates the AF and F phases, reads

A~11y0!5/252, ~21,y0,0!. ~4.4!

Above this curve the F phase is favored against the AF ph
and vice versa.

Consider next the case 0,y0,1. The stability conditions
are given by
AFC2: y50, Ay0
1/2, 8

15 ,

CC2: 5A~yc
213y0

2!/45~y01yc!
3/21~y02yc!

3/2, 8/15,Ay0
1/2,2&/5,

CC1: yc55A~y01yc!
3/2/8, Ay0

1/2.2&/5,

FC1: y51, A~11y0!3/2. 8
5 , ~4.5!
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where AFC2, CC2, CC1, and FC1 stand for antiferromagnetic two band conducting, canted two band conducting, ca
band conducting, and ferromagnetic one band conducting, respectively. Notice that AF and canted phases do not
among them, but only with the F phase. The curves providing the boundary between the different phases are given

AFC22FC1: A@~11y0!5/222y0
5/2#52, 0,y0,0.127 195,

AFC22CC2: Ay0
1/25 8

15 , 0.127 195,y0,1,

CC22FC1: 5A~y2
213y0

2!/45~y01y2!3/21~y02y2!3/2, 0.127 195,y0,0.168 457,

CC22CC1: Ay0
1/252&/5, 0.168 457,y0,1,

CC12FC1: 5A~y01y1!3/2/85y1 , 0.168 457,y0,0.5,

CC12FC1: 5A~11y0!3/2/851, 0.5,y0,1, ~4.6!
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wherey1 andy2 are given implicitly by the equations

@~11y0!5/22~y01y2!5/22~y02y2!5/2#@~y01y2!3/2

1~y02y2!3/2#5
5

2
~12y2

2!~y2
213y0

2!

~y11y0!5/212~11y0!1/2~y11y0!2

13~12y0!~y11y0!3/214~122y0!~11y0!1/2~y11y0!

28y0~11y0!~y11y0!1/224y0~11y0!3/250. ~4.7!

The outcome is plotted in Fig. 1.
Recall that Fig. 1 actually does not plot a phase diagr

against doping but againsty0 which is related to the chemi
cal potential rather than to the number of conducting fer
ons or doping. Recall also thatVeff is to be regarded as
~zero temperature! grand canonical potential rather than as
free energy. The doping is introduced via

x52a3
]Veff

]m
52

a3

t

]Veff

]y0
~4.8!

provided that one molecule exists per unit cell with a latt
parametera. Taking into account Eq.~3.9! the doping corre-
sponding to the different phases reads

AFI: x50,

AFC2: x5
z3/2

6p2 2y0
3/2,

CC2: x5
z3/2

6p2 @~y01yc!
3/21~y02yc!

3/2#,

CC1: x5
z3/2

6p2 ~y01yc!
3/2,

FC1: x5
z3/2

6p2 ~11y0!3/2, ~4.9!

where theyc for the CC2 and CC1 phases are given in E
~4.5!.
m

i-

.

These expressions for the doping permit us to estab
that all our phases are thermodynamically stable, unlike
ones observed in Refs. 3 and 4. This is easily proven fr
the stability condition]m/]x.0. For the F and AF phase
this is trivially obtained, whereas canted phases are stab
they are below the curves:

CC2: 5Ay/35~y01y!1/2

2~y02y!1/2y225y0
214y0~y0

22y2!1/250, ~y,y0!

CC1: Ay0
1/25 16

15). ~4.10!

This is always the case as it is shown in Fig. 1 where
have plotted the two curves.

Once we have the expressions~4.9! for the doping it is
straightforward to translate Fig. 1 to a more conventio

FIG. 1. Phase diagram in the (y0 ,A) plane. The thick solid line
corresponds to first-order transitions whereas the remaining s
lines to second-order ones. The dotted and dashed-dotted line
the upper stability boundaries for the CC1 and CC2 phases, res
tively. The two dashed lines are the boundaries for the reliability
our model forzuJHuM /2(JAFa3M2);50 andzuJHuM /2(JAFa3M2)
;200, respectively. Only the part of the phase diagram to the lef
the corresponding dashed line is trustworthy in each case.
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phase diagram where the dopingx appears in one of the axes
This is given in Fig. 2~recall z56).

It is interesting to notice that in Fig. 2 new regions aris
which we have denoted PSi ( i 51,2,3,4), between the FC1
and the AFI , AFC2, CC2, and CC1 phases, respective
This is due to the fact that the thick solid line separating FC
and AFI , AFC2, CC2, and CC1 in Fig. 1 corresponds to
first-order phase transition. Along this line two stable in
equivalent minima have the same energy and the chem
potential cannot be traded by the doping. These regions
likely to consist of coexisting domains where the two phas
at the boundary are realized~phase separation!.9 AFI and
FC1 would coexist in PS1, as it has been observed in rec
works.3,4 FC1 and AFC2, CC2, and CC1 would coexist i
PS1, PS2, and PS3, respectively.

As mentioned in Sec. III, the fact that fort50 we do not
permit conductivity restricts the values that the chemical p
tential takes toy0,y0

max5g/2. By substituting this expres-
sion in A we obtain

A5
2z1/2

15p2

zuJHuM

2~JAFa3M2!
y0

max, ~4.11!

which gives the boundary of validity for our results. It turn
out to be a straight line in Fig. 1 provided thatJAF and JH

remains constant asy0
max moves, which can be straightfor

wardly translated to Fig. 2. Only the phase diagram to t
left of this curve is trustworthy.

We take for the coupling constantst/(JAFa3M2)
;10– 20 andzuJHuM /2(JAFa3M2);50– 200, which is com-
patible with the values given in the literature. For these v
ues A;1 – 2, and the two extreme validity curves are di
played as dashed lines in Figs. 1 and 2.

FIG. 2. Phase diagram in the~x,A! plane. PSi ( i 51,2,3,4) indi-
cates the new regions where the phases at their boundary may
exist. Thex50 axis corresponds to the AFI phase. The two dash
lines are the boundaries for the reliability of our model fo
zuJHuM /2(JAFa3M2);50 and zuJHuM /2(JAFa3M2);200, respec-
tively. Only the part of the phase diagram to the left of the corr
sponding dashed line is trustworthy in each case.
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V. CONCLUSIONS

We have presented a simple model in the continu
which is able to describe the rich phase structure of do
manganites for a wide range of these materials. We h
assumed an underlying cubic crystal for simplicity. Neve
theless, the orthorhombic distortion can be easily accom
dated by the following simple changes in the physical para
eters: m3→mxmymz , a3→abc, JAF→Jx1Jy1Jz , and t
→tx1ty1tz . In practice this does not modify our resul
since it would only lead to a differentA, which is anyway a
free parameter in our phase diagrams. This fact also sugg
that the structural transitions that these materials unde
when increasing the doping14 are not essential in order t
understand the F-AF and I-C transitions.

An important feature of our results is that the two cant
phases that we observe are stable against phase separ
unlike in some previous works.3,4 We also observe regions i
the phase diagram where phase separations of several
may occur. If we plug realistic values for the physical p
rameters we findA;1 – 2. Within this range the following
sequences of phases are possible upon increasingx: ~i! AFI-
PSI-FC1, ~ii ! AFI-AFC2-PS2-FC1, ~iii ! AFI-AFC2-CC2-
PS3-FC1,~iv! AFI-AFC2-CC2-CC1-PS4-FC1. Recall als
that in PS3 and PS4 ferromagnetic and canted phases c
ist. This may explain some controversial results obtained
different authors.

Let us also mention that the two fermion fieldsc1(x) and
c2(x) accommodate theeg doublet in our model. Indeed in
the AF phase the two lower and two higher eigenvalues~3.4!
are degenerated. In the F and C phases the degenera
lifted. This implies that the splitting between the twoeg lev-
els receives a contribution from the dynamics of the condu
ing fermions in addition to that from the static Jahn-Tel
distortion.

The model can be used in the future to study the temp
ture dependence of the phase diagram. Fluctuations du
spin waves in all the phases~including the canted ones! can
also be incorporated.16 It would also be interesting to see
the model can be generalized to accommodate the J
Teller distortion dynamically.
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APPENDIX: z-FUNCTION TECHNIQUES

The z-function techniques provide a very efficient way
calculate the trace of the logarithm of operators.15 The z

function associated to an operatorÔ is defined as

zÔ~s!ªtrÔ2s5(
n

ln
2s . ~A1!

Then

co-
d

-



th
d

t
al
a

th

y

hen
rgy

s
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(
n

logln52
d

ds
zÔ~s!U

s50

. ~A2!

Consider the operatorÔ in Eq. ~3.2!. Once the spin di-
agonalization is performed we only have to consider
space-time trace over a generic spin eigenvalue denote
Ôi . Since the real part of the operator2 iÔ i is positive for
positive energies and negative for negative ones, due to
term i ev in Eq. ~3.4!, it is convenient to consider the integr
form of zÔ(s) over positive and negative energies of sep
rately:

tr@„Ôiu~2v!…2s#5
~2 i !2s

G~s!
E

0

`

dtts21E
2`

0 dv

2p

d3k

~2p!3

3e2 iOi ~q!tVT, ~A3a!

tr@„Ôiu~v!…2s#5
i 2s

G~s!
E

0

`

dtts21E
0

` dv

2p

d3k

~2p!3

3eiOi ~q!tVT. ~A3b!

After the energy and momentum integration we obtain
expressions

tr@„Ôiu~2v!…2s#5
VT

16p S 2m

p D 3/2

3
G~s25/2!

G~s!
~2 i !2s25/2~2 iV i !

s15/2,

~A4a!

tr@„Ôiu~v!…2s#52
VT

16p S 2m

p D 3/2

3
G~s25/2!

G~s!
~2 i !s15/2~ iV i !

2s15/2.

~A4b!
a

e
by

he

-

e

We need the derivative of the above with respect tos at s
50. The presence of 1/G(s);s makes the evaluation ver
easy, giving rise to

2
d

ds
zÔ~s!U

s50

5
VT~2m!3/2

30p2 @ i 5/2~2 iV i !
5/2

2~2 i !5/2~ iV i !
5/2#. ~A5!

The expression between square brackets vanishes w
V i.0, i.e., when the chemical potential is bellow the ene
of the i th state, and is nonzero whenV i,0, i.e., when the
chemical potential is above the energy of thei th state. This
leads to the effective potential~for m,0, y0,y0

max,1)

Veff5V0H ~2y221!2
A

g5/2

3F SA11
2gy

11g22A12
2gy0

11g2D 5/2

u~y01y!

1SA12
2gy

11g22A12
2gy0

11g2D 5/2

u~y02y!G J ,

~A6!

where y5cos(u/2), whereasg, y0 , and V0 are defined in
Eqs.~3.5!, ~3.6!, and~3.9!, respectively.

A5
~2m!3/2

15p2JAFM2 ~ tA11g2!5/2 . ~A7!

Equation~3.7! follows from the above by keeping only term
linear in g.
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