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We present the effective Lagrangian for low energy and momentum spin waves in canted phases at next to
leading order in the derivative expansion. The symmetry-breaking p&tdfa)— 1 of the internal spin group
and that of the crystallographic space group imply that there is one ferromagnetic and one antiferromagnetic
spin wave. The interaction of the spin waves with the charge carriers is also discussed for canted, ferromag-
netic, and antiferromagnetic phases. All this together allows us to write the doping dependence of the disper-
sion relation parameters for doped manganites. We point out that the spin waves posses distinctive character-
istics which may allow us to experimentally differentiate canted phases from phase-separation regions in doped
manganites.

[. INTRODUCTION As a consequence of the Goldstone’s theorem there will be
gapless excitations in the spectru@oldstone modgs*>
Canted phases are magnetically ordered states with notike so-called spin waves. A very efficient way to encode the
collinear magnetizations. These configurations appear ispin-waves dynamics is by using effective Lagrangians.
quantum Hall double-layer systetand in the conducting Effective Lagrangians for Goldstone modes are known
regime of double exchange modété,where the local mag- since the late 1960%,and they have been extensively used
netizations arrange in two sublattices with magnetizationsn pion physics during the last decatldt was suggested in
pointing to different (but not opposite directions. The Ref. 38 that they may also be useful in condensed-matter
double exchange models are believed to provide a good deystems. A detailed construction of the effective Lagrangians
scription of doped manganitésyhich are receiving quite a for ferromagnetic and antiferromagnetic spin waves has al-
lot of attention lately’'° Doped manganites present a non- ready been presented in Ref. 8ee Ref. 40 for a recent
trivial interplay between their magnetic and conductingreview and Refs. 41 and 42 for nontrivial applicatipns
properties:*~1® which leads to a rich phase diagram. The A general formalism for the spin waves in canted phases
transitions between the different phases in terms of the dops presented in Sec. I, where we construct an effective La-
ing have been extensively studi#t. grangian at next to leading order. An intuitive separation of
The most studied transition is that from an antiferromag-the spin-wave field in one ferromagnetic and one antiferro-
netic insulating phase, at zero doping, to a ferromagneticnagnetic component is also presented. Since canted phases
conducting phase as the doping grait#t is not clear yet if ~ appear in the conducting regime of doped manganites, the
the region for intermediate values of doping corresponds to aoupling of spin waves to charge carriers is relevant. This is
canted phase or to a phase separation retfort It is our  discussed in Sec. Ill, where we obtain an effective Lagrang-
claim that the study of the spin waves in such materials mayan for this coupling in the three different phases: canted,
shed light to this question. Since the spin waves are lowferromagnetic, and antiferromagnetic. In Sec. IV we use the
energy excitations in a magnetically ordered material, theyrevious results for the different phases of doped manganites
are sensible to the main features of the phase diagram. The order to obtain the explicit dependence of the dispersion
spin waves have indeed been studied recently in connectiamlation parameters on the doping, which is given in formu-
with these material&®~3 las (4.19), (4.21), and (4.22) for the canted, ferromagnetic,
The low-energy and momentum dynamics of the spinand antiferromagnetic phases, respectively. In Sec. V we
waves is so much constrained by the symmetries of the sygresent a plot of the doping dependence of the velocity and
tem that a model independent description is possible in termthe mass of the spin waves for the different phases. We also
of a few unknown parameters. For canted phases, the spoaxplain in Sec. V how our results on spin waves can be used
taneous symmetry-breaking pattern of tfiaterna) spin  to experimentally disentangle canted phases from phase-
symmetry isSU(2)—1, instead ofSU(2)—U(1) like in  separation regions. We summarize our conclusions in the last
ferromagnets or antiferromagnetéStrictly speaking, the section. Some properties and calculations, related to a loop
symmetry-breaking pattern BU(2)—Z,, the center of the integral, are relegated to the Appendix in order to keep our
group. However, since we will not be concerned with globalarguments clear.
properties, neither of the group nor of the coset manifolds, In order to simplify the notation we take=c=1, which
using 1 instead oZ, does not modify our discussion at all. leads to a relativistic notation. Hence we use(t,x), q
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=(w,k) and subindiceg.=0,1,2,3, where the zero stands for  For simBIicity, we shall also assume a primitive cubic
the time component. Space indices are denotediby [attice (Pm3m) although the analysis can be carried out in a

=1,2,3. similar way for any crystallographic space group. The point
groupm3m is generated by the transformatio@s,, C,,,
Il. EFFECTIVE LAGRANGIAN FOR CANTED PHASES C.a [a twofold axis in the direction (1,0)], Cy; [a threefold

, ) , axis in the direction (1,1,1)] and the spatial inversibn
In a previous papéf we obtained the phase diagram for Thege transformations can be separated in two groups, on the
doped manganites, where a rich set of magnetically ordereg,o hand{C,,,Cs,,C%}, which transform points inside
phases appeared. The magnetically ordered configuratio%ch sublattice, a{nd on the othEE,,,I}, which as the
break spontaneously tH&U(2) symmetry of the theorithe  initive translationsr transform points from the even sub-
continuum double exchange mopdbwn to the ground-state lattice to the odd one and vice versa. Thus the transformation

symmetry,U (1) for the ferromagnetic and antiferromagnetic fth oo field/ der thi P b
configuration, and 1 for the canted configuration, because o? e spin-wave field/(x) under this group is given by

the noncollinear character of the latter. In this situation the
lower excitations of the system are the spin waves, which
turn out to be the Goldstone’s modes associated to the spon-

g:{CZZ rCZy 1C;]}:V(X)H9§V(X),

taneous symmetry breaking in magnetic systems. E{Coa, 1} V(X)—gV(X)R, R=g 7S’
We have already carried out an extensive study for the
ferromagnetic and antiferromagnetic spin waves in crystal- = V(X)—V(X)R, (2.3

line solids in Ref. 39. This formalism assumes the existence
of a gap in the excitation spectrum, which permits the conwhere g, is the SU(2) transformation associated to the
struction of an effective Lagrangian for the spin waves as apoint-group transformation an® is a matrix which inter-
expansion of local terms suppressed by the gap. In the cagpanges the magnetization between sublattices.
that there are additional degrees of freedom with energy Notice that by combining the transformation of the field
smaller than the gap, they should also be included in the/(x) under{C,,,I} with the translations if{7C,,,7l} we
effective Lagrangian. This is the case of charged carriers igan eliminate the additional factd® in those point-group
dOped manganites, which we will discuss in Sec. Ill. In thiStransformations' Since, in addition, the facgcan be re-
section, we restrict ourselves to the generalization of the forapsorbed by &U(2) transformation we only have to care
malism presented in Ref. 39 to the case of spin waves iRpout the transformations of the derivatives as far as the
canted phases. point group is concerned.

Finally, under time reversal(x) transforms as

A. Effective fields and symmetries

i
The (interna) spin symmetry breaking patterigU(2) T:V(x)=V(x)C, C=e '™ 2.4

—1 for the noncollinear canted configurations, determines

that the basic field which represents the Goldstone modes We are now in a position to construct the effective La-
(Spin Wave$ may be chosen as a matrb((x) = SU(Z)/l grangian order by order in derivatives. In order to do that we
=SU(2).%8 After determining the transformations of this consider the following element of the Lie algebra of
field under the symmetry group of the system we can buildU(2):*

an effective Lagrangian from which the spin-wave dynamics

can be derived. The transformations under $1é(2) spin VT(x)mMV(x) =b, (X)S; + b;(x)S, + bi(x)S3.
symmetry read (2.5
V(X)—gV(x), geSU2). 2.1) This term, and consequently the coefficiebﬁx), are in-

variant under theSU(2) transformationg2.1). Under the
The transformations under the crystallographic space grou oint group We.O’;'y need.to consider the transformathn of
e derivatives irb,,(x), which correspond to the space-time

reduce in the continuum to the primitive translations and the ™. ) o )
point group. Since the local magnetizations in the canted”d'cpjsr“' The transformations under primitive translations
are given by

phase point to two different directions depending on the siteS
both of these symmetries are broken by the ground state.

This must be reflected in the transformation properties of b,——b,
V(x). For definiteness, we shall take the local magnetiza- T b _p3 (2.6
tions in the 1-3 plane in the spin space, in such a way that ” w
the even and odd lattice magnetizations form an ang@¥2f and under time reversal,
and — 0/2 with the 3 axis, respectively, and can be mapped
into each other by a rotation af around the 3 axis: b, ——b
T |b3“_>_b3“ 2.7
M,=M[sin(6/2),0,co%0/2)], w tw?

wheretu stands for the transformation of the indexunder
M,=M[ —sin(6/2),0,co%6/2)]. (2.2 time reversall.
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B. Relation with ferromagnetic and antiferromagnetic
spin waves

Before writing down the effective Lagrangian, let us dis-

cuss a suitable decomposition\éfx) which illuminates the

relation between canted spin waves and the usual ferrom
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3

bi=a3——— gom~ad, (2.13

f3

which contributes to the dynamics af*(x). Nevertheless,

agince this term only contains a total derivative #f(x) the

3

netic and antiferromagnetic ones. In the way we have chosélifst contribution to the dynamics of this field comes from

the direction of the magnetizations in each sublattic@), it

is clear that the projection on the third direction is ferromag-
netic, whereas the projection on the 1-2 plane is antiferro-
magnetic. This suggests that we may separate the spin-wav
field into components perpendicular to the third axis and to
the plane1-2, respectively. Group theory allows us to
implement this easily. Indeed, an element of the group
V(x) e SU(2), admits a unique decomposition in terms of an

element of a coset)(x) e SU(2)/U(1), and arelement of
the corresponding subgroupl(x) e U(1), such thatV(x)
=U(X)H(x), with
U(x)= exp[fl—[w(x)s++7-r*(x)s_]} e SU(2)/U(1),
(2.9
H(x)= exr{ ii—§w3(x)§] eU(1),
3

where S.=S'+iS? and S® are the SU(2) generators,
7 (X) =[ 7(x) £i72(x)]/ V2 and73(x) are the spin-waves

fields, andf . andf5 are dimensionful parameters represent-
ing the spin stiffness. This implies that the element of the Li

algebra in Eq(2.5 can be written as
VI(x)id,V(x)=HT(x)[UT(x)id,U(x)]H(x)

+HT(x)id,H(x). (2.9

Upon using forUT(x)i&MU(x) a similar expression to that in

Eq. (2.5),%° we have

UT(x)ig,U(x)=a,(x)S,+a, (x)S_+a’(x)S>.

(2.10

This decomposition translates to the coefficidmﬁ$x) in
Eq. (2.5 as follows:

- 23 -

b, (x)=e 2™ M/fsa (x),
i 5.3

b, (x)=e"?"(/fa ! (x), (2.11

b3 (x)=a3(x)— V24,7 (x)/ 1.

Recall finally that the expansion &f”i d,U in spin-wave
fields reads

. 1 B
Utig,U=— f—z{(fwauw + S+ (fpd,m 4 )S.
+li(rtd,m —m d,m" )+ ]S

(2.12

C. Effective Lagrangian

In order to construct the effective Lagrangian, let us begin
by considering terms with time derivatives. It is then clear

that we can build a term with a single time derivative,

e

2
bgbg"" ?(90773070773, (214)

3
w%ere we have made explicit the quadratic termrit(x).
Regarding the spatial derivatives there are no invariant
terms with a single spatial derivative. Then the first invariant
terms have two space derivatives, and they read

b'b =aa,

b b +b, b, (2.15

2
b|3b|3"" _2(9i 77319i 7T3,
fS

where again we have made explicit the quadratic dependence
on 73(x) in the last term.

Unlike the terms with time derivatives, the terms with
spatial derivatives produce a leading order contribution for
m=(x) and 73(x) at the same order. Let us call@(p?).
Equations(2.13, (2.14), and (2.195 provide the dispersion
relations for the spin waves, which indicate how time deriva-
tives must be counted with respect to space derivatives.
Namely, a time derivative onr™(x) must be counted as
O(p?), whereas a time derivative an’(x) must be counted
as O(p). This implies that the ternmb3=a3— \29,7°%/f4
~0(p?) +0(p), i.e., it contains terms of first and second
order, which must be taken into account in the construction
of the effective Lagrangian. This is, in fact, a remarkable
difference with respect to the ferromagnetic and antiferro-
magnetic case, where each invariant term has a unique size.

Then, putting together all the terms above, the most gen-
eral effective Lagrangian at ord€(p?) we can construct,
with the standard normalizations, reads

L(x)=f2

1 C
ng—Bbibﬁ—gwrbeibi)}

2

(2.19

1 v?
Zbgbg— Zb?b?}.
If we expand it up to three fields, it reads

C
LOX)=7"idgm" —Boym dim" — E(&inr(?iﬂ'Jr
2

1 v
+(9i7T_(7i’7T_)+§(90773070773_ 7(9i773(9i773

—i?(&iw+(9iw+—(9m_&iﬂ'_)w3

i\20%f4

+
212

(ot —at o) o

(2.17
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The first two lines correspond to quadratic terms in the b3bZhg,
fields, which yield the free propagation of the spin waves and
give the dispersion relation for each of them. Whereas these b3(b b’ +b b )
terms lead directly to a wave equatidiflein-Gordon typg OV e
for m3(x), as expected for an antiferromagnetic spin wave, (2.20

the equation forr=(x) turns out to be nondiagonal. The bgbi b,
off-diagonal terms are due to the existence in the effective

Lagrangian of the termb("b;"+b; b;"). In the ferromag- bebby .
netic and antiferromagnetic cases this term does not appear L S i

because the unbrokeu(1) subgroup prevents it. In order to The term i(by doby” — by’ dob; ) ~bgh; bi at this order,
diagonalize the quadratie™(x) terms, we perform the fol- Since atO(p“) we only have to consider time derivative
lowing Bogolyubov transformation: acting on73(x). However at higher orders the terms ob-

tained from those invariants are different from each other.

() — ,m’B+ Erﬁ(x)— /m’B— Eﬂ'_(x)’ 1. Coupling to a magnetic field

The most important source of magnetic coupling in a spin

system is the Pauli term, the introduction of which in the

1 effective theory was extensibly discussed in Ref. 39 . The

—=B?*-C?. (2.18  outcome is that the Pauli term can be introduced by just

2m’ replacing the time derivative by a covariant derivative in the
following way:

In terms of the new variables the Lagrangi@il?) reads

do— DOE(yo_lﬂmsB (221)
. .1 o1 3. 3 After introducing the covariant derivative, E@.8), for time
L(X)=m"1dgm _Hﬁiﬂ' dim + 5 domdom derivatives, reads

v2 2C VI(x)iDoV(x)=HT(x)[UT(x)iDoU(x)H(x)
— =9 mom—i———(om om — o gy ) .

2 fa +HT(X)idoH(x). (2.22
N i\/§U2f3 o mt — at gV 21 Thus after introducing the magnetic field the effective La-

2f2 (m=gm™ —m= o )d, (2.19 grangian is constructed with the expressi¢hd 1) such that

the magnetic field only modifiesg(x) andag(x), given by

which yields a Schidinger equation with a mass’ for the L L

new field 7*(x). Therefore, as it was expected from the ti - - T2+ _-\pz

decomposition made in Eq$2.8)—(2.11), the field 7" (x) UiboU=—23 Hf”aow ’um(z(f" mr)B

describes one ferromagnetic spin wave, with a quadratic dis-

persion relation, andr3(x) describes one antiferromagnetic 1 Y

spin wave, with a linear dispersion relation. tom B+t B
This result is in agreement with previous theoreticaid

recent experimental works, and in line with the general

counting of Goldstone modes in nonrelativistic systems

stated in Ref. 43see also Ref. 35The general statement is

that there exist as many real fields representing the Gold- _’_E(fz_ Y \RZ_i +R3

o . 7 o )B*—if ;7" B

stone modes as broken directions in the symmetry group 2°7

(three in our case, because of the noncollinear nature of the —

canted configuration The space-time transformations for (7 dom =7 dom ") — pu(if 7 B?

these fields determine if they verify a wad€lein-Gordon,

leading to a linear dispersion relatioor a Schdinger (qua- —if ;7 B+ (f2—27 77 )BY)+ - .]53].

dratio equation of motion, with the constraint that in the

case of a Schitinger equation a complex field, and therefore (2.23

two real ones, is necessary to represent a single physical

mode (the two real fields behave like canonical conjugateThe time derivative onm3(x), as well as the terms with

degrees of freedom With this argument in mind for the spatial derivatives;"(x) andb3(x), remain unchanged by

canted spin waves we can only get either three lineathe presence of the magnetic field.

branches or one linear and one quadratic branch, which turns |t is very easy to see that, at the lowest order, the disper-

out to be the correct answer in our case. sion relation of the antiferromagnetic branch, given by
At next to leading orderQ(p?), besides those terms com- #3(x), is not modified by the introduction of a small mag-

ing from b3b3 already considered in Eq2.16), we find the  netic field in any direction, in particular in the direction of

following terms: the staggered magnetization.

™

+...]S,

+

1 _
f dom" —,u,m(Eﬂ'Jr mtB?

+... ]S
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2. Ferromagnetic limit lIl. INTERACTION WITH CHARGE CARRIERS

In the ferromagnetic limit the local magnetizations are  Canted phases are known to support conductivity. Then it
pointing in the third direction all over the crystal. Hence anis important to elucidate which kind of interaction mediates
unbrokenU(1) symmetry remains, and the spin waves arépetween the spin waves and the charge carriers. In order to
represented by a field belonging to the coS&f(2)/U(1).  address this question in a model independent way, we would
This field can be easily obtained from the decompositiomeed an effective-field theory description of the latter. How-
(2.9 of the canted case by takir(x) =1, or, equivalently, ever, to our knowledge, there are no general rules on how to

73(x)=0 in Eg. (2.11). Hence V(x) S|mply reduces to build such an effective theory, which may depend strongly
U(x). Furthermore, because of the remainligl) symme-  on the particular material we wish to study. We shall then
try terms like @ a;" +a; &) are forbidden, and hence the restrict ourselves to present an effective theory based on a
qguadratic part of the Lagrangian does not contain off-particular model which successfully describes canted phases
diagonal terms. Therefore the Bogolyubov transformatiorand has applications to doped manganites, the continuum

(2.18 is not necessary anymore. double exchange mod&
In terms ofai(x) the effective Lagrangian for the ferro- At first sight one may think of describing the charge car-
magnetic spin waves reads riers by an effective fermion field which varies slowly

through the material and couples to the local magnetization.
However, in a canted phase the local magnetization changes
(2.24  abruptly from the even to the odd sublattice, which means
that we shall need two magnetization fielti$;(x) and
And after expanding it in terms of spin wave fields in Eq. M»(x) in the even and odd sublattices, and hence a single
(2.12, slowly varying fermion field is not enough to have a consis-
tent description. We need at least two slowly varying fer-
mion fields ¢;(x) and ¢,(x), coupled to the magnetization
L)=m"idom" — —am a7, (2.29 in the even and odd sublattices, respectively.
2m The interaction Lagrangian of the model reads

—aral

m/

L(x)=f2 Eag—

which corresponds to one spin wave with a quadratic disper- )

sion relation. o J o
LOO= 13| (L+i©)idot 5+ pt Iy 5 Ma(X) [#2(X)
3. Antiferromagnetic limit )
In the antiferromagnetic limit the local magnetizations are + ll/;(x) (1+ie)i 070+_' +utdy EMZ(X) Pa(X)
pointing at opposite directions in each sublattice along the 2m 2
first axis (S'). As for the ferromagnetic case an unbroken +t[¢I(X) ¢2(x)+¢£(x)¢2(x)] (3.1)

U(1) symmetry remains, and the spin waves are represented

by an element of the cos&tU(2)/U(1). Inorder to simplify  wheret corresponds to the amplitude of probability that the
the computation we will rotate the internal space referencgéermion changes the sublattice adg is the Hund coupling
frame in such a way that the third direction, instead of thepetween the fermion fieldg;(x) and ,(x) and the mag-
first, lies along the staggered magnetization direcio®  netic moment in each sublattidé;(x) andMy(x), respec-
perform the rotation +-3—2 in all the indices With this  tively. An estimation of our parameters is given by zt,
choice the spin-wave field is determined from Eg.9) by \]H~\]|H’ and 2n~1/a’t', wherea is the lattice spacingz
settingH(x)=1, or, equivalently,w3(>.<).=0 in Eq.(2.11. =6 is the coordination number, and the supersdripeans
V(x) reduces toU(x), and the remainingJ(1) symmetry the analogous lattice quantity. In order to have conduction
prevents the nondiagonal terms,‘(@;" +a; a;), from ap-  whent+#0 only, the chemical potentiat is required to lie
pearing like in the ferromagnetic case. In addition to thatpelow the lowest energy of the band fic 0.

now C acts as the matrix which interchanges the magnetiza- The spin waves are fluctuations of the magnetically or-
tions between sublattices, which forbids the term with adered ground state, and they are included in the previous
single time derivativea3(x), to appear in the effective La- fields. We can separate the contribution of the spln waves

grangian. from that of the ground statel; andM, by writing M?(x)
The effective Lagrangian for the antiferromagnetic spin=R2a(x)M? (i=1,2), such that the matriR3(x) corresponds
waves is given by to the spin-wave fluctuation in the adjoint representation of

E(x)=f§[aga§—v2afai+], (2.26 igrsngér?zggv:xtz:calar product properties the interaction
and after expanding it in terms of spin-wave fields in Eq. a
(2.1, SMi(X)= RAOOMP=V(x) S VIcOM; (=12,
L(X)=dqm~ dgmt —v20;m dym, (2.2 (3.2

which describes two spin waves with a linear dispersion rewhere the matriX/(x) represents the spin waves in the fun-
lation. These two branches are splitted by the introduction oflamental representation 8U(2).

a small magnetic field in the third direction, the direction of  This expression suggests the following change of vari-
the staggered magnetizatioh. ables for the fermionic fields:
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Hi(X)=VX)gi(x) (i=1,2). (3.3

In terms of the new fermionic fields the Lagrangig@nl) reads

N A P1(X)
LOO=[P10) 93310+ OSW>( , (34
Po(X)
where
. . 2 JH
(1+ie)idg+ad/2m+ u+ 7UM1 t
Ous= 3 (3.5
t (1+ie)ide+d2l2m+ u+ 7‘*a|v|2
|
is the contribution of the ground state, and (3.7) are equivalent to the introduction of a covariant deriva-
B 0 tive,
0= o oo’ i9,—iD,=id,+(V'i3,V)=id,+b,S,+b S _+b3S’,
(3.9
A~ 1 . . s
OV=(VTiaoV) — —[{i g, ,(VTigV) + (VTiaV) in Eq. (3.5 and droppingO®". _
2m Since the spin waves are fluctuations of long wavelength
tio and the interaction with the fermionic fields contains deriva-
X(VIaV)], 3.6 tives, this interaction will be small. In this situation the prob-

contains the interaction with the spin waves. The curlylem is reduced to calculate the interaction of the spin waves
brackets{,} stand for the anti-commutator. Taking into ac- with the eigenstates of Eq3.5 perturbatively. The four
count the decompositiof2.5) the operator®®¥ can be ex- eigenstates can be obtained by considering the following
pressed in terms of the fields,(x) as follows: change of variables:

w5 tia.ons. (wx)) :PT(M(x))'

(’/‘)sw:
P2(X) X2(X)

1
bo — %{'fﬂ b })S++

s 1o 3 | <3 1 e Ligg T~ =
+{ Do 5 A1, b7 | S S| bibi + 2 biby . oo 1 (Q+Q +Q 9-Q-Q 39
(3.7) \/E q_QT+6 _q_Q+6 , .
A compelling expression for the coupling of the spin whereq is an scalar parameter aq and 6: 6* are ma-
waves can be written by noting that the expressi@hd)—  trices in the Lie algebra dbU(2) given by
|
0 0
1 e++y+cos§i e,+y—cos§ <11 0 6
=32 2e, 2e_ 2105 TsIng )
. 0 . 0
sin— sin—
2 2 <l 9 i
Q= S, + S_ — cos-S, +sin-S_,
I 0 4 4
\/Ze e_+y— cos—) \/Ze+ e, +ty+ cosE

0 0

e +y+coss  [e +y—coss
_ e.+y+cos; e_+y—cos; S3y<l P .
0= —— ——g | §*— | cos; —sing S?, (3.10
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with in Eq. (3.15 is orderyt, which means that the fielg,(x)
decouples, and the effective Lagrangian reduces to

0 2t
e.=1\/1+y?’*2ycos; , vy= . (31 A
- yE2yeos; . y=rgaye G Lot= X1l + W+ O(y)Ixa(x).  (3.16

M=|M,|=|M,|=3/2, andd the angle formed by the ground In order to complete the effective Lagrangian we must con-
state magnetizationlsl; and M. _ ~sider the leading order iry for Wy, in Eq. (3.143, which

After the change of variables the Lagrangian, written incorresponds to take the right limit in E¢3.10 for the pa-
terms of the new fieldg(x) and y,(x), reads rameterq and the matrice®’ and Q.

i 0 Weo W Therefore the effective Lagrangian is given by E2}16),
E(x)=(XI(X) XE(X)) 1 T where the interaction terms, which come from E(143,
0 [,/ \Wy W, (3.7, and(3.10, are given by
x1(X) - T, 1,0 1 6 ., 1
X(Xz(x)>’ (312 Wll_—ﬁ(bi b; +Zbi b; +5c0s; bo— ﬁ{lé’iabi}
where the interaction with the ground state is diagonal, and it 1 6 _ 1 B .1 N
is given by +§sm§ bo_m{l(yhbi }+b0_ﬁ{laiibi }
R It JulM 0 X(S;+S). 3.1
L1=(l+i6)i00+2—|+,u+| H2| 1+'y2i2‘yCOS§, (S« ) (3.17
m (3.133 Upon expanding it up to two fields, using Eq2.12 and

(2.11), we finally obtain

L,=(1+ie)idy+ i + |JH|M\/1+ 232 o 1 f2
=(1+i€)idg+ —+u— COS=. R z
2 0T omTHT T Y evrEhsy W ———[8i77_(?i77++;z9i773¢9i773]

11—

(3.13h 2mf2 3

The interaction with the spin waves, given by 1 0 _[. 1
ZPOSWPT reads P 9 W +FCOS§ T (|‘907T++ﬁ{‘9ivai77+}
s s PSW T L AW L Aaswin T 1
Wi g?0%"+ {0, Q}+ QOQ+QO™Q, e
(3.14a 2m
~ ~ A — P — H 2
W= Wi,= - [0, Q] - (QOQ+ QO™), A IPEIE W
(314b f3 o7 2m i 0T
A _qZ@sw q{(”gsw 6}+6@SW6+QT@SWQ 1 0] . . + 1
Woo= - : , + ——sing|ifg|idgm +idem™ + =—
(3.149 2ff37 2 2m
where the square brackdtg stand for the commutator and _ . _ 1
PO : x{d;, g +amt} |+ 273 idgm —idgm T + o
O is given in EQ.(3.7) 2m
In the relevant materials that we have in mind, the hop- \E
ping amplitudet is much smaller than the Hund coupling, 13 g —gmt | e 9 39 — gt
Jy ., i.e.,y<1. In this case, the two higher states of E2}5), oo =o'} Zma'w (G = dim™)
denoted byy,(x), lie far away from the two lower ones. In (S, +5.). (3.18

fact, the ratio of energies is of ordet If we are only inter-
ested in transition energiest we can safely integrate out
the stategy,(x), obtaining the following Lagrangian for the A. Coupling to ferromagnetic spin waves

two lowest statess(X): The interaction of charge carriers with ferromagnetic spin

o A waves can be considered as a limit of the canted configura-
Leti=x1(X)(L1+ Wiy x1(x) tion. In order to do that we must take the lingit~0 in Eq.
1 (3.10, which yields a very simple expression, independent
~XIOWypm———W,y1(x).  (3.15  of v, for the parameteg and the matriceQ" andQ which
2 22 determine the change of variabl€k9), namely,

The second term is of order with respect to the first one. 1
Indeed, we consider low incoming energy and momentum qg=-, Qf=s,, Q=% (3.19
with respect to the two lowest states, namely,~ (1 2

. . 2 . .
+'E)'aoﬁﬂi/2m+M+|Jy|M/2~t- and the spin-wave in- Foliowing the considerations in Sec. IIC1, we also must
teractionW;; ~t. Thus 1L,~ y/t, such that the second term takeH(x)=1, or equivalentlyr3(x)=0.
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Because of the remaining unbroken symmetry $té2) Similarly to the ferromagnetic case we must takéx)
transformations on the spin-wave fields are realized by a1, or #3(x)=0, and therefore the remaining unbroken
nonlinearU(1),,ca gauge group, which allows us to write symmetry determines the gauge invariance structure for the

the Lagrangian in a manifestly gauge invariant way: effective Lagrangian, given by
PO ) 1 B [Jn|M 3 PO i 1 _ . [Ju|M
L1+W11=ID0+%(DiDi—ai ai )+,LL+ 2 +2tS, L1+W11:|Do+ﬁ(DiDi_ai ai )+,U,+ 2 '
(3.20 (3.29
whereiD ,=i4d,+a>/2. Notice that this implies that some of where nowiD ,=id,+ aiS3. Notice again that this implies

" M
the couplings are llléixed by the symmetry. In fact only thethat some of the couplings are fixed by the symmetry. In fact,

coupling a;"a;" is model dependent. This is analogous toonly the couplinga;a;" is model dependent. This is analo-
what happens in the pion-nucleon Lagrangian where one ajous to what happens in the ferromagnetic case discussed
the couplings is fixed by chiral symmett§ Recall that the before and hence also analogous to the case of the pion-
transformation properties under(1),,.. are the following:  nucleon Lagrangiaff: Recall that the transformation proper-
A ties underJ(1),ca are now the following:
xi(x)— €102y, (x),
o oas Xi(X)— €Oy (x),
a, (x)—e"*Ma’(x), (3.21)
, , a, (x)—e"*Mar(x), (3.29
ay,(X)—a,(x)+d,e(x).
. . . . al(x)—a’(x)+d,e(X).
Finally, in terms of the spin-wave fields and up to two

fields Wy, reads Finally, in terms of the spin-wave fields and up to two

fields W, reads

. 1 IR O Y D
Wy=———=dm dm" + |7 |1dom
m 77 Wllz_—zﬁiﬂ-_aiﬂj——’—_

1 1
+ﬁ{&i,&iw+})—w+(i&0w_+ﬁ{&i,am_}”,
(3.22

i imi i 1
which corresponds to the limé— 0 of the canted expression B W+( i gom + %{Oﬁ ’aiw})

(3.18.

X

1
77'_( idomt + ﬁ{ai ,&iw+})

S3,  (3.26

B. Coupling to antiferromagnetic spin waves which corresponds to the limi#t— 7 of the_z canted expres-
' sion(3.18. However, because of the rotation of the reference
In the antiferromagnetic case we have to consider twaystem it is easier to obtain E(®.26) as a limit of Eq.(3.17)
situations. The first one corresponds to the insulating phaseather than Eq(3.18), because the direction of the symmetry
where there are no charge carriers to couple with. The sedreaking has not been taken explicitly yet.
ond situation corresponds to the antiferromagnetic conduct-

ing phase. We shall describe this second situation below. IV. SPIN WAVES IN DOPED MANGANITES
The interaction of the charge carriers with antiferromag- ' '
netic spin waves is given by the canted case in the limit ~ In Sec. Il we developed a general formalism which pro-

— ar. According to the discussion in Sec. Il C 2 this limit is a Vides the effective Lagrangian for the spin waves generated
little bit more involved than for the ferromagnetic case, sinceby any model in a canted, ferromagnetic, and antiferromag-
we also must rotate the reference system-@—2). Then hetic ground state as long as the model is invariant under
the expressions for the parametgand the matriceQ" and ~ SU(2) transformations. In this section we are going first to

Q. which determine the change of variabl@s9), read particularize this effective Lagrangian to the case of the spin
' ' waves in doped manganites. Next, we will include the inter-

1 <11 action of spin waves to charge carriers worked out in Sec. Il
q=-—=1\/1+ L_) =, and calculate the doping dependence of dispersion relation
J2 Ji+42 2 parameters.
; \/ 2 3“/<1\/_ 3 A. Spin waves from the Heisenberg Hamiltonian
= S 25°, 3.2 . .
1+ y2+ 1+ 92 - 3.23 In the double exchange models the interaction between

the core spins in thé,, bands of the manganese atom is
A described by an antiferromagnetic Hamiltonian. Since the
value of the core spins is 3/2 their motion is slow and can be
where the right limit gives the leading dependence yn approximated by classical magnetization fields on the lattice.
which we shall use to calculate the interaction. Furthermore, for the low-energy and momentum region the
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lattice fields can be further approximated by continuumequivalent to introduce an extensierf(x,\) for the spin-
fields. In Ref. 22 we considered a static Heisenberg-like inwave fields such thatr®(x,0)=0 and #3(x,1)=7?(x). A
teraction, which only provides the relevant contribution tosimple extension valid for our purposes is?(x,\)

the ground-state energy. Here we shall introduce a derivative- A 72(x), which allows us to write the effective Lagrangian
expansion of the Heisenberg Hamiltonian, which also takesor the canted configuration in terms of the spin-wave repre-
care of the low-energy and momentum excitations. Thesgentation used in Sec. I,

derivative terms in the second quantization language read

251, Jae°
Japa? LO(X)= 5| Zb3+ 2 (852-02)b b’
H=— | dx—_—iM1(x)3M5(x), (4.0 as|2 8z
| .3 ; JaraQ? o
whereJ g~2zJ,/@” and the superscrigtrepresents the lat- + W(bﬁbiﬂrbi b,)
tice Heisenberg coupling. The local magnetizations for each z
sublatticeM (x) andM,(x), are given as fluctuations of the 1 332 _a80)2
ground-state configuration, as mentioned in Sec. Il, that we +———| —p3pd- Lb?b?]'
can write g;(x) =V(x) ¢{?, 6Jaca%| 4 Ve

M 00 = €@V (0 SV(x) ¢l 49
=TV (X)SV(X)P;]= Rﬁ(x)Mib, (4.2) W(i,\ have_ dropped terms with two ti_me derivatives acting
on 7~ (X) since they are sub-leading in the canted and fer-
whereP; is a projector in the direction of the ground-state romagnetic phases. However, they are not so in the antifer-
magnetization in each sublattice: 1,2. romagnetic phase and will have to be restored in order to
This Hamiltonian only generates terms with spatial de-take the antiferromagnetic limit. Notice that E@.6) pro-
rivatives in the spin wave's effective Lagrangian. In order tovides particular values for the constaffs, B, C, f3, andv?
introduce the temporal term let us consider it written in termgn the general formuld2.16).

of the total,X(x), and staggered(x), magnetizations:
82 limit is taken very easily, since in this cad&g—M and ()

J
H=- f dx
(4.3 —0. Since the time evolution is already described by the
where term with a single time derivative we can drop the two time
derivatives term in Eq(4.6), which yields the effective La-
grangian

1. Ferromagnetic configuration
A

2 2
a Japa
2Fz A, 2(X) 3 2(X)— AR ;QUX) 3 2(X) |, In the case we have the ferromagnetic configuration the

1 6
2(x)= E[Ml(x)"‘ My(x)], 2=M COSE'

2M[1
& 2%

Japa®™

LB(x)= a a;|. 4.7

Q(X)=M1(X)—My(X), Q=2Msing. (4.4)

Notice that the mass term in E@L.7) has the wrong sign.
This corresponds to the spatial derivatives terms in therhis is due to the fact that E¢4.7) has been derived from an
effective Lagrangian for ferromagnetic spin waves in termsgntiferromagnetic Heisenberg Hamiltonian. Although this
of the total magnetizatio(x), and for antiferromagnetic wrong sign apparently produces an instability in the ferro-
spin waves in terms of the staggered magnetizafr).*>  magnetic spin-wave spectrum, this instability is not signifi-
FO"OWing this identification we shall choose as temporalcant_ Recall that the ferromagnetic phases in doped manga-
terms those which complete these Hamiltonians. Then thgjtes are due to the interaction with the charge carriers.
effective Lagrangian from the Heisenberg contribution read$4ence any reliable estimate of the spin-wave dispersion re-
lation parameters in the ferromagnetic phase must also take

1 1 . . . . .
£ W(x)= f AN (XM FoS (X)X S (XA into account the interaction with the charge carriers. We shall
) a’3?), M2 (XA X AZ(XN)] do so later on. Such kind dfictitious) instabilities also oc-
. a2 cur in the canted phases although they are not so immedi-
AFQ atel otted from the Lagrangida.6).
+ 57 ﬂiE(X)ﬂiE(X) Yy Sp 9 gla )
2. Antiferromagnetic configuration
1 . . , .
+ | 5 0QUX) I U(X) In the antiferromagnetic configuratiod—0 and ()
12J,ra%02?| 2 —2M, and after performing the corresponding rotation, 1
372 2802 —3—2, as explained in Sec. Il, we obtain the following
AF& effective Lagrangian:
— o h 009000, (4.5 grang
heres. . o of th | ation field z _ ., 120a8M2
whereX;(x,\) is an extension of the total magnetization fie L£LO(x)= aag——————a; a|. (4.8

which verifies 3(x,00=3 and 3(x,1)=3(x). This is 6J,pa’ z
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In this case, since the ground-state configuration is supx is the doping and?® the volume of the unit cell. Tr repre-
ported by the Heisenberg Hamiltonian, the spin waves obsents the matrix trace, the space-time trace has already been

tained from it are stable. taken into account in the integration over the momentwm
=(w,k). Ly *(q) is the Fourier transform of the inverse of

B. Spin-waves dispersion relations: contributions the operatot; given in Eq.(3.133. The convergence factor

from charge carriers e'“” (p—07) is introduced to pick up the correct order of

. . the fields in the calculation of closed loops of one point
We have now at our disposal suitable low-energy effecgeen’s functioné®

tive Lagrangians which describe spin waves in doped man- The contribution of these terms to the effective Lagrang-
ganites in the canted, ferromagnetic, and antiferromagnetig, is given by

phases. They are given by the pure spin-wave terms above
together with the terms of interaction with the charge carriers b-bt 4+ lbgbg

(3.16. More precisely, the effective Lagrangian for the 2mad| ot g i

canted phases can be obtained from Egsl6), (3.17), and 4.11)
(4.6, for the ferromagnetic phase from Ed8.16, (3.20,  \yhere we have dropped terms which contribute with a total
and (4.7), and for the antiferromagnetic phase from EQs.yerivative.

(3.16, (3.29, and(4.8). Whereas all the contributions in E¢t.11) are local, be-

~In order to obtain a reliable evaluation of the parametergayse the loop integral is closed, the contribution from
in the spin-waves d!sperglon relations we h_ave to take 'nt%gz}*flE(i/2)Tr(I:l’1\7V11I:1’1\7V1]) is going to contain nonlo-
account the interaction with the charge carriers in the sping;|terms due to the presence of the so-called vacuum polar-
waves two point Green's functions. This can be easilyj;ation tensor

achieved from a furthefthis time nonlocal effective La- '

grangian which is obtained by integrating out the charge car- 00 (p) = — if dg (p+ )L p+q)aiLit(q)

riers and keeping only the contributions up to two spin-wave ab (2m)* la 1o A H/

fields. (4.12

By integrating out the fermionic fields in E43.16 we  \herea,b=+,— represent the diagonal components of the
obtain the following contributions to the effective Lagrang- operatorﬁl given in Eq.(3.138. i,j=1,2,3 represent the

lan. spatial components of the momentum, whil¢=0 means
the absence of the corresponding momentum component.
sng)f: —iTrin(Ly+Wy)=—iTrinl,—i Tr(ﬂ;l\fvll) The properties of this tensor are displayed in the Appendix.
Taking into account the symmetry properties of the

i A ga vacuum polarization tensor the contribution to the effective
+oTr(ly Wyky "W+ .. (49 | agrangian reads

X 0
L (2'1)(U) = ﬁ COSE bg—

P in-
where Tr stands for the trace over the space-time indices assézf'fz): —f dudw (277)46 Pl

well as the matrix indices. We have expanded the logarithm
up to second order.

The first term in Eq(4.9) gives rise to an effective poten-
tial for the ground-state configuration which, together with
the static antiferromagnetic Heisenberg term, produces the
rich phase diagram for doped manganites presented in Ref.
22. The following two terms in the expansion are responsible
for the appearance of terms with at least two spin waves in
the effective Lagrangian, as can be see from BdL8.

Even though in order to obtain the relevant contributions
to the effective Lagrangian it is enough to consider the inter- L
action up to two spin waves in E¢3.18), interesting general 4m?
characteristics will arise if, instead, we use 8ig(2) invari-
ant expressiorni3.17) for the interaction. In this way we are +bf'(u)bj_(w)Jrbr(u)br(w)+bf(u)bj_(w)] ,
going to obtain not only an explicitly invariant effective La-
grangian unde8 U(2), butalso the nonlocal structure which (4.13

arises from the absence of gap in the fermionic spectrum of . . o
excitation where summation convention over repeated indices has been

L . . used, and as in the previous case terms contributing with a
We begin with the calculation of the second term in ECI'total derivative to the effective Lagrangian have been

1 0
x| 5 cos5 I (p)bg(u)bg(w)

+ 21109 (p)b3wbw)
m
1 170 b3(u)b3
+m2 aa (p) i(u) ](W)

sinzgnﬂikp)[br(u)br(w)

H 2,1)__ : I —1L\; H H . . . .
(4.9, ie, S_(eff)_ —iTr(L; "Wyy). In this calculation a dropped. It is easy to see that this part contributes with non-
closed-loop integral, representing the density of carriers, apiocal terms as long as the vacuum polarization tensor has a
pears: nonconstant behavior in the energy-momentum vegior

=(»,p). One of the most interesting terms with these char-
« - do  dk _ acteristics isb3(u)b?(w), which mixes time and spatial de-
—= —iJ 5= ———TrLi(@)e“”. (410  rivatives. o . o
a —=2 (2) The leading contribution to the effective Lagrangian is
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given by keeping in Eq4.13 second-order terms in deriva- (A4), which has its third component parallel to the momen-
tives (or momentunm This corresponds to consider the zerotum p in order to simplify the calculation. In this basis, and
energy and momentum limit of the vacuum polarization ten-using the relations given in EqA8) and (A9), the action
sor, i.e.,IT10:)(0). It is also convenient to choose the basis (4.13 reads

vi2 s
m [egs)bi(u)]

14

|p|

‘ 1,6
sﬁfff):—fdudw i e"p(““"’){gco§§1'[g%°)(0)

d
(2m)*

b3(u)b3(w) +2—b3(u)[ e{g)b¥(w) ]+

. 1 0 . . 1 0 . .
X [ej(s)b?(W)]} — 50085 — ol el b [efgf(w) 1+ 5 cod TS P(0) (el b (u) el b(w)]
i 3 j 3 1 . 0 (a,a) i — j + 1 +
+Le)bi(w)]lepby(w) )+ Ws“"zEHJrL (0)([e(ybi (W) I[eqayby (W) ]+ [e(ybi (U)]

X[ efaby (w)]+ (b (u) [ efyb)” ()] + &by (u)I[efyb; <W>D]- “19

Hence with the aid of Eqg2.12 and(2.11) we can expand 1. Ferromagnetic configuration

thi; expression up to tWQ spin waves. At this_ order only one The ferromagnetic limit is again very easily taken from
Spin wave must be considered in the expansion ol 24D, e canted results wheh— 0 [equivalently we could use Eq.
.e., by,~d,m", which means that they are proportional 10 (3 20)]. In addition to that, we notice from E¢8.22 that the

the energy momentum, and since the vecigis and g, interaction already contains at least two spin waves, thus in
are perpendicular to the momentune bf~e(,di7® order to calculate the dispersion relation we only have to
~ie'(a)p'wazo, (e=1,2), they do not contribute at this or- consider the second term in the expansion of the logarithm

der. (4.9). The effective Lagrangian at this order is
In addition to this, it is very interesting to notice how the
terms in the second line, which would contribute with time - X X
derivatives form3(u), cancel at this order, £@N(u)= B0 o & (4.17
v [ 2. Antiferromagnetic configuration
Al 3% 4. 3_; 3. _ 3 L.
Ip| €a)bi 02 dim ~lvm Jom (4.19 In the extreme low-energy and momentum limit we are

interested in, there will be a contribution for the antiferro-

magnetic state in the conducting phase only. As in the pre-
The cancellation of these terms is very important, since as ifious cases the antiferromagnetic limit of the canted expres-
can be seen from EqA8) the tensodI{%%(0) contains an sion must be taken carefully. In this case, as in the
imaginary part, which would produce the spontaneous decajerromagnetic one, the interaction already contains at least
of the spin waver3(u) into fermionic excitations. two spin waves and it is enough to consider the second term

The final result for the effective Lagrangian up to two in Eq.(4.9). Since the antiferromagnetic state corresponds to
spin waves, after using a similar procedure to &q15 for 5 wofold band[, is degenerated, the term proportional to
spatial derivatives, turns out to be S® in Eq. (3.24 will cancel, which prevents a term with a
single time derivative from appearing in the effective La-
grangian as it should be. The final result reads

JaeM? 0 1
£@u)y="2C 11, _sitto| g omt
tf2 2 2 X
L',(z’l)(u)= - mafar . (4.1&
X(aiw+&iw++¢9iﬂ'_&iﬂ'_))
X P C. Spin waves dispersion relations: final results
+ mcoggﬁiﬂsaiﬂ?’a (4.16 Finally by summing all the contributionsC=,®
3 +£ @Y+ £(22) given in Egs.(4.6), (4.11), and (4.16), re-
spectively, we are in the position to write the effective La-
wherell , _ is given in Eqs.(A12) and(A14) for one band grangian for the spin waves up to second order in deriva-
canted CC1) and two band cantedC(C2) phases, respec- tives, and up to two spin-wave fields. After expanding the

tively. first two contributions in spin-wave fields and taking into
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account the expressid@.17) we obtain for the parameters of
the spin waves the following results:

5 2M +Xx
fo=——=V
a
. 1 2 1 1 a2 +5A 672X
~2m 152 2M a0y | T 2|
_H+—(1_y2) ’
1 Z3/2

2
" 2m 15a2A @Myl AT,

T (4.19
® 6, '
3pn2 3/2 2
UZZGJAFa M A i n % 677 X (1—y2)
2mz  15;2a M? 2 | s *

wherey= cos#/2 is a measure of the canting angleand x

is the doping.IT, _ also depends om. We have used the
expression of the parametek in Eq. (All) and 2m
~z/a%. In the case of the one band canted phé3€1)
IT, _ is given by Eq.(A12), and all the expressions can be
written explicitly in terms of the doping using EGA11). In
the case of the two band canted pha&g82) I1 . _ is given
by Eq. (Al4), but it is impossible to write all the above

expressions explicitly in terms of the doping only; we need

also the canting anglg, which depends implicitly on the

doping. For a given value of the doping we can obtain the

corresponding value of by solving Eqs(A13).

As it was described in Sec. Il a Bogolyubov transforma-
tion must be carried out in order to diagonalize the Lagrang
ian and obtain the physical fields, which have a mass give

by 1/2m’=B%-C? in Eq. (2.18,

3/2

1 1 1

2m’ 2M 15727 (2M+x)y

N
B

z

672X
732

5A
2—4y2+ 7

|

) —2y?=2I1, (1-y?).

672X
2302

(4.20

The expressiongt.19 and(4.20 for the velocity and the
mass of the spin waves are used in the plots of Fig. 1.

1. Ferromagnetic spin waves

ED PHASES: AN . .. 3311
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FIG. 1. The dependence of the velocities and the masses
With the doping for five different values of the paramet&r
(~t/dap). v2=(157%A)2mz?/62%4 I ra®M?)  and m/m’
=(1572A)m/z*’m’. The horizontal dotted lines correspond to the
phase-separation regions, and the vertical dotted lines correspond to

the phase transitions.

5 2M +Xx
fe=—"3—,
a
11 %2 1 - 5A [ 62X
2m’ 2M 1572A (2M+X) 2\ pr )

(4.20

which corresponds to the limit of the canted parameters
(4.19 taking into account that in the ferromagnetic limit
1/2m'=B. This is plotted in Fig. 1 in the case of a ferro-
magnetic phase.

In this limit configuration it is particularly easy to see the
effect of the charge carriers in the behavior of the spin

The parameters for the ferromagnetic spin waves must fitvaves. Since the interaction between the core spins is anti-

Eqg. (2.24), and are obtained from the sum of E¢.7) and
(4.17:

ferromagnetic the mass derived from this interaction is nega-
tive (producing an unstable spin wavélowever, the contri-
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bution from the fermionic sector compensates this sign ande., PS1(AFI-FC1), PS2(AFC2-FCJ), PS3(CC2-FC1, and
stabilizes the spin wave. It is also worth noticing that in thisPS4(CC1-FCJ).
limit from the canted phase one spin wave disappears, The question of which regions the system passes through
namely,73(u). Due to the existence of the remainibif1)  when going from the antiferromagnetic insulating phase to
symmetry in the ferromagnetic ground state this fluctuatiorthe ferromagnetic conducting one upon increasing the doping
does not modify the ground state any more. We can see from the actual materials could not be satisfactorily solved
Eq. (4.19 that the velocity of the linear branch goes to zerothere, since the answer depends critically on the values of the
smoothly in the transition to the ferromagnetic phase. Thipparameters of the model. For reasonable values of these pa-
answers the question asked at the end of the first paper immeters, various possibilities are allowed. We have chosen
Ref. 33: “How do the spin dynamics evolve from the five values of the parametdy, in Eq. (Al1), for which the
double-branch state reported here into a state with only ongequence of phases is the following:
branch characteristic of a ferromagnetic metallic phase?”
A=2.20, AFI-PS1-FC1,
2. Antiferromagnetic spin waves

In this case the parameters for the effective Lagrangian A=1.75, AFI-AFC2-PS2-FC1,

are obtained by summing the contributions of E¢s8) and

(4.18, and are given by A=1.40, AFI-AFC2-CC2-PS3-FC1
Z A=1.00, AFI-AFC2-CC2-CC1-PS4-FC1,
ffT: 1
6Jara° A=0.80, AFI-AFC2-CC2-CC1-FC1.

672X In order to establish differences between the canted
7 phases and the phase-separation region we must make a
z guess on how these phase-separation regions look like, since
(422 our model does not describe these nonhomogeneous regions
of the phase diagram. Even though these may be very rich
regions, with many different structures in them, as charge
_ : . <) ordering, stripes, orbital ordering, or polaronic
insulating phase we should take=0. This velocity is plot- excitations?®1347-54ye shall assume that the main structure
ted in Fig. 1 for the antiferromagnetic phase. is the coexistence of two macroscopic domains correspond-
As in the previous case we should notice the lost of 0ngnq 1o the phases at the border of the phase-separation region,
spin-wave field when we carry out the limit towards the an-gnq that the interphase will not disturb qualitatively the prop-
tiferromagnetic ground statgr,l(u) [after t?t\e rotation of the  griies of each of them. With this assumption in mind we have
reference system,+3—2, it becomesm>(u)]. The com-  potted in Fig. 1 the dependence on the doping for the veloc-
bination of the canted phase parametr6B +C)—0 with ity and the mass of the spin waves for each of the values of
y—0. It is interesting to notice that the other remainingthe parameteA given above.
field, which used to be part of a ferromagnetic mode, with @ The dotted lines corresponds to the values of the velocity
quadratic dispersion relation, in the canted phase, becomegd the mass in the phase-separation region, for the first four
part of the antiferromagnetic spin wave with a linear disper~ajues of the parametéx. They are constant values, because
sion relation. The remaining combination of the canted phaSﬂ']ey are gi\/en by the value of the Corresponding phase in the
f2(B—C)—f3v? wheny—0. This answers the question at horder of the phase separation region. Consider, for example,
the end of the previous subsection in the antiferromagnetiehe first case, where an AFl and a FC1 domain coexist in the

_6Ja°M7 2221

2+ oA
2mz 1552 M?

2

UZ

which coincides with the limit of the parameters for the an-
tiferromagnetic spin wave in the canted phaségu). In the

limit. phase separation region. The doping is an extensive magni-
tude, and even though it reduces globally over the system,
V. DISENTANGLING CANTED PHASES the densﬁy of carriers remains constant in the FC1 domain,

FROM PHASE-SEPARATION REGIONS (sjggree;glessone reduces as the dopiegnsidered globally

Recently controversial results have appeared in the litera- In the third and fourth cases, where canted domains coex-
ture regarding the existence of canted phases in doped maist with the ferromagnetic domain, we can observe two dif-
ganites, in particular concerning their stability against phaséerent values for the masses of the spin waves in the phase-
separatiof:>>~2* We showed in Ref. 22 that canted phasesseparation region, as well as one velocity.
not only exist but they are also thermodynamically stable. Let us concentrate in the first versus the last case, i.e., the
We presented there a phase diagram where, in addition fohase-separation region with antiferromagnetic insulating
stable canted phases, phase-separation regions appear. and ferromagnetic conductindFI-FC1) domains versus the

The phase diagram presents the following phases: antifecanted phasés?®~2°°? Since the differentiation between
romagnetic insulatingAFl), antiferromagnetic conducting these two structures seems to be an experimental challenge,
with two bands(AFC?2), canted conducting with two bands we describe below a few distinct properties of the spin waves
(CC2), canted conducting with one bart@C1), ferromag-  which may help to differentiate between a canted phase and
netic conducting with one ban@FC1, and four phase- a phase-separation region consisting of ferromagnetic and
separation regions between the FC1 phase and the remainiretiferromagnetic domains:
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() First of all, in the canted phases dispersion relationgally apart canted phases from phase separation regéoas
we observe one ferromagnetic branch and one antiferexistence of ferromagnetic and antiferromagnetic phases
romagnetic branch, whereas in the phase-separatioQoking at suitable properties of spin waves. The results
case F-AF) we should observe one ferromagnetic, above may also be useful for a more refined study of the
but two antiferromagnetic branches. phase diagram of doped manganites. In particular, the lead-

(i)  Second, the antiferromagnetic branches present a fufg quantum corrections to the classical spin dynamics in the
ther dramatic property: its behavior in the presence ofOW-energy region are due to spin waves. It would be very
a magnetic field along the staggered magnetizationnteresting to elucidate the effect of these corrections in the
Whereas in the antiferromagnetic case the twoPhase diagram.
branches will be splitted, in the canted phase the
single linear branch will not be even shifted by the ACKNOWLEDGMENTS

_ presence of such a magnetic field. _ J.M.R. thanks Daniel $&hez-Portal and Eduardo Frad-

(iit)  Finally, we have presented in the previous section angin for illuminating discussions. We thank also M. Hennion
in Fig. 1 the different behavior of the dispersion rela- o pringing to our attention Ref. 33. J.M.R. is supported by
tion parameters with the dopingh=2.20 for the  the Basque Government. Financial support from NSF, Grant
phase-separation region a#d=0.80 for the canted No. DMR98-17941, from CICYT(Spain, Contract No.
phases. AEN98-0431, and from CIRIT(Catalonia, Contract No.

These three characteristics, in particular, the first and th@998SGR 00026, is also acknowledged.

second one which are of rather general natunedel inde-

pendeny, should allow to experimentally differentiate the re- APPENDIX: VACUUM POLARIZATION TENSOR

gions of the phase diagram where ferromagnetic and antifer-

romagnetic phases coexist from those where real canted The vacuum polarization tensor, as was defined in Sec.

phases exist. IVB reads

. ) dq . o
VI. CONCLUSIONS Hgbj)(p):_'f—(27,)4(P+Q)'|—1al(|0+Q)Q'lel(q),

We have presented a complete study of the spin waves in A
canted phases. We have exploited the spontaneous symmet#iere
breaking patternSU(2)—1 to construct an effective La-
grangian for low-energy and momentum spin waves in 1 1
canted phases at next to leading order. For simplicity, we Lia (@)= K2 s
have chosen a cubic lattice, but any other lattice can be w—%—ﬂaﬂﬂw
treated within the same formalism. The Lagrangian at lead-
ing order depends on five parameters and to next to leading 134M 0
on nine. The leading Lagrangian yields two spin-wave Q+:_HT, /1+72i2ycos§—,u. (A2)

modes, one with a quadratic and one with a linear dispersion

relation. The leading effective Lagrangians for ferromagnetic].he symmetry properties of this tensor under the change of

and antiferromagnetic ground states were also considered g%n of the energy and momentum are given by

limit cases of the canted configuration. These depend on two

parameters only. (i) _ (1 80i+ o TT D)
Since the canted phases appear in doped manganites, and Hag™(=v.p) = (= 1) *ollpg (v, p),

are associated with conducting properties of these materials

we have also presented interaction Lagrangians of spin

waves with charge carriers. Whereas the Lagrangian for spin (D D

waves alone is of general natufmodel independept the 5y (= v, =p) =" (v.p).

interaction with charge carriers depends on microscopic feay order to simplify the calculation of the integrals we chose

tures of the material, in particular on the number of conducty, eference system with its third component parallel to the
ing band_s a\_/all_able_. Wg have c_ho_sen a S|r_nple c¢bse _ external momentum ilﬂgbj)(v,p), namely,
band which is inspired in a realistic model introduced in
Ref. 22 for the study of the phase diagram of doped manga- (Pk)p—k kxp
nites. Again we have derived the interaction Lagrangian for é(l):f, é(z):ﬁ, é(s):f), (A4)
ferromagnetic and antiferromagnetic phases as the extreme |k pl [k pl
cases of the interaction with canted spin waves. . ) ] . o

We have applied our results to the study of the spin Wavegyherek is a unit vector in the third crystallographic direc-
in doped manganites using the continuum double exchangéon )
model?> We obtained the explicit dependence on the doping \We will denote the components of the vectors and tensors
and the canting angle fdr,, 1/2m’, fs, andv, which de- In the new basis with Greek indices, instead of Latin ones,
termine the dispersion relations for the spin waves, and wéuch that they verify,=w;e(,,, and consequently,
have plotted them in Fig. 1 for several parameters. (@.8) 00 .

Finally, we have proposed three ways to tell experimen- HEE7(p) =114 (P €(a g - (A5)

N (v,—p)=(—1)%* %11 (v,p),  (A3)
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Therefore the symmetry properties under the change of sigexpressions above the summation convention was not used.
of the energy and momentum in the new basis become  An interesting result arises from considering the summation
overI13(0), namely,

M= v,p)=(—1)%c* %0T1{5 (v, p), (2m)*2
m

B3)0)= —
Hé‘é’ﬁ)(v,—p)=(—1)50a*50ﬂ*51a*5w112%"’)(v,p),( ) 2 0=
A6

> (—0%%6(-Q,)

N2 (— v, —p)=(= 1) 011G (v, p). *

2
=S ngo

In this basis, after some straightforward algebra, following mx

Ref. 46, it is easy to see that all the dependence on the
componentsy® and g? of the integrand in Eq(A1) comes
from the explicit dependence ¢ q)® andq?, and therefore
it is verified that

2
E) S ne%0),  (A9)
[l
as can be verified from an explicit calculation of the integral
which gives the doping in Eq. (4.10.

The results obtained until now are exdut the limit of
p#—0). In order to obtain further analytic results for
I1{9(0) in Eq.(A8) we will use the value of) .. to leading
order iny, already obtained in Ref. 22,

% (p) =61 (p),

112 (p) = 6°P11LE ™) (p), (A7)

where the repeated indices are not summed.

Once the symmetry properties of the vacuum polarization =~ tYoty), (A10)
tensor have been considered we will address its calculationvherey, is a measure of the chemical potential.
As it was stated in IV B it is enough to calculate the limit  |n the CC1 phase we obtained in Ref. 22 the following
p“—0 of the tensor, i.e.J14;)(0), to obtain the leading values for the canting angkeand the doping
contribution to the effective Lagrangian. Since the external

energy» and momentunp, injected in the fermionic loop, 5 oy D [ 67X s t
are related, this limit must be taken carefully. If they corre- ¥~ gAYoTY)™"=gA A2 | AT s 2T a2’
spond to amr(x) spin wave their relation is lineag~|p|, AF
while the relation forr=(x) is quadraticy~p?. The tensor (ALD)
components are given by and therefore
1+x, a’A k5 em2x|
n%%0)= :"‘[ 2+ X In| T ’—iﬂ-|xa| 0(1—X4]) CCl ML= i 2 0~ )= (—23,2
(A12)
mv
X 0(—Qa), Xfm: The calculation is a little bit more complicated in the two

band case, CC2, where we obtained in Ref. 23/fandx the
following expressions:

|p| 5 3/2 3/2
y=gAlYoty)™ = (Yo=y)™],
n$7(0)=112(0)
5 672X
mkg 1 e 2 2y _ 312 )32
=Ez0(—ﬂa)+Eki(l—X§)H§%°)(0), 2 A7+ 3Y0) = (Yot y) "+ (Yo—y) 3
(A8) (A13)
which yields after eliminating the chemical potential mea-
2 sure,yo,
nE20)=- —kzgm Qo)+ —”) ng%o), i
pl cer 1 A KSO(—0,)—KS (- Q)
: +-""3n 2 _ 1.2
gz M KO-k -0 2% ke
- = 2 2 2
: 15m Ki—k- 14 [4(6x x) , A6
= — — _y J—
mJxeM? 5 302 2| ane
=—At—FH+_, (@=1,2,3, V3
Y=O5A [ 612X
where k,=\/—2mQ, represents the Fermi momentum in ~ |\ ) (A14)

each ban&= +,—, andx, is the relation between the spin-
wave velocity and the Fermi velocity in each band. The stepvhere the limity—0 can be taken smoothly, and the previ-
functions 8(—Q,) ensures that only the bands which areous result is obtained by taking into account tbnagz(l)’2
below the chemical potential contribute to the result. In the=8/15 wheny=0.
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