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Spin waves in canted phases: An application to doped manganites
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We present the effective Lagrangian for low energy and momentum spin waves in canted phases at next to
leading order in the derivative expansion. The symmetry-breaking patternSU(2)→1 of the internal spin group
and that of the crystallographic space group imply that there is one ferromagnetic and one antiferromagnetic
spin wave. The interaction of the spin waves with the charge carriers is also discussed for canted, ferromag-
netic, and antiferromagnetic phases. All this together allows us to write the doping dependence of the disper-
sion relation parameters for doped manganites. We point out that the spin waves posses distinctive character-
istics which may allow us to experimentally differentiate canted phases from phase-separation regions in doped
manganites.
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I. INTRODUCTION

Canted phases are magnetically ordered states with
collinear magnetizations. These configurations appea
quantum Hall double-layer systems1 and in the conducting
regime of double exchange models,2–4 where the local mag-
netizations arrange in two sublattices with magnetizati
pointing to different ~but not opposite! directions. The
double exchange models are believed to provide a good
scription of doped manganites,5 which are receiving quite a
lot of attention lately.6–13 Doped manganites present a no
trivial interplay between their magnetic and conducti
properties,14–19 which leads to a rich phase diagram. T
transitions between the different phases in terms of the d
ing have been extensively studied.20

The most studied transition is that from an antiferroma
netic insulating phase, at zero doping, to a ferromagn
conducting phase as the doping grows.21 It is not clear yet if
the region for intermediate values of doping corresponds
canted phase or to a phase separation region.4,22–25It is our
claim that the study of the spin waves in such materials m
shed light to this question. Since the spin waves are lo
energy excitations in a magnetically ordered material, th
are sensible to the main features of the phase diagram.
spin waves have indeed been studied recently in connec
with these materials.26–33

The low-energy and momentum dynamics of the s
waves is so much constrained by the symmetries of the
tem that a model independent description is possible in te
of a few unknown parameters. For canted phases, the s
taneous symmetry-breaking pattern of the~internal! spin
symmetry isSU(2)→1, instead ofSU(2)→U(1) like in
ferromagnets or antiferromagnets.~Strictly speaking, the
symmetry-breaking pattern isSU(2)→Z2, the center of the
group. However, since we will not be concerned with glob
properties, neither of the group nor of the coset manifo
using 1 instead ofZ2 does not modify our discussion at all!
PRB 620163-1829/2000/62~5!/3300~16!/$15.00
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As a consequence of the Goldstone’s theorem there wil
gapless excitations in the spectrum~Goldstone modes!,34,35

the so-called spin waves. A very efficient way to encode
spin-waves dynamics is by using effective Lagrangians.

Effective Lagrangians for Goldstone modes are kno
since the late 1960s,36 and they have been extensively us
in pion physics during the last decade.37 It was suggested in
Ref. 38 that they may also be useful in condensed-ma
systems. A detailed construction of the effective Lagrangi
for ferromagnetic and antiferromagnetic spin waves has
ready been presented in Ref. 39~see Ref. 40 for a recen
review and Refs. 41 and 42 for nontrivial applications!.

A general formalism for the spin waves in canted pha
is presented in Sec. II, where we construct an effective
grangian at next to leading order. An intuitive separation
the spin-wave field in one ferromagnetic and one antifer
magnetic component is also presented. Since canted ph
appear in the conducting regime of doped manganites,
coupling of spin waves to charge carriers is relevant. Thi
discussed in Sec. III, where we obtain an effective Lagra
ian for this coupling in the three different phases: cant
ferromagnetic, and antiferromagnetic. In Sec. IV we use
previous results for the different phases of doped mangan
in order to obtain the explicit dependence of the dispers
relation parameters on the doping, which is given in form
las ~4.19!, ~4.21!, and ~4.22! for the canted, ferromagnetic
and antiferromagnetic phases, respectively. In Sec. V
present a plot of the doping dependence of the velocity
the mass of the spin waves for the different phases. We
explain in Sec. V how our results on spin waves can be u
to experimentally disentangle canted phases from ph
separation regions. We summarize our conclusions in the
section. Some properties and calculations, related to a
integral, are relegated to the Appendix in order to keep
arguments clear.

In order to simplify the notation we take\5c51, which
leads to a relativistic notation. Hence we usex5(t,x), q
3300 ©2000 The American Physical Society



or
y

or
r

tio

tic
e
th
ic
po

th
ta
nc
on
a

ca
rg
th
s
is

fo

e
d

is
il
ic

ou
th
te
it
a
o

za
th

e

ic
a

int

n the

-
tion

e

ld

e
the

a-
we
of

of
e

ns

PRB 62 3301SPIN WAVES IN CANTED PHASES: AN . . .
5(v,k) and subindicesm50,1,2,3, where the zero stands f
the time component. Space indices are denoted bi
51,2,3.

II. EFFECTIVE LAGRANGIAN FOR CANTED PHASES

In a previous paper22 we obtained the phase diagram f
doped manganites, where a rich set of magnetically orde
phases appeared. The magnetically ordered configura
break spontaneously theSU(2) symmetry of the theory~the
continuum double exchange model! down to the ground-state
symmetry,U(1) for the ferromagnetic and antiferromagne
configuration, and 1 for the canted configuration, becaus
the noncollinear character of the latter. In this situation
lower excitations of the system are the spin waves, wh
turn out to be the Goldstone’s modes associated to the s
taneous symmetry breaking in magnetic systems.

We have already carried out an extensive study for
ferromagnetic and antiferromagnetic spin waves in crys
line solids in Ref. 39. This formalism assumes the existe
of a gap in the excitation spectrum, which permits the c
struction of an effective Lagrangian for the spin waves as
expansion of local terms suppressed by the gap. In the
that there are additional degrees of freedom with ene
smaller than the gap, they should also be included in
effective Lagrangian. This is the case of charged carrier
doped manganites, which we will discuss in Sec. III. In th
section, we restrict ourselves to the generalization of the
malism presented in Ref. 39 to the case of spin waves
canted phases.

A. Effective fields and symmetries

The ~internal! spin symmetry breaking pattern,SU(2)
→1 for the noncollinear canted configurations, determin
that the basic field which represents the Goldstone mo
~spin waves! may be chosen as a matrixV(x)PSU(2)/1
5SU(2).36 After determining the transformations of th
field under the symmetry group of the system we can bu
an effective Lagrangian from which the spin-wave dynam
can be derived. The transformations under theSU(2) spin
symmetry read

V~x!→gV~x!, gPSU~2!. ~2.1!

The transformations under the crystallographic space gr
reduce in the continuum to the primitive translations and
point group. Since the local magnetizations in the can
phase point to two different directions depending on the s
both of these symmetries are broken by the ground st
This must be reflected in the transformation properties
V(x). For definiteness, we shall take the local magneti
tions in the 1-3 plane in the spin space, in such a way
the even and odd lattice magnetizations form an angle ofu/2
and2u/2 with the 3 axis, respectively, and can be mapp
into each other by a rotation ofp around the 3 axis:

M15M @sin~u/2!,0,cos~u/2!#,

M25M @2sin~u/2!,0,cos~u/2!#. ~2.2!
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For simplicity, we shall also assume a primitive cub
lattice (Pm3̄m) although the analysis can be carried out in
similar way for any crystallographic space group. The po
group m3̄m is generated by the transformationsC2z , C2y ,
C2a @a twofold axis in the direction (1,1,0)], C31

1 @a threefold
axis in the direction (1,1,1)] and the spatial inversionI.
These transformations can be separated in two groups, o
one hand$C2z ,C2y ,C31

1 %, which transform points inside
each sublattice, and on the other$C2a ,I %, which as the
primitive translationst transform points from the even sub
lattice to the odd one and vice versa. Thus the transforma
of the spin-wave fieldV(x) under this group is given by

j:$C2z ,C2y ,C31
1 %:V~x!→gjV~x!,

j:$C2a ,I %:V~x!→gjV~x!R, R5e2 ipS3

t:V~x!→V~x!R, ~2.3!

where gj is the SU(2) transformation associated to th
point-group transformation andR is a matrix which inter-
changes the magnetization between sublattices.

Notice that by combining the transformation of the fie
V(x) under$C2a ,I % with the translations in$tC2a ,tI % we
can eliminate the additional factorR in those point-group
transformations. Since, in addition, the factorgj can be re-
absorbed by aSU(2) transformation we only have to car
about the transformations of the derivatives as far as
point group is concerned.

Finally, under time reversalV(x) transforms as

T:V~x!→V~x!C, C5e2 ipS2
. ~2.4!

We are now in a position to construct the effective L
grangian order by order in derivatives. In order to do that
consider the following element of the Lie algebra
SU(2):36

V†~x!i ]mV~x!5bm
2~x!S11bm

1~x!S21bm
3 ~x!S3.

~2.5!

This term, and consequently the coefficientsbm
a (x), are in-

variant under theSU(2) transformations~2.1!. Under the
point group we only need to consider the transformation
the derivatives inbm

a (x), which correspond to the space-tim
indicesm. The transformations under primitive translatio
are given by

t: H bm
2→2bm

2

bm
3 →bm

3 ,
~2.6!

and under time reversal,

T: H bm
2→2btm

1

bm
3 →2btm

3 ,
~2.7!

wheretm stands for the transformation of the indexm under
time reversalT.
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B. Relation with ferromagnetic and antiferromagnetic
spin waves

Before writing down the effective Lagrangian, let us d
cuss a suitable decomposition ofV(x) which illuminates the
relation between canted spin waves and the usual ferrom
netic and antiferromagnetic ones. In the way we have cho
the direction of the magnetizations in each sublattice~2.2!, it
is clear that the projection on the third direction is ferroma
netic, whereas the projection on the 1-2 plane is antife
magnetic. This suggests that we may separate the spin-w
field into components perpendicular to the third axis and
the plane 1-2, respectively. Group theory allows us t
implement this easily. Indeed, an element of the gro
V(x)PSU(2), admits a unique decomposition in terms of
element of a coset,U(x)PSU(2)/U(1), and anelement of
the corresponding subgroup,H(x)PU(1), such thatV(x)
5U(x)H(x), with

U~x!5 expH i

f p
@p2~x!S11p1~x!S2#J PSU~2!/U~1!,

~2.8!

H~x!5 expH i
A2

f 3
p3~x!S3J PU~1!,

where S65S16 iS2 and S3 are the SU(2) generators,
p6(x)5@p1(x)6 ip2(x)#/A2 andp3(x) are the spin-waves
fields, andf p and f 3 are dimensionful parameters represe
ing the spin stiffness. This implies that the element of the
algebra in Eq.~2.5! can be written as

V†~x!i ]mV~x!5H†~x!@U†~x!i ]mU~x!#H~x!

1H†~x!i ]mH~x!. ~2.9!

Upon using forU†(x) i ]mU(x) a similar expression to that in
Eq. ~2.5!,39 we have

U†~x!i ]mU~x!5am
2~x!S11am

1~x!S21am
3 ~x!S3.

~2.10!

This decomposition translates to the coefficientsbm
a (x) in

Eq. ~2.5! as follows:

bm
2~x!5e2 iA2p3(x)/ f 3am

2~x!,

bm
1~x!5eiA2p3(x)/ f 3am

1~x!, ~2.11!

bm
3 ~x!5am

3 ~x!2A2]mp3~x!/ f 3 .

Recall finally that the expansion ofU†i ]mU in spin-wave
fields reads

U†i ]mU52
1

f p
2 $~ f p]mp21••• !S11~ f p]mp11••• !S2

1@ i ~p1]mp22p2]mp1!1•••#S3%. ~2.12!

C. Effective Lagrangian

In order to construct the effective Lagrangian, let us be
by considering terms with time derivatives. It is then cle
that we can build a term with a single time derivative,
g-
en

-
-
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o

,

-
e

n
r

b0
35a0

32
A2

f 3
]0p3;a0

3 , ~2.13!

which contributes to the dynamics ofp6(x). Nevertheless,
since this term only contains a total derivative onp3(x) the
first contribution to the dynamics of this field comes from

b0
3b0

3;
2

f 3
2 ]0p3]0p3, ~2.14!

where we have made explicit the quadratic term inp3(x).
Regarding the spatial derivatives there are no invari

terms with a single spatial derivative. Then the first invaria
terms have two space derivatives, and they read

bi
1bi

25ai
1ai

2 ,

bi
1bi

11bi
2bi

2 , ~2.15!

bi
3bi

3;
2

f 3
2 ] ip

3] ip
3,

where again we have made explicit the quadratic depende
on p3(x) in the last term.

Unlike the terms with time derivatives, the terms wi
spatial derivatives produce a leading order contribution
p6(x) and p3(x) at the same order. Let us call itO(p2).
Equations~2.13!, ~2.14!, and ~2.15! provide the dispersion
relations for the spin waves, which indicate how time deriv
tives must be counted with respect to space derivativ
Namely, a time derivative onp6(x) must be counted as
O(p2), whereas a time derivative onp3(x) must be counted
as O(p). This implies that the termb0

35a0
32A2]0p3/ f 3

;O(p2)1O(p), i.e., it contains terms of first and secon
order, which must be taken into account in the construct
of the effective Lagrangian. This is, in fact, a remarkab
difference with respect to the ferromagnetic and antifer
magnetic case, where each invariant term has a unique

Then, putting together all the terms above, the most g
eral effective Lagrangian at orderO(p2) we can construct,
with the standard normalizations, reads

L~x!5 f p
2 F1

2
b0

32Bbi
2bi

12
C

2
~bi

1bi
11bi

2bi
2!G

1 f 3
2F1

4
b0

3b0
32

v2

4
bi

3bi
3G . ~2.16!

If we expand it up to three fields, it reads

L~x!5p2i ]0p12B] ip
2] ip

12
C

2
~] ip

1] ip
1

1] ip
2] ip

2!1
1

2
]0p3]0p32

v2

2
] ip

3] ip
3

2 i
A2C

f 3
~] ip

1] ip
12] ip

2] ip
2!p3

1
iA2v2f 3

2 f p
2 ~p2] ip

12p1] ip
2!] ip

3. ~2.17!



th
n
e

ve
e
tiv

pe
o

e

di
ic

l
m
s
ol
ou
t
r

e
re
sic
te

ea
ur

-

e
b-
r.

pin
he
he
ust
he

a-

er-
by
-
f

PRB 62 3303SPIN WAVES IN CANTED PHASES: AN . . .
The first two lines correspond to quadratic terms in
fields, which yield the free propagation of the spin waves a
give the dispersion relation for each of them. Whereas th
terms lead directly to a wave equation~Klein-Gordon type!
for p3(x), as expected for an antiferromagnetic spin wa
the equation forp6(x) turns out to be nondiagonal. Th
off-diagonal terms are due to the existence in the effec
Lagrangian of the term (bi

1bi
11bi

2bi
2). In the ferromag-

netic and antiferromagnetic cases this term does not ap
because the unbrokenU(1) subgroup prevents it. In order t
diagonalize the quadraticp6(x) terms, we perform the fol-
lowing Bogolyubov transformation:

p1~x!→Am8B1
1

2
p1~x!2Am8B2

1

2
p2~x!,

1

2m8
5AB22C2. ~2.18!

In terms of the new variables the Lagrangian~2.17! reads

L~x!5p2i ]0p12
1

2m8
] ip

2] ip
11

1

2
]0p3]0p3

2
v2

2
] ip

3] ip
32 i

A2C

f 3
~] ip

1] ip
12] ip

2] ip
2!p3

1
iA2v2f 3

2 f p
2 ~p2] ip

12p1] ip
2!] ip

3, ~2.19!

which yields a Schro¨dinger equation with a massm8 for the
new field p1(x). Therefore, as it was expected from th
decomposition made in Eqs.~2.8!–~2.11!, the field p1(x)
describes one ferromagnetic spin wave, with a quadratic
persion relation, andp3(x) describes one antiferromagnet
spin wave, with a linear dispersion relation.

This result is in agreement with previous theoretical1 and
recent experimental33 works, and in line with the genera
counting of Goldstone modes in nonrelativistic syste
stated in Ref. 43~see also Ref. 35!. The general statement i
that there exist as many real fields representing the G
stone modes as broken directions in the symmetry gr
~three in our case, because of the noncollinear nature of
canted configuration!. The space-time transformations fo
these fields determine if they verify a wave~Klein-Gordon,
leading to a linear dispersion relation! or a Scho¨dinger~qua-
dratic! equation of motion, with the constraint that in th
case of a Schro¨dinger equation a complex field, and therefo
two real ones, is necessary to represent a single phy
mode ~the two real fields behave like canonical conjuga
degrees of freedom!. With this argument in mind for the
canted spin waves we can only get either three lin
branches or one linear and one quadratic branch, which t
out to be the correct answer in our case.

At next to leading order,O(p3), besides those terms com
ing from b0

3b0
3 already considered in Eq.~2.16!, we find the

following terms:
e
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b0
3b0

3b0
3 ,

b0
3~bi

1bi
11bi

2bi
2!,

~2.20!
b0

3bi
2bi

1 ,

b0
3bi

3bi
3 .

The term i (bi
2]0bi

12bi
1]0bi

2);b0
3bi

2bi
1 at this order,

since atO(p3) we only have to consider time derivativ
acting onp3(x). However at higher orders the terms o
tained from those invariants are different from each othe

1. Coupling to a magnetic field

The most important source of magnetic coupling in a s
system is the Pauli term, the introduction of which in t
effective theory was extensibly discussed in Ref. 39 . T
outcome is that the Pauli term can be introduced by j
replacing the time derivative by a covariant derivative in t
following way:

]0→D0[]02 immSB. ~2.21!

After introducing the covariant derivative, Eq.~2.8!, for time
derivatives, reads

V†~x!iD 0V~x!5H†~x!@U†~x!iD 0U~x!#H~x!

1H†~x!i ]0H~x!. ~2.22!

Thus after introducing the magnetic field the effective L
grangian is constructed with the expressions~2.11! such that
the magnetic field only modifiesa0

6(x) anda0
3(x), given by

U†iD 0U52
1

f p
2 H F f p]0p22mmS 1

2
~ f p

2 2p1p2!Bz̄

1
1

2
p2p2Bz1 i f pp2B3D1•••GS1

1F f p]0p12mmS 1

2
p1p1Bz̄

1
1

2
~ f p

2 2p1p2!Bz2 i f pp1B3D1•••GS2

1@ i ~p1]0p22p2]0p1!2mm~ i f pp1Bz̄

2 i f pp2Bz1~ f p
2 22p1p2!B3!1•••#S3J .

~2.23!

The time derivative onp3(x), as well as the terms with
spatial derivativesbi

6(x) and bi
3(x), remain unchanged by

the presence of the magnetic field.
It is very easy to see that, at the lowest order, the disp

sion relation of the antiferromagnetic branch, given
p3(x), is not modified by the introduction of a small mag
netic field in any direction, in particular in the direction o
the staggered magnetization.
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2. Ferromagnetic limit

In the ferromagnetic limit the local magnetizations a
pointing in the third direction all over the crystal. Hence
unbrokenU(1) symmetry remains, and the spin waves a
represented by a field belonging to the cosetSU(2)/U(1).
This field can be easily obtained from the decomposit
~2.9! of the canted case by takingH(x)51, or, equivalently,
p3(x)50 in Eq. ~2.11!. Hence V(x) simply reduces to
U(x). Furthermore, because of the remainingU(1) symme-
try terms like (ai

1ai
11ai

2ai
2) are forbidden, and hence th

quadratic part of the Lagrangian does not contain o
diagonal terms. Therefore the Bogolyubov transformat
~2.18! is not necessary anymore.

In terms ofam
a (x) the effective Lagrangian for the ferro

magnetic spin waves reads

L~x!5 f p
2 F1

2
a0

32
1

2m8
ai

2ai
1G . ~2.24!

And after expanding it in terms of spin wave fields in E
~2.12!,

L~x!5p2i ]0p12
1

2m8
] ip

2] ip
1, ~2.25!

which corresponds to one spin wave with a quadratic disp
sion relation.

3. Antiferromagnetic limit

In the antiferromagnetic limit the local magnetizations a
pointing at opposite directions in each sublattice along
first axis (S1). As for the ferromagnetic case an unbrok
U(1) symmetry remains, and the spin waves are represe
by an element of the cosetSU(2)/U(1). In order to simplify
the computation we will rotate the internal space refere
frame in such a way that the third direction, instead of
first, lies along the staggered magnetization direction~we
perform the rotation 1→3→2 in all the indices!. With this
choice the spin-wave field is determined from Eq.~2.9! by
settingH(x)51, or, equivalently,p3(x)50 in Eq. ~2.11!.
V(x) reduces toU(x), and the remainingU(1) symmetry
prevents the nondiagonal terms, (ai

1ai
11ai

2ai
2), from ap-

pearing like in the ferromagnetic case. In addition to th
now C acts as the matrix which interchanges the magnet
tions between sublattices, which forbids the term with
single time derivative,a0

3(x), to appear in the effective La
grangian.

The effective Lagrangian for the antiferromagnetic sp
waves is given by

L~x!5 f p
2 @a0

2a0
12v2ai

2ai
1#, ~2.26!

and after expanding it in terms of spin-wave fields in E
~2.12!,

L~x!5]0p2]0p12v2] ip
2] ip

1, ~2.27!

which describes two spin waves with a linear dispersion
lation. These two branches are splitted by the introduction
a small magnetic field in the third direction, the direction
the staggered magnetization.39
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III. INTERACTION WITH CHARGE CARRIERS

Canted phases are known to support conductivity. The
is important to elucidate which kind of interaction mediat
between the spin waves and the charge carriers. In orde
address this question in a model independent way, we wo
need an effective-field theory description of the latter. Ho
ever, to our knowledge, there are no general rules on how
build such an effective theory, which may depend stron
on the particular material we wish to study. We shall th
restrict ourselves to present an effective theory based o
particular model which successfully describes canted pha
and has applications to doped manganites, the continu
double exchange model.22

At first sight one may think of describing the charge ca
riers by an effective fermion field which varies slow
through the material and couples to the local magnetizat
However, in a canted phase the local magnetization chan
abruptly from the even to the odd sublattice, which mea
that we shall need two magnetization fieldsM1(x) and
M2(x) in the even and odd sublattices, and hence a sin
slowly varying fermion field is not enough to have a cons
tent description. We need at least two slowly varying fe
mion fieldsc1(x) andc2(x), coupled to the magnetizatio
in the even and odd sublattices, respectively.

The interaction Lagrangian of the model reads

L~x!5c1
†~x!F ~11 i e!i ]01

] i
2

2m
1m1JH

s

2
M1~x!Gc1~x!

1c2
†~x!F ~11 i e!i ]01

] i
2

2m
1m1JH

s

2
M2~x!Gc2~x!

1t@c1
†~x!c2~x!1c2

†~x!c2~x!#, ~3.1!

wheret corresponds to the amplitude of probability that t
fermion changes the sublattice andJH is the Hund coupling
between the fermion fieldsc1(x) and c2(x) and the mag-
netic moment in each sublatticeM1(x) andM2(x), respec-
tively. An estimation of our parameters is given byt;ztl ,
JH;JH

l , and 2m;1/a2t l , wherea is the lattice spacing,z
56 is the coordination number, and the superscriptl means
the analogous lattice quantity. In order to have conduct
when tÞ0 only, the chemical potentialm is required to lie
below the lowest energy of the band fort50.

The spin waves are fluctuations of the magnetically
dered ground state, and they are included in the previ
fields. We can separate the contribution of the spin wa
from that of the ground stateM1 andM2 by writing Mi

a(x)
5Rb

a(x)Mi
b ( i 51,2), such that the matrixRb

a(x) corresponds
to the spin-wave fluctuation in the adjoint representation
SU(2). Using the scalar product properties the interact
term can be written

s

2
M i~x!5

sa

2
Rb

a~x!Mi
b5V~x!

s

2
V†~x!M i ~ i 51,2!,

~3.2!

where the matrixV(x) represents the spin waves in the fu
damental representation ofSU(2).

This expression suggests the following change of va
ables for the fermionic fields:
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c i~x!→V~x!c i~x! ~ i 51,2!. ~3.3!

In terms of the new fermionic fields the Lagrangian~3.1! reads

L~x!5@c1
†~x!c2

†~x!#~Ôgs1Ôsw!S c1~x!

c2~x!
D , ~3.4!

where

Ôgs5S ~11 i e!i ]01] i
2/2m1m1

JH

2
sM1 t

t ~11 i e!i ]01] i
2/2m1m1

JH

2
sM2

D ~3.5!
rl
c-

in

a-

gth
a-

b-
ves

ing
is the contribution of the ground state, and

Ôsw5S Ôsw 0

0 ÔswD ,

Ôsw5~V†i ]0V!2
1

2m
@$ i ] i ,~V†i ] iV!%1~V†i ] iV!

3~V†i ] iV!#, ~3.6!

contains the interaction with the spin waves. The cu
brackets$,% stand for the anti-commutator. Taking into a
count the decomposition~2.5! the operatorÔsw can be ex-
pressed in terms of the fieldsbm

a (x) as follows:

Ôsw5S b0
22

1

2m
$ i ] i ,bi

2% DS11S b0
12

1

2m
$ i ] i ,bi

1% DS2

1S b0
32

1

2m
$ i ] i ,bi

3% DS32
1

2m S bi
1bi

21
1

4
bi

3bi
3D .

~3.7!

A compelling expression for the coupling of the sp
waves can be written by noting that the expressions~3.4!–
y

~3.7! are equivalent to the introduction of a covariant deriv
tive,

i ]m→ iD m5 i ]m1~V†i ]mV!5 i ]m1bm
2S11bm

1S21bm
3 S3,

~3.8!

in Eq. ~3.5! and droppingÔsw.
Since the spin waves are fluctuations of long wavelen

and the interaction with the fermionic fields contains deriv
tives, this interaction will be small. In this situation the pro
lem is reduced to calculate the interaction of the spin wa
with the eigenstates of Eq.~3.5! perturbatively. The four
eigenstates can be obtained by considering the follow
change of variables:

S c1~x!

c2~x!
D 5P†S x1~x!

x2~x!
D ,

P†5
1

A2
S q1Q†1Q̄ q2Q2Q̄

q2Q†1Q̄ 2q2Q1Q̄
D , ~3.9!

whereq is an scalar parameter andQ† and Q̄5Q̄† are ma-
trices in the Lie algebra ofSU(2) given by
q5
1

2
SAe11g1cos

u

2

2e1
1
Ae21g2cos

u

2

2e2

D →
g!11

2 S cos
u

4
1sin

u

4D ,

Q†5

sin
u

2

A2e2S e21g2cos
u

2
D

S11

sin
u

2

A2e1S e11g1cos
u

2
D

S2 →
g!1

cos
u

4
S11sin

u

4
S2 ,

Q̄5SAe11g1cos
u

2

2e1
2
Ae21g2cos

u

2

2e2

D S3 →
g!1S cos

u

4
2sin

u

4DS3, ~3.10!
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with

e65A11g262g cos
u

2
, g[

2t

uJHuM
, ~3.11!

M5uM1u5uM2u53/2, andu the angle formed by the groun
state magnetizationsM1 andM2.

After the change of variables the Lagrangian, written
terms of the new fieldsx1(x) andx2(x), reads

L~x!5~x1
†~x! x2

†~x!!F S L̂1 0

0 L̂2
D 1S Ŵ11 Ŵ12

Ŵ21 Ŵ22
D G

3S x1~x!

x2~x!
D , ~3.12!

where the interaction with the ground state is diagonal, an
is given by

L̂15~11 i e!i ]01
] i

2

2m
1m1

uJHuM
2

A11g262g cos
u

2
,

~3.13a!

L̂25~11 i e!i ]01
] i

2

2m
1m2

uJHuM
2

A11g272g cos
u

2
.

~3.13b!

The interaction with the spin waves, given byŴ
5PÔswP†, reads

Ŵ115q2Ôsw1q$Ôsw,Q̄%1Q̄ÔswQ̄1QÔswQ†,
~3.14a!

Ŵ125Ŵ21
† 52q@Ôsw,Q#2~Q̄ÔswQ1QÔswQ̄!,

~3.14b!

Ŵ225q2Ôsw2q$Ôsw,Q̄%1Q̄ÔswQ̄1Q†ÔswQ,
~3.14c!

where the square brackets@ ,# stand for the commutator an
Ôsw is given in Eq.~3.7!.

In the relevant materials that we have in mind, the ho
ping amplitudet is much smaller than the Hund couplin
JH , i.e.,g!1. In this case, the two higher states of Eq.~3.5!,
denoted byx2(x), lie far away from the two lower ones. I
fact, the ratio of energies is of orderg. If we are only inter-
ested in transition energies;t we can safely integrate ou
the statesx2(x), obtaining the following Lagrangian for th
two lowest statesx1(x):

Le f f5x1
†~x!~ L̂11Ŵ11!x1~x!

2x1
†~x!Ŵ12

1

L̂21Ŵ22

Ŵ21x1~x!. ~3.15!

The second term is of orderg with respect to the first one
Indeed, we consider low incoming energy and moment
with respect to the two lowest states, namely,L̂1;(1
1 i e) i ]01] i

2/2m1m1uJHuM /2;t, and the spin-wave in-

teractionŴi j ;t. Thus 1/L̂2;g/t, such that the second term
it

-

in Eq. ~3.15! is ordergt, which means that the fieldx2(x)
decouples, and the effective Lagrangian reduces to

Le f f5x1
†~x!@ L̂11Ŵ111O~gt !#x1~x!. ~3.16!

In order to complete the effective Lagrangian we must c
sider the leading order ing for Ŵ11 in Eq. ~3.14a!, which
corresponds to take the right limit in Eq.~3.10! for the pa-
rameterq and the matricesQ† andQ̄.

Therefore the effective Lagrangian is given by Eq.~3.16!,
where the interaction terms, which come from Eqs.~3.14a!,
~3.7!, and~3.10!, are given by

Ŵ1152
1

2m S bi
1bi

21
1

4
bi

3bi
3D1

1

2
cos

u

2S b0
32

1

2m
$ i ] i ,bi

3% D
1

1

2
sin

u

2S b0
22

1

2m
$ i ] i ,bi

2%1b0
12

1

2m
$ i ] i ,bi

1% D
3~S11S2!. ~3.17!

Upon expanding it up to two fields, using Eqs.~2.12! and
~2.11!, we finally obtain

Ŵ1152
1

2m fp
2 F ] ip

2] ip
11

f p
2

2 f 3
2
] ip

3] ip
3G

1
1

2 f p
2

cos
u

2 Fp2S i ]0p11
1

2m
$] i ,] ip

1% D
2p1S i ]0p21

1

2m
$] i ,] ip

2% D
1

iA2 f p
2

f 3
S i ]0p31

1

2m
$] i ,] ip

3% D G
1

1

2 f p f 3
sin

u

2 F i f 3S i ]0p21 i ]0p11
1

2m

3$] i ,] ip
21] ip

1% D1A2p3S i ]0p22 i ]0p11
1

2m

3$] i ,] ip
22] ip

1% D1
A2

2m
] ip

3~] ip
22] ip

1!G
3~S11S2!. ~3.18!

A. Coupling to ferromagnetic spin waves

The interaction of charge carriers with ferromagnetic s
waves can be considered as a limit of the canted config
tion. In order to do that we must take the limitu→0 in Eq.
~3.10!, which yields a very simple expression, independ
of g, for the parameterq and the matricesQ† andQ̄ which
determine the change of variables~3.9!, namely,

q5
1

2
, Q†5S1 , Q̄5S3. ~3.19!

Following the considerations in Sec. II C 1, we also mu
takeH(x)51, or equivalentlyp3(x)50.
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Because of the remaining unbroken symmetry theSU(2)
transformations on the spin-wave fields are realized b
nonlinearU(1)local gauge group, which allows us to writ
the Lagrangian in a manifestly gauge invariant way:

L̂11Ŵ115 iD 01
1

2m
~DiDi2ai

2ai
1!1m1

uJHuM
2

12tS3,

~3.20!

whereiD m5 i ]m1am
3 /2. Notice that this implies that some o

the couplings are fixed by the symmetry. In fact only t
coupling ai

2ai
1 is model dependent. This is analogous

what happens in the pion-nucleon Lagrangian where on
the couplings is fixed by chiral symmetry.44 Recall that the
transformation properties underU(1)local are the following:

x i~x!→ei [w(x)/2]x i~x!,

am
6~x!→e7 iw(x)am

6~x!, ~3.21!

am
3 ~x!→am

3 ~x!1]mw~x!.

Finally, in terms of the spin-wave fields and up to tw
fields Ŵ11 reads

Ŵ1152
1

2m fp
2

] ip
2] ip

11
1

2 f p
2 Fp2S i ]0p1

1
1

2m
$] i ,] ip

1% D2p1S i ]0p21
1

2m
$] i ,] ip

2% D G ,
~3.22!

which corresponds to the limitu→0 of the canted expressio
~3.18!.

B. Coupling to antiferromagnetic spin waves

In the antiferromagnetic case we have to consider
situations. The first one corresponds to the insulating ph
where there are no charge carriers to couple with. The
ond situation corresponds to the antiferromagnetic cond
ing phase. We shall describe this second situation below

The interaction of the charge carriers with antiferroma
netic spin waves is given by the canted case in the limiu
→p. According to the discussion in Sec. II C 2 this limit is
little bit more involved than for the ferromagnetic case, sin
we also must rotate the reference system (1→3→2). Then
the expressions for the parameterq and the matricesQ† and
Q̄, which determine the change of variables~3.9!, read

q5
1

A2
A11

g

A11g2
→

g!1 1

A2
,

Q†5A 2

11g21gA11g2
S3 →

g!1

A2S3, ~3.23!

Q̄50,

where the right limit gives the leading dependence ong
which we shall use to calculate the interaction.
a

of

o
e,
c-
t-

-

e

Similarly to the ferromagnetic case we must takeH(x)
51, or p3(x)50, and therefore the remaining unbroke
symmetry determines the gauge invariance structure for
effective Lagrangian, given by

L̂11Ŵ115 iD 01
1

2m
~DiDi2ai

2ai
1!1m1

uJHuM
2

,

~3.24!

where nowiD m5 i ]m1am
3 S3. Notice again that this implies

that some of the couplings are fixed by the symmetry. In fa
only the couplingai

2ai
1 is model dependent. This is analo

gous to what happens in the ferromagnetic case discu
before and hence also analogous to the case of the p
nucleon Lagrangian.44 Recall that the transformation prope
ties underU(1)local are now the following:

x i~x!→eiw(x)S3
x i~x!,

am
6~x!→e7 iw(x)am

6~x!, ~3.25!

am
3 ~x!→am

3 ~x!1]mw~x!.

Finally, in terms of the spin-wave fields and up to tw
fields Ŵ11 reads

Ŵ1152
1

2m fp
2

] ip
2] ip

11
1

f p
2

3Fp2S i ]0p11
1

2m
$] i ,] ip

1% D
2p1S i ]0p21

1

2m
$] i ,] ip

2% D GS3, ~3.26!

which corresponds to the limitu→p of the canted expres
sion~3.18!. However, because of the rotation of the referen
system it is easier to obtain Eq.~3.26! as a limit of Eq.~3.17!
rather than Eq.~3.18!, because the direction of the symmet
breaking has not been taken explicitly yet.

IV. SPIN WAVES IN DOPED MANGANITES

In Sec. II we developed a general formalism which pr
vides the effective Lagrangian for the spin waves genera
by any model in a canted, ferromagnetic, and antiferrom
netic ground state as long as the model is invariant un
SU(2) transformations. In this section we are going first
particularize this effective Lagrangian to the case of the s
waves in doped manganites. Next, we will include the int
action of spin waves to charge carriers worked out in Sec
and calculate the doping dependence of dispersion rela
parameters.

A. Spin waves from the Heisenberg Hamiltonian

In the double exchange models the interaction betw
the core spins in thet2g bands of the manganese atom
described by an antiferromagnetic Hamiltonian. Since
value of the core spins is 3/2 their motion is slow and can
approximated by classical magnetization fields on the latt
Furthermore, for the low-energy and momentum region
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lattice fields can be further approximated by continuu
fields. In Ref. 22 we considered a static Heisenberg-like
teraction, which only provides the relevant contribution
the ground-state energy. Here we shall introduce a deriva
expansion of the Heisenberg Hamiltonian, which also ta
care of the low-energy and momentum excitations. Th
derivative terms in the second quantization language rea

H52E dx
JAFa2

2z
] iM1~x!] iM2~x!, ~4.1!

whereJAF;zJAF
l /a3 and the superscriptl represents the lat

tice Heisenberg coupling. The local magnetizations for e
sublattice,M1(x) andM2(x), are given as fluctuations of th
ground-state configuration, as mentioned in Sec. II, that
can writew i(x)5V(x)w i

(0) ,

M i~x!5w i
(0)†V†~x!SV~x!w i

(0)

5Tr@V†~x!SV~x!Pi #5Rb
a~x!Mi

b , ~4.2!

wherePi is a projector in the direction of the ground-sta
magnetization in each sublatticei 51,2.

This Hamiltonian only generates terms with spatial d
rivatives in the spin wave’s effective Lagrangian. In order
introduce the temporal term let us consider it written in ter
of the total,S(x), and staggered,V(x), magnetizations:

H52E dxFJAFa2

2z
] iS~x!] iS~x!2

JAFa2

8z
] iV~x!] iV~x!G ,

~4.3!

where

S~x!5
1

2
@M1~x!1M2~x!#, S5M cos

u

2
,

V~x!5M1~x!2M2~x!, V52M sin
u

2
. ~4.4!

This corresponds to the spatial derivatives terms in
effective Lagrangian for ferromagnetic spin waves in ter
of the total magnetizationS(x), and for antiferromagnetic
spin waves in terms of the staggered magnetizationV(x).45

Following this identification we shall choose as tempo
terms those which complete these Hamiltonians. Then
effective Lagrangian from the Heisenberg contribution re

L (1)~x!5
1

a3S2E
0

1

dlS~x,l!@]0S~x,l!3]lS~x,l!#

1
JAFa2

2z
] iS~x!] iS~x!

1
z

12JAFa6V2 F1

2
]0V~x!]0V~x!

2
3JAF

2 a8V2

2z2
] iV~x!] iV~x!G , ~4.5!

whereS(x,l) is an extension of the total magnetization fie
which verifies S(x,0)5S and S(x,1)5S(x). This is
-

ve
s
e

h

e

-

s

e
s

l
e
s

equivalent to introduce an extensionpa(x,l) for the spin-
wave fields such thatpa(x,0)50 and pa(x,1)5pa(x). A
simple extension valid for our purposes ispa(x,l)
5lpa(x), which allows us to write the effective Lagrangia
for the canted configuration in terms of the spin-wave rep
sentation used in Sec. II,

L (1)~x!5
2S

a3 F1

2
b0

31
JAFa5

8zS
~8S22V2!bi

2bi
1

1
JAFa5V2

8zS
~bi

1bi
11bi

2bi
2!G

1
z

6JAFa6 F1

4
b0

3b0
32

3JAF
2 a8V2

4z2
bi

3bi
3G .

~4.6!

We have dropped terms with two time derivatives acti
on p6(x) since they are sub-leading in the canted and f
romagnetic phases. However, they are not so in the ant
romagnetic phase and will have to be restored in orde
take the antiferromagnetic limit. Notice that Eq.~4.6! pro-
vides particular values for the constantsf p

2 , B, C, f 3
2 , andv2

in the general formula~2.16!.

1. Ferromagnetic configuration

In the case we have the ferromagnetic configuration
limit is taken very easily, since in this caseS→M and V
→0. Since the time evolution is already described by
term with a single time derivative we can drop the two tim
derivatives term in Eq.~4.6!, which yields the effective La-
grangian

L (1)~x!5
2M

a3 F1

2
a0

31
JAFa5M

z
ai

2ai
1G . ~4.7!

Notice that the mass term in Eq.~4.7! has the wrong sign.
This is due to the fact that Eq.~4.7! has been derived from a
antiferromagnetic Heisenberg Hamiltonian. Although th
wrong sign apparently produces an instability in the fer
magnetic spin-wave spectrum, this instability is not sign
cant. Recall that the ferromagnetic phases in doped ma
nites are due to the interaction with the charge carrie
Hence any reliable estimate of the spin-wave dispersion
lation parameters in the ferromagnetic phase must also
into account the interaction with the charge carriers. We s
do so later on. Such kind of~fictitious! instabilities also oc-
cur in the canted phases although they are not so imm
ately spotted from the Lagrangian~4.6!.

2. Antiferromagnetic configuration

In the antiferromagnetic configurationS→0 and V
→2M , and after performing the corresponding rotation,
→3→2, as explained in Sec. II, we obtain the followin
effective Lagrangian:

L (1)~x!5
z

6JAFa6 Fa0
2a0

12
12JAF

2 a8M2

z2
ai

2ai
1G . ~4.8!
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In this case, since the ground-state configuration is s
ported by the Heisenberg Hamiltonian, the spin waves
tained from it are stable.

B. Spin-waves dispersion relations: contributions
from charge carriers

We have now at our disposal suitable low-energy eff
tive Lagrangians which describe spin waves in doped m
ganites in the canted, ferromagnetic, and antiferromagn
phases. They are given by the pure spin-wave terms ab
together with the terms of interaction with the charge carri
~3.16!. More precisely, the effective Lagrangian for th
canted phases can be obtained from Eqs.~3.16!, ~3.17!, and
~4.6!, for the ferromagnetic phase from Eqs.~3.16!, ~3.20!,
and ~4.7!, and for the antiferromagnetic phase from Eq
~3.16!, ~3.24!, and~4.8!.

In order to obtain a reliable evaluation of the paramet
in the spin-waves dispersion relations we have to take
account the interaction with the charge carriers in the sp
waves two point Green’s functions. This can be eas
achieved from a further~this time nonlocal! effective La-
grangian which is obtained by integrating out the charge c
riers and keeping only the contributions up to two spin-wa
fields.

By integrating out the fermionic fields in Eq.~3.16! we
obtain the following contributions to the effective Lagran
ian:

Se f f
(2)52 i Tr ln~ L̂11Ŵ11!52 i Tr ln L̂12 i Tr~ L̂1

21Ŵ11!

1
i

2
Tr~ L̂1

21Ŵ11L̂1
21Ŵ11!1 . . . , ~4.9!

where Tr stands for the trace over the space-time indice
well as the matrix indices. We have expanded the logarit
up to second order.

The first term in Eq.~4.9! gives rise to an effective poten
tial for the ground-state configuration which, together w
the static antiferromagnetic Heisenberg term, produces
rich phase diagram for doped manganites presented in
22. The following two terms in the expansion are respons
for the appearance of terms with at least two spin wave
the effective Lagrangian, as can be see from Eq.~3.18!.

Even though in order to obtain the relevant contributio
to the effective Lagrangian it is enough to consider the in
action up to two spin waves in Eq.~3.18!, interesting genera
characteristics will arise if, instead, we use theSU(2) invari-
ant expression~3.17! for the interaction. In this way we ar
going to obtain not only an explicitly invariant effective La
grangian underSU(2), butalso the nonlocal structure whic
arises from the absence of gap in the fermionic spectrum
excitation.

We begin with the calculation of the second term in E
~4.9!, i.e., Se f f

(2,1)52 i Tr(L̂1
21Ŵ11). In this calculation a

closed-loop integral, representing the density of carriers,
pears:

x

a3 52 i E
2`

` dv

2p

dk

~2p!3
Tr L1

21~q!eivh. ~4.10!
p-
-

-
n-
tic
ve
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p-

x is the doping anda3 the volume of the unit cell. Tr repre
sents the matrix trace, the space-time trace has already
taken into account in the integration over the momentumq
5(v,k). L1

21(q) is the Fourier transform of the inverse o
the operatorL̂1 given in Eq.~3.13a!. The convergence facto
eivh (h→01) is introduced to pick up the correct order o
the fields in the calculation of closed loops of one po
Green’s functions.46

The contribution of these terms to the effective Lagran
ian is given by

L (2,1)~u!5
x

2a3 cos
u

2
b0

32
x

2ma3 Fbi
2bi

11
1

4
bi

3bi
3G ,

~4.11!
where we have dropped terms which contribute with a to
derivative.

Whereas all the contributions in Eq.~4.11! are local, be-
cause the loop integral is closed, the contribution fro
Se f f

(2,1)5( i /2)Tr(L̂1
21Ŵ11L̂1

21Ŵ11) is going to contain nonlo-
cal terms due to the presence of the so-called vacuum po
ization tensor,

Pab
( i , j )~p!52 i E dq

~2p!4 ~p1q! iL1a
21~p1q!qjL1b

21~q!,

~4.12!

wherea,b51,2 represent the diagonal components of t
operatorL̂1 given in Eq. ~3.13a!. i , j 51,2,3 represent the
spatial components of the momentum, whilei , j 50 means
the absence of the corresponding momentum compon
The properties of this tensor are displayed in the Append

Taking into account the symmetry properties of t
vacuum polarization tensor the contribution to the effect
Lagrangian reads

Se f f
(2,2)52E dudwE dp

~2p!4e2 ip(u2w)

3H 1

8
cos2

u

2 FPaa
(0,0)~p!b0

3~u!b0
3~w!

1
2

m
Paa

(0,i )~p!b0
3~u!bi

3~w!

1
1

m2 Paa
( i , j )~p!bi

3~u!bj
3~w!G

1
1

4m2 sin2
u

2
P12

( i , j )~p!@bi
2~u!bj

1~w!

1bi
1~u!bj

2~w!1bi
1~u!bj

1~w!1bi
2~u!bj

2~w!#J ,

~4.13!

where summation convention over repeated indices has b
used, and as in the previous case terms contributing wi
total derivative to the effective Lagrangian have be
dropped. It is easy to see that this part contributes with n
local terms as long as the vacuum polarization tensor ha
nonconstant behavior in the energy-momentum vectorpm

5(n,p). One of the most interesting terms with these ch
acteristics isb0

3(u)bi
3(w), which mixes time and spatial de

rivatives.
The leading contribution to the effective Lagrangian
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given by keeping in Eq.~4.13! second-order terms in deriva
tives ~or momentum!. This corresponds to consider the ze
energy and momentum limit of the vacuum polarization te
sor, i.e.,Pab

( i , j )(0). It is also convenient to choose the bas
n

to

r-

e
e

s

c

o

-

-

~A4!, which has its third component parallel to the mome
tum p in order to simplify the calculation. In this basis, an
using the relations given in Eq.~A8! and ~A9!, the action
~4.13! reads
Se f f
(2,2)52E dudwE dp

~2p!4e2 ip(u2w)H 1

8
cos2

u

2
Paa

(0,0)~0!Fb0
3~u!b0

3~w!12
n

upu
b0

3~u!@e(3)
i bi

3~w!#1S n

upu D
2

@e(3)
i bi

3~u!#

3@e(3)
j bj

3~w!#G2
1

8
cos2

u

2

x

ma3@e(3)
i bi

3~u!#@e(3)
j bj

3~w!#1
1

8
cos2

u

2
Paa

~1,1!~0!„@e~1!
~ i ! bi

3~u!#@e~1!
j bj

3~w!#

1@e~2!
i bi

3~u!#@e~2!
j bj

3~w!#…1
1

4m2 sin2
u

2
P12

(a,a)~0!„@e(a)
i bi

2~u!#@e(a)
j bj

1~w!#1@e(a)
i bi

1~u!#

3@e(a)
j bj

2~w!#1@e(a)
i bi

1~u!#@e(a)
j bj

1~w!#1@e(a)
i bi

2~u!#@e(a)
j bj

2~w!#…J . ~4.14!
m
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Hence with the aid of Eqs.~2.12! and~2.11! we can expand
this expression up to two spin waves. At this order only o
spin wave must be considered in the expansion of Eq.~2.11!,
i.e., bm

a ;]mpa, which means that they are proportional

the energy momentum, and since the vectorsê(1) and ê(2)

are perpendicular to the momentum,e(a)
i bi

a;e(a)
i ] ip

a

; ie(a)
i pipa50, (a51,2), they do not contribute at this o

der.
In addition to this, it is very interesting to notice how th

terms in the second line, which would contribute with tim
derivatives forp3(u), cancel at this order,

n

upu
e(3)

i bi
3;

npi

p2
] ip

3; inp3;2]0p3. ~4.15!

The cancellation of these terms is very important, since a
can be seen from Eq.~A8! the tensorPaa

(0,0)(0) contains an
imaginary part, which would produce the spontaneous de
of the spin wavep3(u) into fermionic excitations.

The final result for the effective Lagrangian up to tw
spin waves, after using a similar procedure to Eq.~4.15! for
spatial derivatives, turns out to be

L (2,2)~u!5
JAFM2

2mt fp
2

P12 sin2
u

2 S ] ip
2] ip

11
1

2

3~] ip
1] ip

11] ip
2] ip

2! D
1

x

4ma3f 3
2 cos2

u

2
] ip

3] ip
3, ~4.16!

whereP12 is given in Eqs.~A12! and ~A14! for one band
canted (CC1) and two band canted (CC2) phases, respec
tively.
e

it

ay

1. Ferromagnetic configuration

The ferromagnetic limit is again very easily taken fro
the canted results whenu→0 @equivalently we could use Eq
~3.20!#. In addition to that, we notice from Eq.~3.22! that the
interaction already contains at least two spin waves, thu
order to calculate the dispersion relation we only have
consider the second term in the expansion of the logari
~4.9!. The effective Lagrangian at this order is

L (2,1)~u!5
x

2a3 a0
32

x

2ma3 ai
2ai

1 . ~4.17!

2. Antiferromagnetic configuration

In the extreme low-energy and momentum limit we a
interested in, there will be a contribution for the antiferr
magnetic state in the conducting phase only. As in the p
vious cases the antiferromagnetic limit of the canted exp
sion must be taken carefully. In this case, as in
ferromagnetic one, the interaction already contains at le
two spin waves and it is enough to consider the second t
in Eq. ~4.9!. Since the antiferromagnetic state corresponds
a twofold band,L̂1 is degenerated, the term proportional
S3 in Eq. ~3.24! will cancel, which prevents a term with
single time derivative from appearing in the effective L
grangian as it should be. The final result reads

L (2,1)~u!52
x

2ma3 ai
2ai

1 . ~4.18!

C. Spin waves dispersion relations: final results

Finally by summing all the contributionsL5L (1)

1L (2,1)1L (2,2), given in Eqs.~4.6!, ~4.11!, and ~4.16!, re-
spectively, we are in the position to write the effective L
grangian for the spin waves up to second order in deri
tives, and up to two spin-wave fields. After expanding t
first two contributions in spin-wave fields and taking in
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account the expression~2.17! we obtain for the parameters o
the spin waves the following results:

f p
2 5

2M1x

a3 y,

B5
1

2m

z3/2

15p2A

1

~2M1x!y F ~123y2!1
5A

2 S 6p2x

z3/2 D
2P12~12y2!G ,

C52
1

2m

z3/2

15p2A

1

~2M1x!y
@11P12#~12y2!,

f 3
25

z

6JAFa6
, ~4.19!

v25
6JAFa3M2

2mz

z3/2

15p2A

1

M2F21
5A

2 S 6p2x

z3/2 D G ~12y2!,

wherey5 cosu/2 is a measure of the canting angleu andx
is the doping.P12 also depends onx. We have used the
expression of the parameterA in Eq. ~A11! and 2m
;z/a2t. In the case of the one band canted phase~CC1!
P12 is given by Eq.~A12!, and all the expressions can b
written explicitly in terms of the doping using Eq.~A11!. In
the case of the two band canted phases~CC2! P12 is given
by Eq. ~A14!, but it is impossible to write all the abov
expressions explicitly in terms of the doping only; we ne
also the canting angley, which depends implicitly on the
doping. For a given value of the doping we can obtain
corresponding value ofy by solving Eqs.~A13!.

As it was described in Sec. II a Bogolyubov transform
tion must be carried out in order to diagonalize the Lagra
ian and obtain the physical fields, which have a mass gi
by 1/2m85AB22C2 in Eq. ~2.18!,

1

2m8
5

1

2m

z3/2

15p2A

1

~2M1x!y

3A224y21
5A

2 S 6p2x

z3/2 D
3A5A

2 S 6p2x

z3/2 D 22y222P12~12y2!.

~4.20!

The expressions~4.19! and~4.20! for the velocity and the
mass of the spin waves are used in the plots of Fig. 1.

1. Ferromagnetic spin waves

The parameters for the ferromagnetic spin waves mus
Eq. ~2.24!, and are obtained from the sum of Eqs.~4.7! and
~4.17!:
e

-
-
n

fit

f p
2 5

2M1x

a3 ,

1

2m8
5

1

2m

z3/2

15p2A

1

~2M1x! F221
5A

2 S 6p2x

z3/2 D G ,

~4.21!

which corresponds to the limit of the canted paramet
~4.19! taking into account that in the ferromagnetic lim
1/2m85B. This is plotted in Fig. 1 in the case of a ferro
magnetic phase.

In this limit configuration it is particularly easy to see th
effect of the charge carriers in the behavior of the s
waves. Since the interaction between the core spins is a
ferromagnetic the mass derived from this interaction is ne
tive ~producing an unstable spin wave!. However, the contri-

FIG. 1. The dependence of the velocities and the mas
with the doping for five different values of the parameterA

(;t/JAF). v̄25(15p2A)2mzv2/6z3/2(JAFa3M2) and m̄/m̄8
5(15p2A)m/z3/2m8. The horizontal dotted lines correspond to th
phase-separation regions, and the vertical dotted lines correspo
the phase transitions.
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bution from the fermionic sector compensates this sign
stabilizes the spin wave. It is also worth noticing that in th
limit from the canted phase one spin wave disappe
namely,p3(u). Due to the existence of the remainingU(1)
symmetry in the ferromagnetic ground state this fluctuat
does not modify the ground state any more. We can see f
Eq. ~4.19! that the velocity of the linear branch goes to ze
smoothly in the transition to the ferromagnetic phase. T
answers the question asked at the end of the first pape
Ref. 33: ‘‘How do the spin dynamics evolve from th
double-branch state reported here into a state with only
branch characteristic of a ferromagnetic metallic phase?

2. Antiferromagnetic spin waves

In this case the parameters for the effective Lagrang
are obtained by summing the contributions of Eqs.~4.8! and
~4.18!, and are given by

f p
2 5

z

6JAFa6
,

v25
6JAFa3M2

2mz

z3/2

15p2A

1

M2F21
5A

2 S 6p2x

z3/2 D G ,

~4.22!

which coincides with the limit of the parameters for the a
tiferromagnetic spin wave in the canted phasesp3(u). In the
insulating phase we should takex50. This velocity is plot-
ted in Fig. 1 for the antiferromagnetic phase.

As in the previous case we should notice the lost of o
spin-wave field when we carry out the limit towards the a
tiferromagnetic ground state,p1(u) @after the rotation of the
reference system, 1→3→2, it becomesp3(u)]. The com-
bination of the canted phase parametersf p

2 (B1C)→0 with
y→0. It is interesting to notice that the other remaini
field, which used to be part of a ferromagnetic mode, wit
quadratic dispersion relation, in the canted phase, beco
part of the antiferromagnetic spin wave with a linear disp
sion relation. The remaining combination of the canted ph
f p

2 (B2C)→ f 3
2v2 wheny→0. This answers the question

the end of the previous subsection in the antiferromagn
limit.

V. DISENTANGLING CANTED PHASES
FROM PHASE-SEPARATION REGIONS

Recently controversial results have appeared in the lit
ture regarding the existence of canted phases in doped m
ganites, in particular concerning their stability against ph
separation.6,23–25 We showed in Ref. 22 that canted phas
not only exist but they are also thermodynamically stab
We presented there a phase diagram where, in additio
stable canted phases, phase-separation regions appear.

The phase diagram presents the following phases: ant
romagnetic insulating~AFI!, antiferromagnetic conducting
with two bands~AFC2!, canted conducting with two band
~CC2!, canted conducting with one band~CC1!, ferromag-
netic conducting with one band~FC1!, and four phase-
separation regions between the FC1 phase and the remai
d

s,

n
m

is
in

e
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e
-

a
es
-
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a-
n-
e

s
.
to

r-

ng,

i.e., PS1~AFI-FC1!, PS2~AFC2-FC1!, PS3~CC2-FC1!, and
PS4~CC1-FC1!.

The question of which regions the system passes thro
when going from the antiferromagnetic insulating phase
the ferromagnetic conducting one upon increasing the dop
in the actual materials could not be satisfactorily solv
there, since the answer depends critically on the values o
parameters of the model. For reasonable values of these
rameters, various possibilities are allowed. We have cho
five values of the parameterA, in Eq. ~A11!, for which the
sequence of phases is the following:

A52.20, AFI -PS1-FC1,

A51.75, AFI -AFC2-PS2-FC1,

A51.40, AFI -AFC2-CC2-PS3-FC1

A51.00, AFI -AFC2-CC2-CC1-PS4-FC1,

A50.80, AFI -AFC2-CC2-CC1-FC1.

In order to establish differences between the can
phases and the phase-separation region we must ma
guess on how these phase-separation regions look like, s
our model does not describe these nonhomogeneous reg
of the phase diagram. Even though these may be very
regions, with many different structures in them, as cha
ordering, stripes, orbital ordering, or polaron
excitations,25,13,47–51we shall assume that the main structu
is the coexistence of two macroscopic domains correspo
ing to the phases at the border of the phase-separation re
and that the interphase will not disturb qualitatively the pro
erties of each of them. With this assumption in mind we ha
plotted in Fig. 1 the dependence on the doping for the vel
ity and the mass of the spin waves for each of the value
the parameterA given above.

The dotted lines corresponds to the values of the velo
and the mass in the phase-separation region, for the first
values of the parameterA. They are constant values, becau
they are given by the value of the corresponding phase in
border of the phase separation region. Consider, for exam
the first case, where an AFI and a FC1 domain coexist in
phase separation region. The doping is an extensive ma
tude, and even though it reduces globally over the syst
the density of carriers remains constant in the FC1 dom
since this one reduces as the doping~considered globally!
decreases.

In the third and fourth cases, where canted domains co
ist with the ferromagnetic domain, we can observe two d
ferent values for the masses of the spin waves in the ph
separation region, as well as one velocity.

Let us concentrate in the first versus the last case, i.e.
phase-separation region with antiferromagnetic insulat
and ferromagnetic conducting~AFI-FC1! domains versus the
canted phases.6,23–25,52 Since the differentiation betwee
these two structures seems to be an experimental challe
we describe below a few distinct properties of the spin wa
which may help to differentiate between a canted phase
a phase-separation region consisting of ferromagnetic
antiferromagnetic domains:
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~i! First of all, in the canted phases dispersion relatio
we observe one ferromagnetic branch and one ant
romagnetic branch, whereas in the phase-separa
case (F-AF) we should observe one ferromagnet
but two antiferromagnetic branches.

~ii ! Second, the antiferromagnetic branches present a
ther dramatic property: its behavior in the presence
a magnetic field along the staggered magnetizat
Whereas in the antiferromagnetic case the t
branches will be splitted, in the canted phase
single linear branch will not be even shifted by th
presence of such a magnetic field.

~iii ! Finally, we have presented in the previous section a
in Fig. 1 the different behavior of the dispersion rel
tion parameters with the doping,A52.20 for the
phase-separation region andA50.80 for the canted
phases.

These three characteristics, in particular, the first and
second one which are of rather general nature~model inde-
pendent!, should allow to experimentally differentiate the r
gions of the phase diagram where ferromagnetic and ant
romagnetic phases coexist from those where real ca
phases exist.

VI. CONCLUSIONS

We have presented a complete study of the spin wave
canted phases. We have exploited the spontaneous symm
breaking patternSU(2)→1 to construct an effective La
grangian for low-energy and momentum spin waves
canted phases at next to leading order. For simplicity,
have chosen a cubic lattice, but any other lattice can
treated within the same formalism. The Lagrangian at le
ing order depends on five parameters and to next to lea
on nine. The leading Lagrangian yields two spin-wa
modes, one with a quadratic and one with a linear dispers
relation. The leading effective Lagrangians for ferromagne
and antiferromagnetic ground states were also considere
limit cases of the canted configuration. These depend on
parameters only.

Since the canted phases appear in doped manganites
are associated with conducting properties of these mate
we have also presented interaction Lagrangians of s
waves with charge carriers. Whereas the Lagrangian for
waves alone is of general nature~model independent!, the
interaction with charge carriers depends on microscopic
tures of the material, in particular on the number of condu
ing bands available. We have chosen a simple case~two
band! which is inspired in a realistic model introduced
Ref. 22 for the study of the phase diagram of doped man
nites. Again we have derived the interaction Lagrangian
ferromagnetic and antiferromagnetic phases as the extr
cases of the interaction with canted spin waves.

We have applied our results to the study of the spin wa
in doped manganites using the continuum double excha
model.22 We obtained the explicit dependence on the dop
and the canting angle forf p , 1/2m8, f 3, andv, which de-
termine the dispersion relations for the spin waves, and
have plotted them in Fig. 1 for several parameters.

Finally, we have proposed three ways to tell experim
s
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tally apart canted phases from phase separation regions~co-
existence of ferromagnetic and antiferromagnetic phases! by
looking at suitable properties of spin waves. The resu
above may also be useful for a more refined study of
phase diagram of doped manganites. In particular, the le
ing quantum corrections to the classical spin dynamics in
low-energy region are due to spin waves. It would be ve
interesting to elucidate the effect of these corrections in
phase diagram.

ACKNOWLEDGMENTS

J.M.R. thanks Daniel Sa´nchez-Portal and Eduardo Frad
kin for illuminating discussions. We thank also M. Hennio
for bringing to our attention Ref. 33. J.M.R. is supported
the Basque Government. Financial support from NSF, Gr
No. DMR98-17941, from CICYT~Spain!, Contract No.
AEN98-0431, and from CIRIT~Catalonia!, Contract No.
1998SGR 00026, is also acknowledged.

APPENDIX: VACUUM POLARIZATION TENSOR

The vacuum polarization tensor, as was defined in S
IV B reads

Pab
( i , j )~p!52 i E dq

~2p!4 ~p1q! iL1a
21~p1q!qjL1b

21~q!,

~A1!

where

L1a
21~q!5

1

v2
k2

2m
2Va1 ihv

,

V652
uJHuM

2
A11g262g cos

u

2
2m. ~A2!

The symmetry properties of this tensor under the change
sign of the energy and momentum are given by

Pab
( i , j )~2n,p!5~21!d0i1d0 jPba

( j ,i )~n,p!,

Pab
( i , j )~n,2p!5~21!d0i1d0 jPab

( i , j )~n,p!, ~A3!

Pab
( i , j )~2n,2p!5Pba

( j ,i )~n,p!.

In order to simplify the calculation of the integrals we cho
a reference system with its third component parallel to
external momentum inPab

( i , j )(n,p), namely,

ê(1)5
~ p̂k̂!p̂2 k̂

uk̂3p̂u
, ê(2)5

k̂3p̂

uk̂3p̂u
, ê(3)5p̂, ~A4!

where k̂ is a unit vector in the third crystallographic direc
tion.

We will denote the components of the vectors and tens
in the new basis with Greek indices, instead of Latin on
such that they verifywa5wie(a)

i , and consequently,

Pab
(a,b)~p!5Pab

( i , j )~p!e(a)
i e(b)

j . ~A5!



sig

ing
th

io
tio
it

na
,
re

in
-
te
re
th

sed.
ion

ral

r

ng

o

a-

i-
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Therefore the symmetry properties under the change of
of the energy and momentum in the new basis become

Pab
(a,b)~2n,p!5~21!d0a1d0bPba

(b,a)~n,p!,

Pab
(a,b)~n,2p!5~21!d0a1d0b1d1a1d1bPab

(a,b)~n,p!,
~A6!

Pab
(a,b)~2n,2p!5~21!d1a1d1bPba

(b,a)~n,p!.

In this basis, after some straightforward algebra, follow
Ref. 46, it is easy to see that all the dependence on
componentsq1 and q2 of the integrand in Eq.~A1! comes
from the explicit dependence (p1q)a andqb, and therefore
it is verified that

Pab
(0,a)~p!5da3Pab

(0,3)~p!,

Pab
(a,b)~p!5dabPab

(a,a)~p!, ~A7!

where the repeated indices are not summed.
Once the symmetry properties of the vacuum polarizat

tensor have been considered we will address its calcula
As it was stated in IV B it is enough to calculate the lim
pm→0 of the tensor, i.e.,Pab

( i , j )(0), to obtain the leading
contribution to the effective Lagrangian. Since the exter
energyn and momentump, injected in the fermionic loop
are related, this limit must be taken carefully. If they cor
spond to ap3(x) spin wave their relation is linear,n;upu,
while the relation forp6(x) is quadratic,n;p2. The tensor
components are given by

Paa
(0,0)~0!5

mka

4p2F221xa lnU11xa

12xa
U2 ipuxauu~12uxau!G

3u~2Va!, xa5
mn

kaupu
,

Paa
(0,3)~0!5

mn

upu
Paa

(0,0)~0!,

Paa
(1,1)~0!5Paa

(2,2)~0!

5
mka

3

12p2 u~2Va!1
1

2
ka

2~12xa
2!Paa

(0,0)~0!,

~A8!

Paa
(3,3)~0!52

mka
3

6p2 u~2Va!1S mn

upu D
2

Paa
(0,0)~0!,

P12
(a,a)~0!52

m

15p2

k1
5 u~2V1!2k2

5 u~2V2!

k1
2 2k2

2

52
mJAFM2

t
P12 , ~a51,2,3!,

where ka5A22mVa represents the Fermi momentum
each banda51,2, andxa is the relation between the spin
wave velocity and the Fermi velocity in each band. The s
functions u(2Va) ensures that only the bands which a
below the chemical potential contribute to the result. In
n

e

n
n.

l

-

p

e

expressions above the summation convention was not u
An interesting result arises from considering the summat
over Paa

(3,3)(0), namely,

(
a

Paa
(3,3)~0!52m

~2m!3/2

6p2 (
a

~2Va!3/2u~2Va!

1S mn

upu D
2

(
a

Paa
(0,0)~0!

52
mx

a3 1S mn

upu D
2

(
a

Paa
(0,0)~0!, ~A9!

as can be verified from an explicit calculation of the integ
which gives the dopingx in Eq. ~4.10!.

The results obtained until now are exact~in the limit of
pm→0). In order to obtain further analytic results fo
P12

(a,a)(0) in Eq.~A8! we will use the value ofV6 to leading
order ing, already obtained in Ref. 22,

V652t~y06y!, ~A10!

wherey0 is a measure of the chemical potential.
In the CC1 phase we obtained in Ref. 22 the followi

values for the canting angley and the dopingx:

y5
5

8
A~y01y!3/25

5

8
AS 6p2x

z3/2 D , A5
z3/2

15p2

t

JAFa3M2
,

~A11!

and therefore

CC1: P125
a3A

z3/2

k1
5

k1
2 2k2

2 u~2V1!5
4

5 S 6p2x

z3/2 D 2/3

.

~A12!

The calculation is a little bit more complicated in the tw
band case, CC2, where we obtained in Ref. 22 fory andx the
following expressions:

y5
5

8
A@~y01y!3/22~y02y!3/2#,

5

4
A~y213y0

2!5~y01y!3/21~y02y!3/25
6p2x

z3/2
,

~A13!

which yields after eliminating the chemical potential me
sure,y0,

CC2: P125
a3A

z3/2

k1
5 u~2V1!2k2

5 u~2V2!

k1
2 2k2

2

5
1

A3

4

5
A 4

5A S 6p2x

z3/2 D 2y21
A

2 S 6p2x

z3/2 D
→

y→05A

4 S 6p2x

z3/2 D , ~A14!

where the limity→0 can be taken smoothly, and the prev
ous result is obtained by taking into account thatAy0

1/2

58/15 wheny50.
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