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Electron wave motion in a quantum wire with periodic structure is treated by direct solution
of the Schrodinger equation as a mode-matching problem. Our method is particularly useful for a
wire consisting of several distinct units, where the total transfer matrix for wave propagation is just
the product of those for its basic units. It is generally applicable to any linearly connected serial
device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal
recently considered by Ulloa, Castafio, and Kirczenow [Phys. Rev. B 41, 12350 (1990)] is discussed
with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the
multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is
also treated. A structure combining features of both of these is investigated.

I. INTRODUCTION

Recently, considerable interest has been focused on
mesoscopic systems within which the motion of electrons
is governed by quantum mechanics rather than classi-
cal mechanics. In particular, the propagation of elec-
trons along quantum wires of various geometries has been
considered extensively.l™ More specifically, Sols et al?,
Weisshaar et al.,5 Avishai and Band,® and ourselves’
have carried out calculations for a T-shaped device con-
sisting of a main wire of constant width and a stub of
similar width perpendicular to the wire. Many interest-
ing features of this system were demonstrated, such as
sharp drops to zero transmission at certain values of the
stub length, repeated periodically. In Ref. 4 the po-
tential usefulness of such systems for transistor action
was pointed out, in particular for multiple-stub config-
urations. In these the sharp drops become extended to
forbidden bands. The calculations* were carried out us-
ing a finite-element Green’s-function method. Very re-
cently, some properties of similar devices have been stud-
ied experimentally.®

In a different vein, Ulloa, Castafio, and Kirczenow
have considered a linear array of mesoscopic potential
wells separated by square potential barriers. Propagation
through such an array also reveals an interesting struc-
ture of plateaus and resonances, which could form the ba-
sis for a quite different type of transistor action. Experi-
ments with such geometries have also been undertaken.®

These two types of device have periodic structure and
one can easily imagine other similar devices that can be
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disassembled into basic pieces connected in series. In this
paper we solve the Schrodinger equation that describes
the propagation of the electron by a mode-matching tech-
nique; this technique is especially adapted to such a se-
rial structure. The wave function at each end of a de-
vice segment is described by its modal-expansion coeffi-
cients. A transfer matrix is then derived which relates
the coeflicients at one end to those at the other. The
total transfer matrix that represents the electron wave
propagation through the entire device is then just the
product of the transfer matrices of the segments in or-
der. This offers important advantages in comparison to
other mode-matching techniques already applied to the
quantum-wire problem 15711

Primarily we have in mind rectangular geometry and
square potentials. However, more realistic smooth po-
tentials can be accommodated by cutting each device
segment into small enough slices. We illustrate this by
solving a Gaussian-barrier problem. Because of the sim-
plicity and the constructive nature of our method, it can
be implemented even on an IBM PC/AT computer and
complete a typical calculation in about 10 min.

By combining features of the two above-mentioned
examples, we propose a mesoscopic device with both
sidearms and blocking bridges. This structure manifests
both the quarter-wave mechanism and quantum tunnel-
ing effects, which are the operating principles of the above
two devices, and thus has interesting physical properties
that might be of interest for practical applications.

The paper is organized as follows. Section II intro-
duces the method by solving the one-dimensional (1D)
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mesoscopic-crystal problem, for which Sec. III contains
some results. In Sec. IV we outline our solution for a
quantum wire with a single stub, and with N stubs. Sec-
tion V presents the results for the multiple-stub wire and
Sec. VI discusses the proposed structure. The final sec-
tion contains the conclusions and further remarks.

II. THE ONE-DIMENSIONAL MESOSCOPIC
CRYSTAL

Recently, Ulloa, Castafio, and Kirczenow® have consid-
ered transport in a mesoscopic device formed by a linear
array of mesoscopic potential wells separated by finite-
height square potential barriers which can be created by
a bridging mask over the semiconductor substrate. The
device is illustrated in Fig. 1. We propose to call such a
device a mesoscopic crystal. As is customary, we model
the quantum wire as a two-dimensional waveguidelike de-
vice. The electron wave function satisfies the Schrodinger
equation in a two-dimensional potential with infinitely re-
pulsive walls. We label the width of the main wire to be
@, and take the x axis to be parallel to the wave prop-
agation direction. The device consists of n + 1 bridge
regions each of length d in which V = V}, connected by
segments of length { in which V' = 0. For the moment, all
segments have the same width a. Our model is identical
to that of Ref. 9, except that we assume the entrance
and exit leads at each end to be infinitely long, while the
authors of Ref. 9 took them more realistically to have
finite length. However, as can be seen from the results
of our calculation, this makes very little difference. See
also Ref. 12 for a discussion of this point.

We are going to solve the wave equation in the form

Vi¢+(E—-V)p=0, (1)

where E = 2{-:m*/h2 is the energy in units A2, m* is
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FIG.1. (a) The structure of a one-dimensional mesoscopic
crystal. The electrons are confined between the two horizon-
tal lines and experience a periodic blocking potential in the
regions marked V' = V5. The potential elsewhere is zero. The
entrance and exit leads at each end are considered to be in-
finitely long. (b) The bridge considered as a segment of the
device.
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the effective mass, and ¢ is the energy in eV. It is similar
for the potential energies V(z) and v(z). Since the wire
has uniform width and the potential depends only on
the longitudinal coordinate z, one can separate variables:
én(z,y) = ¢¥(z)sin(nwy/a), where ¥(z) satisfies the one-
dimensional Schrodinger equation

¢ (z) + [E1a — V(z)](z) = 0. (2)

Here we have defined Ejq = E — (nw/a)?. Solving
the above equation, we find the conductance, g(E14) =
(2e2/Rh)T, for the one-dimensional system where T is the
transmission probability. Then the conductance for the
two-dimensional (2D) system is just

Y. 9lE - (nn/a)?]. ®3)

n€{open}

G(E) =

Here the notation (n € {open}) stands for a sum over all
propagating channels (those with E14 > 0). To simplify
the discussion, we write Ey = (w/a)? for the threshold
of the first propagating channel. Then one sees that the
curve G(E) is just the superposition of shifted curves
g(E1q): the first term is shifted by Ey = (7/a)?, the
second one by 22Ey, the third by 32Ey, etc. Since g(E;4)
approaches unity when Ej4 > V, in the large-energy
region G(F) will have a repeated steplike pattern. One
example of this is shown in Fig. 2.

Knowing this relation between G(E) and g(E14), we
need only concentrate on 1D solutions. First we consider
the propagation across a segment with V = V; and length
d. As in Fig. 1 we represent this segment by a small
rectangle with two leads, with left-end coordinate z; and
right-end 2. The potential in the external leads is zero,
but one can easily adopt a different value if desired. We
express the wave function in the two leads as

Yr(x) = cp explia(z — zx)] + ¢ exp[—ia(z — 2x)], (4)

where the wave number is o = v/F14. The internal wave
function can be expressed as
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FIG. 2. (a) Steplike repeating structure of the conduc-
tance in the 1D mesoscopic crystal with five cells. The pa-
rameters are d = [ = 0.5a, Vo = Eo. (b) The underlying 1D
conductance of part (a).
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¥(z) = fexp[iy(z — 21)] + fexp[—iy(z — z1)), (5)

where v = v/E14 — Vo . By matching the wave function
and its derivative at each end, one finds

() -(2).

where

_ cos(yd)
M= (—i'y/a sin(yd)

and

—ia/y sin(yd
0/01(70!)(7 )) @)

c{:ck+6k ¢, = Ck — Ck. (8)
Thus if we regard the vector {cj, c; } as representing the
wave function at a particular point, the transfer matrix
M takes us from the right side to the left side of a par-
ticular bridge section. In addition, if we set V5 = 0 and
d = l, we have the appropriate transfer matrix for a zero
potential connecting segment:

P ( cos(ad) —z'sin(al)). ©

—isin(al) cos(ald)

The total transfer matrix for the whole device with n+1
bridges is then

Mol = (M P)* M. (10)

To compute the conductance for this system we must
apply physical boundary conditions. Suppose the wave
travels from left to right, with {c}, ¢} and {c},;,cou:}
representing the entrance and exit amplitudes, respec-
tively. Since there is no backward wave at the right exit,
we have €out = 0, which implies ¢, = ¢ = cout. From
this, one finds

2

2= | D MF™ | cour. (11)
3,j=1

Since this is a one-dimensional system, ¢ = T =

|eout/cin|? in units of 2e2/h; thus

2

(12)

9= 2
Z Mit;tal
7,j=1
Although the model we have just solved is particularly
simple, it demonstrates a general approach for dealing
with any serially connected device, which we will apply
later in this paper: (1) disassemble the device into its ba-
sic building blocks; (2) find the transfer matrix for each
building block by matching the wave function and its
derivative inside the block with the two leads; (3) com-
pute the total transfer matrix by multiplying the transfer
matrices for each segment of the device in order; (4) ap-
ply physical boundary conditions to determine the actual
solution.
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III. RESULTS FOR THE ONE-DIMENSIONAL
MESOSCOPIC CRYSTAL

The discussion in the preceding section, relating the
behaviour of G(E) to that of the one-dimensional conduc-
tance, makes the calculations very straightforward and
allows an easy interpretation of the roles of the differ-
ent parameters defining the device. To stress this further
we show in Fig. 2 the one-dimensional and total con-
ductances for a device with n = 5 wells as a function
of energy, for typical values of the other parameters. It
is clear that all the features of the one-dimensional plot
appear periodically and are clearly separated in the suc-
cessive steps of G(E).

The structure of the 1D conductance exhibits well-
known universal features that have a very simple inter-
pretation. At low energies the conductance is always
close to zero except for resonant peaks that correspond
to transmission by tunneling through the quasi-bound-
states of the system. Their energies can be estimated by
considering a system with the same n wells but such that
in the entrance and exit leads, the potential, instead of
dropping to zero, remains constant and equal to Vp up
to infinity. The bound states of this modified system
correspond then to the well-known minibands. For the
simplest case, that of a single square well, the energy of
the lowest state can be accurately computed using the
analytic approximation given in Ref. 13. For the case of
two square wells, in the limit when V; is very large, two
degenerate orthogonal states can be formed. One may re-
gard these as placing the particle in either of the wells, or
alternatively as the symmetric and antisymmetric linear
combinations. When V} is decreased the symmetric and
antisymmetric wave functions split in energy due to the
different matching requirements in the midpoint between
the wells, and as Vj tends to zero this splitting increases
towards the value corresponding to the separation of the
first and second bound states of the single wider well.

The same qualitative features apply also in the case of
n wells, the first being that the number of peaks equals
the number of wells. Furthermore, in Figs. 3(a) and 3(b)
we compare the cases Vy = 1 and 2: increasing Vj de-
creases the width of the miniband. This is in agreement
with the above discussion, and moreover, since the height
of the repulsive barrier increases, the average energy of
all these states is pushed up. In Figs. 3(a) and 3(c) the
same effects are seen when the width of the bridges in-
creases: for the lowest states the increase in the effective
repulsion (d?V}) overwhelms the previous effect and the
energies increase, whereas for the highest it is the op-
posite, and the result is that the width of the miniband
decreases. In addition, one notices in both cases shown in
Fig. 3 that, when the height or the width of the barriers
decreases, the widths of the resonant peaks increase.

When the Fermi energy is further increased the fig-
ures show that the transmission drops to zero, defining
a forbidden band, until tunneling is replaced by trans-
mission over the barrier and ¢34 rises towards unity. The
energy at which this rise takes place is independent of
n and is determined by the barrier height. [For a single
square barrier, the resonant energies, for which T" = 1,
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FIG. 3. Dependence on barrier height and width, n = 5,

!l =0.5a: (a) Vo = Eo, d = 0.5a as in Fig. 2; (b) Vo = 2E,
d = 0.5a; (c) Vo = Eo, d = a/V/2.

are Eg = Vg + (h?/2m)(kn/d)?.] But, as shown in Fig.
4 the rise becomes steeper as the number of wells in the
device increases (we compare cases with n = 3 and 50).
The case n = 50 shown in the figure has been chosen
to illustrate the computational accuracy of our method.
Experiments using devices with such a large number of
bridges are currently being considered.®

In reality, the potential barrier generated by gate
bridges will not be a perfect step function. The exact
form of the potential “felt” by the electron will depend
on accidents of fabrication, and one will never have a
precise description of it. In order to see whether the de-
tailed shape of this potential affects the device behavior,
we consider an alternative barrier shape. One can as-
sume that the potential will be peaked about the center
of each strip, so a Gaussian shape is a reasonable form
to try. To calculate the conductance in a model with
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FIG. 4. Dependence on the number of periods, I = d =

0.5a, Vo = Eo: (a) n = 3; (b) n = 50.
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arbitrary = dependence, we can still utilize the formu-
las developed for the step-function potential. The basic
problem is to find the transfer matrix for a single period.
We divide this single period into slices small enough so
that the potential in each piece may be considered to be
constant. Thus we replace an arbitrary smooth function
by a sequence of step functions. Explicitly,

total _ 1
Mrorl = pptt,

_ cos(vrbzy)
M, = I;I (-i'yk/a sin(yr6zy)

(13)

—ia /v, sin(yxbzk)
cos(ybzi) ’

(14)

where 7; is the average v value in a given slice k and 6z
is the length of the slice. We write the Gaussian poten-
tial in the form V = nVj exp(—22/0?), with  measured
from the center of the bridge. We choose parameters so
that the integral of £V (z) over a half-period is the same
as for the square barrier, with 7 larger than 1, in order
to have similar heights and widths of the two potentials,
as seen in the inset to Fig. 5. In our calculation, 100
slices have been used to simulate the Gaussian poten-
tial. The two barriers are compared in Fig. 5, where
the one-dimensional conductances for typical values of
the parameters are shown, and remarkable agreement is
seen. We conclude that smooth deviations in the shape
of the potential from that of a square barrier do not lead
to important changes in the conductance.

It is possible also to design experiments'® in which the
blocking bridges are connected in two groups, the bridges
at even numbered positions given one potential and the
odd ones a different potential. Our formulation is also
easily adapted to this configuration. As could be ex-
pected, we find that when the two potentials are close,
the device’s behavior is very similar to that of the single
potential case. When the difference between the poten-
tials becomes large, the device’s behavior is determined
by the stronger set of potential barriers. The weaker set
of barriers can then be ignored.

~— Vv
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FIG. 5. Comparison of conductances for a Gaussian and
a square barrier, n = 5, period = a. Light line: square well
with V = V5 and d = 0.5a as in Fig. 2. Dark line: Gaus-
sian potential V = 1.3V, exp(—22/0.22%). The integral of
zV (z) over a half period is kept the same for both cases. In-
set: Three-period potential structure for Gaussian and square
wells.
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IV. THE MULTIPLE-STUB QUANTUM-WIRE
PROBLEM

The general structure of a multiple-stub quantum wire
is sketched in Fig. 6. The main part of the device is a
uniform wire of width a, on either side of which there are
a number of arms (stubs), whose lengths are effectively
defined by control signals applied at their ends. We label
the width of the jth stub as b; and its length ¢; —a. The
distances between adjacent arms are [j j41.

The basic building block of a multiple-stub wire is a
simple T-shaped device with a single stub, as shown in
Fig. 7, and we require its transfer matrix first. Following
the notation of Sec. II, the regions (1) and (2) are the
leads of the device segment.

Inside the leads, since the wave function must van-
ish on the walls, the y dependence must be sin(nry/a),
where the various values of n define reaction channels. In
order to satisfy the differential equation (1), with V =10
everywhere, we write

¢ = zﬁ:(clneia"” + C1ne” %) sin IL—:—:—y . (15)

Similarly,
— ion(z—b) —ian,(z—b) nwy
é2 zﬂ:(cz ne + cane ) sin —= —~
(16)
where the wave number for channel n is

ap =+ E—(nm/a)? . 17

For an open (closed) channel ay, is real (pure imaginary).

In the internal region, ¢ must vanish at y = 0 and
¢; thus the basic y dependence is sin(mmry/c). However,
the internal wave function should also vanish at each side
of the arm outside the main wire and smoothly connect
to the external wave function along lines OA and BC
(z = 0 and = b). We first construct two auxiliary sets
of solutions to the wave equation, one of which matches
the wire on the left, and the other, the wire on the right,
with each vanishing elsewhere on the boundary. This is
a procedure first introduced by Kiihn.'* The appropriate
boundary conditions are

Xko(x = bay) = 0;

0, >
xko(z=o,y)={. y>a

sin(kmry/a), y<a (18)

xok(z =0,y) =0,

_ _JO0, y>a
mﬂ”—@w“{dthM,ySw

C1
I }

(19)

FIG. 6.

Structure of an n-stub quantum wire.
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FIG. 7.

Structure of a single-stub quantum wire.

The solutions xgr are expanded as

Xok = Z[um sin(Ym ) + vm cos(ymz)] sin m;ry, (20)
m

where the wave number in the internal region is

Ym = VE — (mn/c)? . (21)

The boundary condition at £ = 0 requires that v,, = 0,
whereas the condition at £ = b gives

0, y>a
(22)

Z Up, SIn(ym ) sin(mry/c) =
m sin(kry/a), y <a.

This is a Fourier expansion whose coeflicients are

2 Iim
== 23
™7 ¢sin(ymb)’ (23)
where
_[* .. (nmy\ . (mmy
Inm _/0- sin (_a ) sin (_c ) dy
_ a (sinm(n—ma/c) sinm(n+ ma/c))
T om n—mafc n+ mafc ’
(24)
giving
sin(ymz) . mmy
X0k = — Z sin(ymb) Iy sin P (25)
Similarly,
2 sinfym (b — )] . mwy
== o . 2
Xko =3 Z sin(ymb) Tim sin c (26)

The actual wave function in the internal region can be
expanded in terms of these auxiliary solutions xor and

Xko:

¢ = (fexro+ fexor) - (27)
%

The continuity of the wave function at £ = 0 and b re-
quires that fy = c1x + ¢1x and fr = cax + C2x, thus
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6= 2 3 (c1k + C1x) sin[ym (= - b)] + (cok + C2) sin(yme) T sin =Y. (28)
c sin(ym b) c
km
Similarly, matching the derivative ¢’ at £ = 0 gives
2 Cok) — ¢ b .
Z(cln — 1 )icun sin nry _ = Z (cak + Cok) .(clk + ¢1x) cos(Ym )7m1km sin m7ry, (29)
a c sin(ymb) c
n km
and at ¢ = b,
. 2 ¢ b— c .
S (ean — Can)iarysin "2 = 257 (ot ¥ oot Z (et Au) gy Y (30)
a c sin vy, b c
n km
Multiplying by sin(Imy/a) on both sides of the above two equations and integrating from zero to a yields
N 4 Cor + Cax) — (€1 + C1x) cos(Ymbd
(cln - cln)la’n = Z ( L 2k) ( 15 lk) (’Ym )7mInmIkm (31)
ac £ sin(ym b)
and
N 4 car + Cox) cos(Ymb) — (cix + €
(CZn - C2n)zan = Z ( 2 2k) .(7m ) ( 1k 1k)7m1nmllcm . (32)
ac £ sin(ymb)

To simplify these relations, we again use Eq. (8). De-
fine matrices A, B, and a whose elements are

4 Ym
App = — —_—
nk ac Z sin('ymb) InmIkm; (33)
m
4
B = — Tm €Ot (Ymb) Lnm Ik m, (34)
ac ooy
Ak = Anbnk, (35)

and column vectors C;, C,T" , whose elements are ci_k,c;.’;,
respectively. In this notation, we have

iaC] = ACY — BCY, (36)
iaCy; = BCY — ACY, (37)

where A and B are real-valued matrices. These two equa-
tions determine C{ and Cy in terms of C5 and C; . The
resulting transfer matrix is

o (1l 0 AT'B —4'\ (1 0
“\0 —ia™? A—-BA-'B BA-! 0 ia )’
(38)
so that
M11 = A—IB, M12 = —iA_loz, (39)
My = —ia_l(A — BMU_), Moy = ia_lBMlz. (40)

This transfer matrix relates the incoming to the outgoing
wave across the stub for arbitrary initial conditions.

The other building block of a multiple-stub wire is a

simple straight wire segment. Just as in Sec. II, the trans-

fer matrix induced by the part connecting the ith and jth

stub is simply

.. cos(al;;
P(ij) = (_isin((alf-,-))

-—z'sin(Otlij)> . (41)

cos(ad;j)

The difference between this and Eq. (9) is that « is now
a diagonal matrix. Given M and P, the total transfer
matrix for an n-stub quantum wire is
n—1
Mol = TTIMG)PG, i+ 1)]M(n) . (42)
i=1
Suppose the wave function at the entrance of the first
stub is represented by {C,C;;} and at the exit of the
last stub by {C},,,C5.}. Then
Cﬁ?) - (Cixt)

We now discuss the physical conditions imposed on the
ingoing and outgoing wave components. Depending on
energy, o, could be real or pure imaginary. We choose
oy to be positive for an open channel and lying on the
positive imaginary axis for a closed channel. With this
choice, Cout,n represents either a leftward moving wave
or an exponentially divergent wave at positive infinity.
Now, for the sake of argument we will take the incident
wave to come from the left; in this situation, we must set
Cout = 0 and thus C'g;lt = Cgyt = Cout. Physically cout,n
represents the transmitted wave component in channel
n. In the device entrance region, components ¢, , are
allowed. When «, is real, ¢y, , represents the amplitude
of the reflected wave in channel n. For a closed channel,
the reflected wave is a transient that decays exponen-
tially. For open channels, cip , represents the incoming
wave amplitude in channel n. For closed channels, cin n
must vanish in order to avoid divergence at negative in-
finity. Explicitly,

Ct = Cin + Cin = ME™ Cous + M Coue,  (44)

Ci; = Cin — _in = MZt(l)taICout + MggtaICOUh (45)

where M/?*? are blockwise submatrices of AMtotal,
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Adding these two equations, we can determine the trans-
mitted amplitudes Cyy¢ by solving

2 M

Following this, the reflection coefficients are given by

(M1 + Mz — My — Ma3)Cous (47)

out d 2C’m (46)

m'-'

The total transmission and reflection coefficients are then

given by

Q *

E Cout,nCout,n¥n
n€{open}

E Cin ncm n%®n

n€{open}

T =

(48)

and

E Cin,nCip nQn

n€{open}

E Cin ncm n@®

ne{open}

R= (49)

For completeness, we mention that for the bound-state
calculation, one must solve the homogeneous version of
Eq. (46) with Ci, = 0.

We also emphasize that in our formalism, once we
know how to handle the single-stub case, the multiple-
stub problem can be solved with little additional labor.
This is not so for either the recursive Green’s-function
method or the usual mode-matching approach.

V. RESULTS FOR THE MULTIPLE-STUB
QUANTUM WIRE

In Fig. 8 we show the transmission coefficient for the
single-stub case in its fundamental mode, as a function
of the effective stub length ¢, for three given energies.
This reproduces in detail the results presented in Ref. 4.
Notice that because of the high resolution of our calcu-

0.8}
0.6
T
0.4
0.2
0 i 1 L ! 1
100 150 200 250 300 350 400
(&)
FIG. 8. Transmission versus stub length ¢ for a single-

stub configuration, reproducing Fig. 2(b) of Sols et al. (Ref.
3). a =b =100 A, m* = 0.05. The energies given are
e —eo = 0.02 eV (dotted line), 0.118 eV (heavy line), and
0.199 eV (light line).
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lation, the sharp drops of the curve at € — ¢y = 0.199 eV
are fully explored (eg is the fundamental mode energy in
eV).

Some further insight into the solution is provided by
drawing the electron probability density (|¢|?), as in
Fig. 9. In these figures the electron is incident from
the upper right. Away from the stub, the intensity
would be uniform, and of sinusoidal shape across the
main wire. Figures 9(a)-9(d) show cases in the sequence
T = 0,1,0,1 starting from the first zero, as shown in
Fig. 8, with € — g9 = 0.118 eV. The corresponding ¢ val-
ues are 146, 200, 226, and 280 A. Notice that from one
zero to the next [Figs. 9(a) and 9(c)], or from one maxi-
mum to the next [Figs. 9(b) and 9(d)], the stub length ¢
has only to be increased so as to accommodate an addi-
tional half-wavelength. Aside from this additional half-
wavelength in the top of the stub, nothing else changes.
Thus it is evident that the T'= T'(c) curve is a periodic
function with period

bc=n/\/E — (n/b)2.

These electron-density plots give us the following phys-
ical picture: the electron wave propagates along the stub
direction with wave number \/E — (7 /b)? and is reflected
back, thus creating a standing wave inside the stub. Near
the edge of the stub, the wave reflected from the stub cou-
ples to the wave in the main wire. When the phase shift
between the two is 2n7, they reinforce each other to give
T =1, and when it is (2n + 1), one obtains T'= 0. Un-
fortunately, it is not easy to estimate the position where
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FIG. 9. Visualization of the electron current in a single-
stub configuration; the geometrical parameters are the same
as in Fig. 8. The energy is at € —eo = 0.118 eV. m* = 0.05.
Q)T =0,c=146 A; (b)) T =1, ¢c =200 4; (c) T =0,
c =226 A; (d) T =1, ¢c = 280 A. (c) has an additional
half-wavelength in the stub compared to (a), and (d) has an
additional half-wavelength compared to (b).
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the coupling takes place. However, our expression for
the period éc is independent of this position and thus it
matches the exact result very well. The principle dis-
cussed here is well known in waveguide physics and is
called the quarter-wave mechanism.

In Fig. 10 we show the transmission for the case of
five stubs. As already discussed in Ref. 4, the most
favorable situation is to choose the stubs to be of the
same width as the main wire. To avoid having too many
parameters, we choose all stubs to be of equal length.
As is familiar from waveguides, the sharp minima in T’
become extended, in the multiple-stub case, into bands
over which the transmission is blocked. For a practical
device, this will be a much more useful situation, as it
will not require an extremely precise tuning of the stub
length. Meanwhile the drop in conductance becomes very
sharp. Although the width of the blocked region increases
as more stubs are added, it does not change much after
five. This broadening of the valleys of the T' = T,(c)
curve for the multiple-stub case can be understood by
raising the T'= T} (c) curve for the single-stub case, to a
power, Tn(c) = [T1(c)]".

Although the multiple-stub scheme is a systematic way
to get minimum conductance over a broader range of stub
lengths, there are nevertheless other ways. Figure 11
shows the single-stub wire operating at an energy above
the threshold of the second mode. In general, when differ-
ent modes interfere the output will be more complicated
than in the single-mode case. As shown in the figure,
one can have a rather squarish pattern of maxima and
minima, and the conductance change is still one unit.
However, we lose the ability of totally blocking the wire.

To end this section, we mention some potential diffi-
culties of our method. Equation (38) requires the inverse
of the matrix A. We found that A becomes numerically
singular when too many closed channels are included in
the calculation. However, in practice, the amplitudes of
closed channels decrease very fast, which allows one to
consider only a few of them in the calculation. The fact
that our calculation agrees with that of Sols et al. can
be taken as a justification of our method. We have also
compared our results against those of the usual mode-
matching method and found good agreement. An ex-
tension of our method to a more general situation and
a systematic way of constructing linear equations in the
conventional mode-matching method will be presented
elsewhere.

1 T T T
0.8 V

0.6 |-

0.4

0.2 | H

0 L 1 1 1 1 l
100 150 200 250 300 350 400
C

FIG. 10. Transmission coefficient vs stub length for a five-
stub wire. a =d =1=100 A, e — o = 0.118 eV, m* = 0.05.
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FIG.11. Conductance of a single-stub wire at high energy.

E/Ey=52,b=a.

VI. MULTIPLE-STUB WIRE WITH BLOCKING
BRIDGES

In the previous sections we have discussed two systems,
the 1D mesoscopic-crystal and the multiple-stub wire. In
this section, we combine them in a single mesoscopic sys-
tem. This is very easy to realize, at least theoretically.
If you have already made a 1D mesoscopic crystal, you
add stubs to the side of each well; if what you have is
a multiple-stub wire, then you add blocking bridges on
the main wire connecting stubs as well as on the two en-
trances. Experimentally, devices such as the “corrugated
channel” considered by van Kouwenhoven et al.® are pre-
cisely of this kind, although as discussed by those authors
the detailed shape of the “saddle-shaped potential in the
narrow regions” is not known. Here we are going to as-
sume that both the stub length and the width and height
of the blocking potential can be changed independently
through some effective control voltages applied to appro-
priately designed gates, to explore the effects of these
changes on the device response. We have already shown
in the case of the 1D mesoscopic crystal that these two
parameters are the most relevant in determining that re-
sponse. A word on notation: we will use n to represent
the number of stubs, so that n+1 is the number of block-
ing bridges. The meanings of b, ¢, and d are the same as
before . The distance from the edge of the bridge to the
entrance of the nearby stub will be s.

Since we know how to compute the transfer matrix
for a bridge, for a plain wire and for a stub, there is no
need to go into detail for the solution of this device. In-
stead, we jump directly to a discussion of some results.
First, as we have emphasized in Sec. II, the 1D meso-
scopic crystal is strictly a one-dimensional problem, de-
spite its 2D appearance. It is interesting to see how the
change of stub length affects this mode-decoupling fea-
ture. Figure 12 shows the results of the calculation with
very short stubs. The device is identical to that used to
generate Fig. 2(a), except that five stubs with b = 0.5a,
¢ = l.la are added. By comparing with Fig. 2(a), we
see big differences, despite the fact that the stubs are
only 0.1a long. We see virtually no difference when the
energy is below the second mode. As the energy goes
up, more and more channels open and greater differences
appear. First of all the peaks due to resonant tunneling
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FIG. 12. Conductance of a 1D mesoscopic crystal with
small stubs. n =5,b=d = 0.5a¢, s =0, c=1.1a

disappear, and although one can still see the steplike in-
creases in G at the same energies, they become more and
more obscured by apparently random fluctuations whose
width and amplitude tend to increase with energy. This
could possibly explain the results quoted by van Kouwen-
hoven et al8® for their multiple-stub (15 fingers) device
in the zero-magnetic-field case: they found “no evidence
for the formation of a band structure and for quantized
plateaus in G resulting from the transverse confinement.”
Furthermore, it can be expected that working at finite
temperatures will smooth out further the remaining os-
cillations in G, due to transmission above the barriers,
and lead to a rather smoothly increasing conductance
with little trace of the quantal effects so clearly seen in
Fig. 2(a). As the energy increases, the conductance
will, however, show appreciable fluctuations, seemingly
random, due to interfering effects of different transverse
channels. (Examples of these are clearly seen in Fig. 12
in the interval 12 < E/E, < 18 and in the strong drop
at E/Ey ~ 22.) We believe that even small stubs will
greatly mix the high-energy modes whose wavelengths
become small in comparison to other geometrical length
scales of the problem. This implies that the width of a
1D mesoscopic-crystal should be kept very uniform if one
is to see channel decoupling take place.

Guided by the above results we consider now in de-
tail the behavior of the device in the low-energy region,
when only one transverse mode is allowed, and study the
transmission when both the blocking potential and the
stubs exert their full effect. When the blocking potential
is higher than the electron kinetic energy (as we have
mentioned in Sec. III ) the device is basically shut off,
except at those energies where resonant tunneling takes
place. In our combined structure, the resonant cavity
can be controlled by changing the effective stub length.
Figure 13 shows the transmission coefficients for a single-
stub wire with a blocking bridge at each end. Without
bridges, the T' = T'(c) curve is identical to the dark line
in Fig. 8. When raising V to Eq and 2E, we found that
the minima do not move; they remain in the positions
determined by the single-stub wire without bridges. Fur-
thermore, these minima do not move even when s varies.
This shows that the minima are determined only by the
coupling of the main wire to the stub. It is the stand-
ing wave in the stub that determines the period of the

QUANTUM WIRE WITH PERIODIC SERIAL STRUCTURE
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2.5
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FIG. 13. Transmission coefficient of a single-stub wire
with two blocking bridges. b = a, s = 0.25a, d = 0.5a,
E =2.57TFEy. Solid line: Vo = 2FEy; dotted line: Vp = Fy.

T = T(c) curve. Unlike the minima, the maxima do move
when either the blocking potential or s changes. This is
clearly because the maxima are resonant peaks when V
is not too small. The effective resonant cavity is the part
of the main wire sandwiched between the two bridges and
the part of the stub from the entrance to the first node
of the standing wave. Thus if ¢; gives a maximum, so
must ¢; + 8¢, where éc is given by Eq. (50). Thus we see
that the number of maxima equals the number of min-
ima, and that they have the same period. However, the
spacing between adjacent maxima and minima is another
story. From this discussion, we see that both the quarter-
wave and quantum-resonant-tunneling mechanisms are
effective in this combined structure. Practically, because
we have greater controllability over this device, we may
think of using the stub length as the main control to
realize transistor action, and the voltage applied to the
bridges as a dynamical parameter to change the device
characteristics. Returning to Fig. 13, we see how V} can
greatly change the function T' = T'(¢). Think about the
case Vy = 0, where the device is basically open, and only
cut off at certain specific ¢ values. But when Vy = 2FE),
the situation is almost the reverse, and the device is ba-
sically a closed one, opening only when ¢ causes resonant
behavior.

To conclude this section, we introduce the last figure
in this paper. Figure 14 shows a five-stub wire with six

l T u T
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" '
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1 1.5 2 2.5 3 3.5 4
c/a
FIG. 14. Transmission coefficient of a five-stub wire with

six blocking bridges. b = a, s = 0.25a, d = 0.5a, E = 2.57TE,,
Vo = Fo.



6360

bridges at potential Vj = Fy; other relevant parameters
remain unchanged from Fig. 13. As expected, the ad-
dition of the stub introduces more resonant peaks, and
the number of peaks in one period is equal to the num-
ber of stubs, or the number of resonant cavities. This
feature is passed along from the 1D mesoscopic-crystal
model. However, the difference is that in this structure,
these multiple peaks are observed through scanning the
control signal on the stub. Further discussion of this
combined structure will be presented elsewhere.

VII. SUMMARY AND REMARKS

We have presented a simple and efficient way of solving
the electron-wave-propagation problem for serially con-
nected quantum-wire devices. With this method, we have
discussed several recently considered mesoscopic struc-
tures. We have emphasized the underlying principles
governing the simplest of these structures: the quarter-
wave mechanism for the single-sidearm wire and quantum
tunneling effects for the 1D mesoscopic crystal. The in-
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terplay of these two effects can be seen in our combined
structure, a quantum wire with both sidearms and block-
ing bridges as control gates. The structure has greater
control capabilities.
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